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Abstract
Reconciling machine learning with individual privacy is one of the main motivations
behind federated learning (FL), a decentralizedmachine learning technique that aggre-
gates partial models trained by clients on their own private data to obtain a global deep
learning model. Even if FL provides stronger privacy guarantees to the participating
clients than centralized learning collecting the clients’ data in a central server, FL is
vulnerable to some attacks whereby malicious clients submit bad updates in order
to prevent the model from converging or, more subtly, to introduce artificial bias in
the classification (poisoning). Poisoning detection techniques compute statistics on
the updates to identify malicious clients. A downside of anti-poisoning techniques
is that they might lead to discriminate minority groups whose data are significantly
and legitimately different from those of the majority of clients. This would not only
be unfair, but would yield poorer models that would fail to capture the knowledge in
the training data, especially when data are not independent and identically distributed
(non-i.i.d.). In this work, we strive to strike a balance between fighting poisoning
and accommodating diversity to help learning fairer and less discriminatory federated
learning models. In this way, we forestall the exclusion of diverse clients while still
ensuring detection of poisoning attacks. Empirical work on three data sets shows that
employing our approach to tell legitimate from malicious updates produces models
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that are more accurate than those obtained with state-of-the-art poisoning detection
techniques. Additionally, we explore the impact of our proposal on the performance
of models on non-i.i.d local training data.

Keywords Federated learning · Security · Privacy · Fairness · Minorities.

1 Introduction

In this digital age, data are key assets. Sources of data often include edge devices, such
as smartphones, IoT sensors attached to industrial equipment, or activities conducted
at organizations or other entities, such as hospitals. However, collecting, sharing, or
releasing these data can lead to many privacy concerns. As companies and institutions
collect growing amounts of data on their clients, they need to ensure that the privacy
of clients is not violated and that data protection regulations are enforced. The data
collected from everyday objects like cell phones, smartwatches, or fitness trackers
almost invariably end up in centralized servers where they are aggregated, packaged
and then, more often than not, shared with or sold to third parties. This may create
privacy issues, since these data sets can include a person’s confidential data, such
as her browsing history, sexuality, political affiliation, and even medical conditions.
These issues have led to the enactment of strict data protection laws, such as the
European Union’s General Data Protection Regulation (GDPR), which is binding for
any organization operating in the EU.

Privacy concerns have become more prominent during the Covid-19 pandemic
because, on the one hand, life has become more digital than before and, on the other
hand, data collection aimed at controlling the spread of the virus might be perceived as
a double-edged sword.While contact and mobility tracing are powerful instruments to
preserve public health, their potential for misuse is high. More generally, the privacy
expectations of individuals are confronted with the data-hungry artificial intelligence
(AI) methods increasingly adopted by organizations. Specifically, for deep learning to
be effective vast amounts of data are required to train the models. Service providers
collect data at massive scales for such training purposes. Traditionally, these large
amounts of data have been stored in centralized databases and processed in central
servers owned or hired by the service providers. Such central facilities need tight
protection to prevent data leaks. Even if no leaks arise, central data collection and
processing generate an asymmetry between the service provider and the customer,
because the former accumulates a wealth of personal data on the latter.

Federated learning (FL) (McMahan et al. 2017; Konečnỳ et al. 2016) attempts to
solve these problems. FL is a machine learning technique that operates in a decen-
tralized manner and allows learning models with the help of a set of clients, each of
whom privately owns a local data set. In FL clients receive an initial global model
from a service provider, often called model manager. Then each client updates the
received model based on her private local data, and then uploads the model update
to the model manager. The model manager aggregates the client updates to produce
a new version of the global model. In this way, the global model can be iteratively
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improved and shared without the model manager ever accessing the private data of
clients. The process iterates until the model converges.

The most usual situation in FL is that there is a crisp divide between the model
manager, who orchestrates the different steps of the process, and the clients, who
update the global model based on their private data. Yet, it is also conceivable to use
federated learning in a peer-to-peer scenario, where each peer may be both a model
manager (of her own model) and a client (who updates the models of other peers). In
any case, clients transmit to the model manager the bare minimum data to improve
the model. This is inherently more privacy-preserving than centralized approaches in
which client data are collected by a central server to build a machine learning model.
Another advantage of FL is that the learning effort is distributed among the clients,
instead of being centralized in a single entity.

For all its many advantages, FL is not free of issues. In particular, it is vulnerable to
security attacks whereby malicious clients sabotage the learning process by sending
badmodel updates. These attacksmay seek to prevent convergence to amodel (Byzan-
tine attacks) or to cause convergence to a flawed model whose output is determined
by the attacker at least for designated inputs (poisoning attacks). Poisoning attacks
are described in Bhagoji et al. (2019), along with several solutions that thwart them.
A well-known poisoning attack is label flipping, where the attacker is assumed to be
able to flip the labels of a fraction of training points. In this work, we restrict to the
detection of label flipping attacks and leave for future work the prevention of other
types of poisoning attacks (see Section 5 in Kairouz et al. (2019) for an overview of
different poisoning and backdoor attacks).

Techniques to prevent security attacks (discussed in Section 3) compute statistics on
the client updates to detect outlying values. Since abnormal and malicious behaviors
are usually associated with outlying updates, these are filtered out as an attack preven-
tion strategy when updating the global model. Even though this type of approaches are
effective to prevent attacks, systematically rejecting outlying updates might also lead
to unfair global models (Narayanan 2018) if the outlying data correspond to a legit-
imately different minority. Apart from facing the unfairness issue, attack prevention
countermeasures for FL often struggle to correctly treat non-i.i.d. (non-independently
and identically distributed) data. Most research proposals assume that the clients’
private data are i.i.d.

In this work, we explore the tensions between data privacy, partially achieved by
the use of federated learning, model robustness against label flipping attacks, and
fairness in classification tasks. As outlined above, federated learning is vulnerable to
poisoning attacks, and in particular to label flipping attacks. Mechanisms to protect
against these attacks are based on filtering outlying model updates. However, it is
not known ex ante whether these outliers come from attackers or from benign clients
whose data are genuinely different from those of the majority of clients, either because
the data are non-i.i.d. or because those benign clients belong to aminority group. Thus,
attack protection mechanisms in the literature provide model robustness at the cost of
classification fairness. We propose mechanisms to better model the updates provided
by the clients, by finding similarities among outliers that can indicate the existence of
minority groups and by only discarding those updates which are completely isolated.
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Other tensions among desirable properties of ML models are explored in Wang et al.
(2021).

1.1 Contribution and plan of this paper

No honest client ought to be discriminated in FL due to the genuine attribute values
of the persons/records represented by the client when interacting with other clients or
the model manager. In other words, all honest clients should be able to contribute to
the training process, because this is the best way to obtain not only fair but also good-
quality decision models. Note that ignoring minority groups in the training process
decreases the quality of the learned global model.

However, as introduced above, being inclusive with respect to minorities often
clashes with the ability to detect attacks against FL models. A common detection
approach is for the model manager to compute the Euclidean distance between each
of the client-provided model updates and the average of such updates, and then dis-
card as potentially malicious any update too far from the average, according to some
threshold or rule. In the presence of non-i.i.d. data, or when some of the clients repre-
sent individuals from minority groups, this approach might lead to treating genuinely
different individuals as potential attackers. This would not only be unfair to minorities,
but would result in a biased model.

Our aim is to strike a balance between anti-poisoning and diversity accommodation.
By including diverse clients, we aim at making it possible to learn less discriminatory
machine learning models. In Khandpur Singh et al. (2020), a preliminary conference
version of this work, we presented two approaches to properly distinguish members of
minority groups from potential model poisoners when carrying out robust aggregation
of updates. In addition, this article presents a third approach and also studies the
differences between the cases of i.i.d. and non-i.i.d. data. Thus, the contributions in
this paper are:

– A first method to distinguish minority members from attackers based on microag-
gregation (Domingo-Ferrer and Mateo-Sanz 2002). Clients who identify them-
selves as belonging to a minority group announce some relevant attributes to
their peers, such as their gender, their sexual orientation, or their ethnicity. From
these attributes, the peers carry out a clustering process via collaborative microag-
gregation. In this way, the majority group and the minority groups are clustered
separately. After that, an FLmodel is trained for each cluster. Since peers have been
already clustered according to some of their attributes, outliers within clusters are
likely to be attackers because their updates are unusual even for a minority group.
Finally, a weighted aggregation of the different cluster-level models is computed,
where the weights are proportional to the sizes of the clusters.

– A secondmethodwherewe useGaussianmixturemodels to characterize the distri-
bution of the client-provided updates and classify outliers in a more sophisticated
way than just relying on the distance to an average client update. In the pres-
ence of minority groups that differ from the majority group in some attributes, but
that are homogeneous within themselves, we expect this approach to label honest
individuals from minority groups as non-malicious.
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– A third method predicated on density-based clustering. Specifically, we use the
DBSCAN algorithm to identify clusters of any shape among the client updates. In
the FL setting the assumption is that the objectives for all clients approximate the
global objectives. However, this is not the case with non-i.i.d. data. DBSCAN can
help correctly characterize the distribution of updates from clients with non-i.i.d.
data.

The rest of the paper is organized as follows. Section 2 gathers background concepts.
Section 3 discusses related work on attack mitigation techniques in FL. Section 4
presents our three methods for fair detection of attacks based on microaggregation,
Gaussian mixture models and DBSCAN, respectively. Section 5 reports empirical
results that illustrate the effectiveness of our approaches for both i.i.d. and non-i.i.d.
private local data. Finally, conclusions and future research lines are discussed inSect. 6.

2 Background

In this section, we first present the general form of federated learning. Then, we
introduce the notions of fairness used in this article and how non-i.i.d-ness works in
FL.

2.1 Federated learning

In an FL scenario, a model manager initializes a learning model, such as a neural net-
work, with weights θ0, loss function L and learning rate ρ. Other hyper-parameters
may apply, such as dropout rate, decay or momentum, but we restrict to a general
model using stochastic gradient descent (SGD). The model manager may or may not
pre-train themodelwith available public or private data already in her possession. Each
of the m clients, whose devices are called client or edge devices, has access to a data
set Du = {xui , yui }nui=1 of size nu . The total size of the available data is n = ∑m

u=1 nu .
At epoch t —where epoch means learning iteration—, the model manager sends the
current global model θ t−1 to all clients; these use their devices to train local models
from the global model using their respective private data sets Du ; then, clients send
their respective updates δtu to the model manager, who updates the global model θ t−1

into θ t by averaging the updates, possibly subject to a parameter η which regulates
the model substitution rate. Additionally, a vector can be used to adjust the weight of
each client’s contribution in the federated aggregate. The intuition of FL is depicted in
Fig. 1.

A possible choice is for all components of to be 1/m, in which case the clients have
the same influence. If the client data sets are of very different sizes, an alternative choice
giving weight αu = nu/n to the u-th client might make sense. Also, in case a client
is found malicious, her αu value can be set to 0 to exclude her contributions from the
aggregate. This approach to aggregating updates is the most usual one and is known as
federaged averaging (FedAvg;McMahan et al. 2017). See its pseudocode in Protocol 1.

123



Fair detection of poisoning attacks in federated learning ... 2003

Fig. 1 Overview of federated learning

Protocol 1: FedAvg

1 Initialize model parameters θ0 and distribute them among clients;
2 while termination condition not met do
3 foreach client u ∈ S ; // S: set of m clients
4 do
5 δtu ← ρ

nu

∑
i ∇L({xui , yui }, θ t−1);

6 Send δtu to the model manager;
7 end
8 ← Attacker Detection(θ t−1, {δtu});
9 θ t ← θ t−1 + η

∑
u αuδ

t
u ;

10 Distribute θ t among clients;
11 end

2.2 Notions of fairness

To ensure high-quality learning, the FL model manager should refrain from making
decisions that unfairly (dis)favor any particular group of clients. On the one hand,
unfair treatment can discourage clients from joining the FL training. On the other
hand, blindly treating all clients equally without regard to their potentially diverse
contributions can yield FLmodels that do not generalizewell. Hence, ensuring fairness
in FL is essential, as it is the key to sustainable healthy collaboration in such an
ecosystem. In this work, we use the following notions of fairness from Verma and
Rubin (2018). In the definitions below, A ∈ {0, 1} is the protected attribute (that
distinguishes the minority/protected group from the non-minority/unprotected group),
Y ∈ {0, 1} is the target decision variable, and Ŷ ∈ {0, 1} is a binary predictor.

Definition 1 (False positive error rate balance (also called predictive equality
(PE))). A prediction algorithm satisfies this definition if the subjects in the protected
and unprotected groups have equal FPR (false positive rate). That is, the probability
of a subject in the minority group to have a wrongly predicted positive outcome is the
same as for a subject in the majority group:

P(Ŷ = 1 | Y = 0, A = 0) = P(Ŷ = 1 | Y = 0, A = 1).

123



2004 A. K. Singh et al.

Definition 2 (False negative error rate balance (also called equal opportu-
nity(EO))). A prediction algorithm satisfies this definition if the subjects in the
protected and unprotected groups have equal FNR (false negative rate). That is, the
probability of a subject in the majority group to have a wrongly predicted negative
value is the same as for a subject in the minority group:

P(Ŷ = 0 | Y = 1, A = 0) = P(Ŷ = 0 | Y = 1, A = 1).

In our context, a positive prediction for a client means that her update is accepted
by the manager, whereas a negative prediction means that it is discarded (as being
potentially malicious).

2.3 Non-i.i.d. data in FL

The fact that training data are often non-i.i.d. among clients is a challenge faced by FL
that also has fairness ramifications. In this setting, the distribution of the local data at
each client is not representative of the distribution of the global data (those that would
be obtained if all the clients’ local data were pooled). Non-i.i.d. data make it difficult
for FL to learn models that are as good as those obtained with centralized learning.

Non-i.i.d.-ness can be measured by the differences between the gradients obtained
by the clients on their respective local data and the gradients of the global model. For
a non-negative real value δ, Zhang et al. (2020) characterize δ-non-i.i.d. data in FL
with the following condition

||∇ fu(θ) − ∇ f (θ)|| ≤ δ,∀u, (1)

where θ are the model parameters, ∇ fu(θ) are the gradients obtained by client u after
a local training phase, and∇ f (θ) are the global model gradients. Expression (1) limits
to δ the difference in the distributions of the gradients of individual users and those of
the global model.

3 Related work

Several solutions have been proposed in the literature to detect attacks or abnormal
behaviors in machine learning (George and Vidyapeetham 2012; Gander et al. 2012).
In the specific context of FL, where the model manager has access to the individual
updates from the clients, the following classes of attack detection methods have been
proposed:

– Detection of malicious clients via model metrics. The model manager can recon-
struct the individual updated models for every client u and compare the model
performance metrics, such as accuracy or loss, against a validation data set with
respect to themodel obtained by aggregating all updates except that of client u. The
model manager can mark as anomalous and possibly discard any client updates
that degrade the model performance according to some rule or threshold. Note
that the model manager needs a suitable validation data set, which may not always
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be available in the FL scenario. Moreover, re-evaluating the model accuracy after
each update is extremely costly, and introduces an unacceptable overhead in the
FL process.

– Detection of malicious clients via update statistics. A very common and natural
approach for the model manager is to observe the statistics of the magnitudes of
the updates (Yin et al. 2018). The model manager can compute how much do
the distributions of distances in successive iterations change, for example using
the Kullback-Leibler divergence metric. In a scenario with colluding malicious
clients, these might have enough influence on the computed centroid to render
the previous countermeasures ineffective. To gain additional protection, the model
manager can compute the centroid as a median rather than as an average. The
median is more robust in front of outlying updates submitted by malicious clients.
More costly alternatives are presented in Li et al. (2019a), where anomalous clients
are detected by generating low-dimensional surrogates of model weight vectors,
and in Li et al. (2020), in which a spectral anomaly detection is performed by the
model manager. A decentralized approach based on update statistics is presented
inDomingo-Ferrer et al. (2020). A client’smodel update is considered legitimate if
its distance to the centroid of all client updates is roughly between the first and the
third quartiles of the set of distances between all client updates and the centroid.

– Krum aggregation. The authors of Blanchard et al. (2017) propose an aggregation
function that is resilient against f malicious clients. This function is called Krum.
The authors show that averaging does not stand Byzantine attacks, while Krum
does. An important advantage of Krum is its (local) time complexity O(m2 · d),
which is linear in the dimension of the updates. The authors also evaluate a variant
of Krum, Multi-Krum, which interpolates between Krum and averaging.

– Coordinate-wisemedian. InYin et al. (2018), amedian-based distributed algorithm
is proposed that selects the coordinate-wise median instead of the coordinate-wise
average. Since the median is a more robust statistic than the mean (i.e. it is less
influenced by outliers), the obtained global model is less influenced by potential
malicious peers.

– Coordinate-wise trimmed mean. Also in Yin et al. (2018), a second distributed
algorithm is proposed, called coordinate-wise trimmed mean, that can achieve
order-optimal error rate under weaker assumptions than the coordinate-wise
median algorithm.

In the approaches above, updates that are statistical outliers departing from a global
aggregatemodel are consideredmalicious. However, it may also be the case that honest
clients have genuinely outlying local data and therefore generate genuinely outlying
updates. This may be a consequence of the clients belonging to a minority group.

There is a growing interest in the development of fair models for machine learning.
In federated settings, Li et al. (2021) proposeDITTO, amulti-task learning framework,
to address the competing constraints of accuracy, fairness and robustness in FL. The
authors of this work define fairness as each client achieving equal test performance
on the federated model. In Lyu et al. (2020), a collaborative fair federated learning
framework (CFFL) is proposed. In this work, fairness is achieved by adjusting the
performance of the models allocated to each participant based on their contributions.
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Also, Du et al. (2021) aim at achieving group fairness in FL. The authors mimic the
centralized fair learning setting by very frequently exchanging information for each
local update, rather than for each round of local training.

Several works have dealt with non-i.i.d. data in a federated learning setting. As
prior studies show, decentralized learning algorithms lose significant model accuracy
in the non-i.i.d. setting. In Zhao et al. (2018), the authors propose a strategy to improve
training on non-i.i.d. data by creating a small subset of data which are globally shared
among all the edge devices. However, this relies on a substantial amount of public data
being available for a given task. In Jeong et al. (2018), the authors propose federated
augmentation (FAug), where clients collectively train a generative model, and thereby
augment their local data towards yielding an i.i.d. data set. The authors of Li et al.
(2019b) analyze the convergence of federated averaging on non-i.i.d. data and establish
a convergence rate ofO( 1

T ) for strongly convex and smooth problems, where T is the
number of rounds of local SGDupdates. The commonly used FedAvg (McMahan et al.
2017) makes no special adjustments when encountering non-i.i.d data and therefore
suffers from a deterioration in the accuracy of FL (Hsieh et al. 2020). This performance
degradation can chiefly be attributed toweight divergence of the local models resulting
from non-i.i.d data.

A systematic study on local model poisoning attacks to FL is offered in Fang et al.
(2020), including the attacks mentioned above. The authors simulate FL with differ-
ent non-i.i.d. training data distributions. They generalize two defenses against data
poisoning attacks, which are effective in some cases but not in others; this highlights
the need for new defenses against local model poisoning. For further background on
attacks and defenses in FL, see the surveys byKairouz et al. (2019) andBlanco-Justicia
et al. (2020). The methods we introduce in the next sections depart from the state of
the art in that they aim at properly managing updates originated by clients with local
data on minorities.

4 Fair attack detectionmethods

To evaluate the performance of the trained model, the fairness notions of Sect. 2.2 can
be readily applied to centralized model training. However, with non-i.i.d data in FL,
low levels of fairness are likely. To address this problem, one must pay attention to
the distribution of outlying updates. If these are concentrated, then this could signal
a minority, rather than attackers. Fairness comes from differentiating attackers from
minorities, so that the latter can avoid rejection of their updates.

4.1 Fair attack detection based onmicroaggregation

In this section, we introduce our microaggregation-based approach for fair detection
of attacks in federated learning.

Microaggregation is a perturbativemethod for statistical disclosure control of quan-
titative microdata. The method was introduced by Domingo-Ferrer and Mateo-Sanz
(2002) for numerical data, and Torra (2004) and Domingo-Ferrer and Torra (2005)
extended it for categorical data. Microaggregation is based on two steps:
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1. Partition. The records in the original data set are partitioned into a number of
clusters, each of them containing at least k records (the minimum cluster size) and
no more than 2k − 1 records. To minimize information loss in the following step,
records in each cluster should be as close to one another as possible.

2. Aggregation.Anaggregationoperator is used to compute the centroid of the records
in each cluster. Then the records in the cluster are replaced by their centroid.

In our approach, we are interested only in the partition step, whereby similar clients
will be clustered together based on their demographic attributes. The superiority of
microaggregation over standard clustering for our purposes lies in that the former
ensures that clusters will have at least size k. In this way, we avoid training models for
clusters that are too small. Note that it is impossible to detect any outliers if too small
clusters are allowed.

We propose the solution in Protocol 2 based on collaborative microaggregation to
distinguish malicious clients from clients with outlying updates computed on genuine
minority data, which we will call in what follows protected clients.

Protocol 2: AttackerDetectionMicro
1 Each protected client publishes, together with her pseudonym, demographic attribute values that
characterize her as a minority group client;

2 The model manager and protected clients engage in decentralized microaggregation as per
Protocol 3 to microaggregate protected clients according to their published attributes;

3 for each cluster C of the microaggregation do
4 Compute the centroid cC of the updates sent by clients in C ;
5 Let λC be the set of clients Pu ∈ C such that the distance distu from Pu ’s update δtu to the

centroid of the updates is not an outlier, more precisely

λC = {Pu ∈ C |Q1 − τ × I QR ≤ distu ≤ Q3 + τ × I QR}, (2)

where Q1 and Q3 are, respectively, the first and the third quartile of the set of distances,
I QR = Q3 − Q1 is the interquartile range and τ is a tolerance parameter;

6 if a client Pu ∈ λC then
7 αu = 1/m (or nu/n);
8 else
9 αu = 0;

10 end
11 end

InLine 1 of Protocol 2, the demographic attributes that characterize aminority client
might for example be {Sex=female, Age=young, Ethnicity=black}; we implicitly
assume that clients holding local minority data have themselvesminority demographic
attributes. In the microaggregation called in Line 2, parameter k must be taken large
enough so that outliers can be distinguished within a group of k, and a collusion of
k clients or of a significant fraction of k clients is unlikely. In Line 7 assigning a
nonzero weight αu to Pu’s update means accepting the update as legitimate (because
it is similar to most updates in Pu’s cluster C). In contrast, in Line 9 assigning αu = 0
means discarding the update (because it is too outlying even for the minority group
represented by C).
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Protocol 3: Decentralized microaggregation
Input: Clients P1, . . . ,Pm ; microaggregation parameter k;
Output: A partition of clients {Ci }pi=1;

1 Let qiu be demographic attribute values of Pu , for u = 1, . . . ,m;
2 Each Pu publishes qiu ;
3 The model manager uses a microaggregation algorithm based on the quasi-identifiers qi1, . . . , qic to
obtain clusters C1, C2, . . ., Cp , such that k ≤ |C j | ≤ 2k − 1;

4 The model manager publishes C1, C2, . . ., Cp ;
5 Each Pu can compute the above clusters, verify they are correct, and check that the cluster CPu
where qiu belongs contains k or more quasi-identifiers;

Note that microaggregation attempts to create clusters such that the published
attributes of protected clients in each cluster are maximally similar. Therefore, if
clients within a cluster are similar, it is natural to expect that the updates they send are
also similar. As a consequence, if an update differs very much from the others, it is
not unreasonable to treat the client having contributed it as malicious.

To create homogeneous clusters in an efficient way, in Protocol 3 we use the maxi-
mum distance to average vector (MDAV) algorithm, detailed in Algorithm 1, which is
the most widely used microaggregation algorithm (Domingo-Ferrer and Torra 2005).

Algorithm 1: MDAV microaggregation algorithm
Input: Data set R, microaggregation parameter k;
Output: A partition of R, with sets of minimum size k;

1 while |R| ≥ 3k do
2 Compute the average record x̄ of all records in R;
3 Consider the record xr most distant from x̄ ;
4 Find the record xs most distant from xr considered in the previous step;
5 Form two clusters around xr and xs , respectively, one containing xr and the k − 1 records closest

to xr and the other cluster containing xs and the k − 1 records closest to xs ;
6 Take as a new data set R the previous data set R minus the clusters formed around xr and xs in

the last instance of Step 5;
7 end
8 if there are between 3k − 1 and 2k records in R then
9 Compute the average record x̄ of the remaining records in R;

10 Find the record xr most distant from x̄ ;
11 Form a cluster containing xr and the k − 1 records closest to xr ;
12 Form another cluster containing the rest of records;
13 else
14 Form a new cluster with the remaining records;
15 end

MDAV is a heuristic algorithm that clusters records in a data set so that each cluster
is guaranteed to contain at least k records. At each iteration, two records are selected:
the record xr farthest from the average record x̄ of the data set and the record xs farthest
from xr . Then, a cluster is formed with xr and its closest k − 1 records, and another
cluster with xs and its closest k − 1 records. The records in both clusters are removed
from the data set in the next iteration.
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4.2 Fair attack detection based on Gaussianmixtures and
expectation-maximization

In this section, we propose a second approach to tackle the problem of fair attack
detection in federated learning. It is based on Gaussian mixture models (GMM) and
the expectation-maximization (EM) algorithm.

Gaussian mixture models are probabilistically weighted combinations of Gaussian
components, each with its own mean and covariance. Mixture models, in general,
are better suited than single distributions at modeling populations where differences
between sub-populations exist. We leverage this property of Gaussian mixture models
to capture the differences among different sub-populations (e.g., minorities) while
still being able to determine whether some data points are too far from the distribution
modeling the population.

The expectation-maximization algorithm is an iterative method to find the
maximum-likelihood estimates for GMMparameters in the presence of latent (hidden)
variables. The expectation-maximization algorithm takes the number of Gaussians to
model the data, K 1, and iteratively finds for each Gaussian k ∈ {1, . . . , K } its weight
πk , its mean μ, and its covariance matrix 
k . Given these parameters, we are able to
compute how likely each point is to belong to the mixture of Gaussians.

Algorithm 2 shows how we use the expectation-maximization algorithm to detect
potential malicious updates in federated learning aggregation. This algorithm is used
at each global learning step, that is, at the time of aggregating local updates. Once
the model manager receives all updates from clients, it fits a GMM to the received
updates using the expectation-maximization algorithm. Then, each individual update
is evaluated according to the log-likelihood that it follows the derived distribution.
Those updates with a log-likelihood below a parameter τ (i.e., those updates that are
significantly different from the rest) are flagged as potentiallymalicious and discarded.

Algorithm 2: AttackerDetectionEM

Input: Client updates {δtu}mu=1
1 π,μ,
 ← EM({δtu}mu=1);
2 for u in S do
3 � ← log(

∑
k N (δtu;μk, 
k) · πk);

4 if � < τ then
5 αu = 0;
6 else
7 αu = 1/m (or nu/n);
8 end
9 end

1 Choosing K is not trivial since it is not known howmany clusters there are. One can vary K until obtaining
useful results.
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4.3 Fair attack detection based on DBSCAN

In this sectionwe propose a third approach to tackle the problemof fair attack detection
in federated learning. It is based on a commonly used data clustering algorithm, i.e.
density-based spatial clustering of applications with noise (DBSCAN). In Ester et al.
(1996), a new notion called density-based clustering was introduced, whereby clusters
of any shape can be identified in data sets containing noise and outliers. The goal of
DBSCAN is to identify dense regions, which can bemeasured by the number of objects
close to a given point.

DBSCAN requires two parameters:

– Epsilon (Eps): maximum radius of the neighborhood around a point.
– Minimum points (MinPts): minimum number of points in the Eps-neighborhood
of a point. This Eps-neighborhood of a point p can be defined as NEps(p) = {q ∈
D|dist(p, q) ≤ Eps}, where D is the total set of points.

Any point p in the data set with a neighbor count at least MinPts is marked as
a core point. A point p is a border point if the number of its neighbors is less than
MinPts, but it belongs to the Eps-neighborhood of some core point. If a point is
neither a core point or a border point, then it is called a noise point or an outlier.

Those points that do not belong to any cluster are treated as outliers or noise. One
limitation of DBSCAN is that it is sensitive to the choice of parameters, especially if
clusters have different densities. If Eps is too small, a cluster whose point-to-point
distances are greater than Eps will be taken as noise. In contrast, if Eps is too large,
clusters whose inter-cluster distance is less than Eps may be merged together.

In Algorithm 3 we show how DBSCAN can be used for attacker detection in
federated learning. The model manager fits the model to the updates and goes through
each individual update to check if it is a noise point. If the latter happens, then the
model manager flags the update as malicious.

Algorithm 3: AttackerDetectionDBSCAN

Input: Set of clients S, client updates {δtu}mu=1, Eps, MinPts
1 Core, Border , Noise ← DBSC AN ({δtu}mu=1, Eps, MinPts);
2 for u in S do
3 if δtu ∈ Noise then
4 αu = 0;
5 else
6 αu = 1/m (or nu/n);
7 end
8 end

5 Experimental results

We conducted experiments to examine the effectiveness of our attack detection mech-
anisms in FL with minority groups and non-i.i.d. data. To that end, we chose three
publicly available data sets, namely (i) the Adult Income data set (Dua and Graff
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Table 1 Characteristics of data sets

Adult Athletes Bank Marketing

# Records 45, 222 206, 165 45, 211

Sensitive attribute Race Height and Country Marital status

Balanced data set No Yes No

Attributes 14 17 17

Class label Income Height Term deposit

2017), (ii) the Athletes data set (Griffin 2018), and (iii) the BankMarketing data set (S
Moro and Rita 2014).

In the next sections we describe these data sets and the preprocessing we conducted
on them to emulate both clients with local minority data and clients bases with non-
i.i.d. data.

5.1 Data sets, preprocessing, and baseline scenarios

Here, we present a summary table (Table 1) of the data sets we use in our experiments,
along with how we compute the initial baseline metrics.

For the three data sets, we first cleaned missing values and identified (sensitive)
attributes that split the population of individuals in each data set into majority and
minority groups.

Tomeasure potential biases in the data sets, we trained a federated learning baseline
model for each of them and we computed performance metrics. In all three cases, the
baselinemodelswere built usingKeras and consisted of amultilayer perceptron (MLP)
with two hidden layers using the ReLU activation function. Since we were training
binary classifiers, the output layer used a sigmoid activation function. We used binary
cross-entropy as the loss function and the Adam optimizer with a learning rate 3·10−4.

After this evaluation, we prepared the data sets for further experiments in a feder-
ated scenario with fair malicious client detection. We considered three different kinds
of clients: majority clients, minority clients, and malicious clients. We followed the
approach ofMcMahan et al. (2017). The step-by-step process was to first sort the data,
then divide the data into equally sized shards, and finally assign each of the shards to
a different client.

The next subsections provide details on these procedures for each of the data sets.

5.1.1 Adult Income data set

The Adult data set has been typically used to train classifiers which predict whether an
individual earns more or less than $50, 000 per year, according to a set of demographic
attributes, and with two class values: ≤ $50K (class 0) and > $50K (class 1). The two
classes are distributed as follows: 34, 014 individuals (75.21%) earn up to $50K per
year and 11, 208 individuals (24.78%) earn more. The race attribute has 5 distinct
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Table 2 Performance measures
for the Adult centralized
baseline scenario

Black Nonblack

Accuracy 87.31% 90.18%

FNR 0.1203 0.0881

FPR 0.0797 0.0702

ROC AUC 0.80 0.82

values: 1. White: 38, 903 (86.02%); 2. Black: 4, 228 (9.34%); 3. Asian-Pac-Islander:
1, 303 (2.88%); 4. Amer-Indian-Eskimo: 435 (0.96%); 5. Other: 353 (0.78%).

We observe that White and Asian-Pacific-Islander are more likely to be in the > $
50K class than the rest, with over 25% of the observations of these two in that class. In
comparison, only around 12% of black individuals belong to this class. Therefore, we
found that this data set had abias towardsWhite andAsian-Pacific-Islander individuals,
so we first wanted to establish whether a machine learning model trained with these
data also showed this bias.

To that end, we first set to finding which proportion of black individuals were
misclassified as earning less than $ 50K , in comparison to individuals from other
ethnicities. The whole data set is clearly imbalanced towards the low-earning class,
and so we expected a certain FNR (taking the class < $50K as class 0) across all
ethnicities. We wanted to know if this FNR was balanced across all ethnicities. First,
we recoded the ’Black’ individuals in the variable ’race’ as 0 and the rest as 1, who
were the ’nonblack’ individuals. This resulted in 4, 228 black individuals and 40, 994
nonblack individuals. Then, we trained an MLP as described above in a centralized
manner by using a random 75-25% train-test split:

the training set consisted of 33, 916 samples and the test set had 11, 306 samples.
Table 2 shows the centralized baseline scenario results for Adult.
From Table 2, we can confirm that the model is biased to favor the ’nonblack’ indi-

viduals since their FNR is smaller (8.81%) than for the ’Black’ individuals (12.03%),
i.e., black individuals are incorrectly assigned to be in the low income category in a
bigger proportion than nonblack individuals.

Next,we prepared theAdult data set for a federated learning scenariowithmalicious
clients. Adult was split into 50 client shards, as follows:

– 30 shards contained records that only includednonblack individuals, i.e., race = 1.
These corresponded to themajority clients. Each shard consisted of 1, 500 records,
of which 1, 400 were reserved for training and 100 for testing.

– 19 shards contained records of black individuals, i.e., race = 0 across the two
income classes. These shards corresponded to the minority clients. Each shard
consisted of 1, 500 records, of which 1, 400 were reserved for training and 100
for testing.

– The remaining shard contained 55% of rich black individuals and 45% of low-
income black individualswhose labels had been flipped to high-income. This shard
represented a malicious client, trying to make the model misclassify low-income
black individuals as high-income.

123



Fair detection of poisoning attacks in federated learning ... 2013

Table 3 Performance measures
for the Athletes centralized
baseline scenario

SouthAsian NonSouthAsian

Accuracy 89.42% 92.81%

FNR 0.0794 0.0701

FPR 0.0566 0.0513

ROC AUC 0.82 0.83

Our objectivewas to detect and remove those updates computed onpoisoned records
without contributing to the bias against the minority clients. That is, without punishing
the genuine high-income black individuals.

5.1.2 Athletes data set

The second data set contains information on all the athletes that have competed in
any of the Olympic games from Athens 1896 to Rio 2016. We replaced all missing
values in the ’Medal’ attribute with ’NoMedal’, and, after dropping the rest of missing
values, we were left with 206, 165 records.

For our study, we used ’Country’ and ’Height’ as sensitive attributes. We made a
new column ’Country_height’, which has the values ’SouthAsian’, labeled as 0 and
’NSA’, labeled as 1. The first class included countries from South Asia and South East
Asia present in the data set (Indonesia, Vietnam, Philippines, Malaysia, Sri Lanka,
Thailand, Singapore, India, Pakistan, Maldives, Afghanistan, Bangladesh, Bhutan,
Nepal, Brunei, Cambodia, Laos, Myanmar, Japan) for which the data shows people
are more likely to have a height attribute below the data set median height (175.0 cm).
The second value was the non South Asian countries, which included the rest of the
countries.

We considered ’tall’ (class 1) those athletes with height 175.0 (the data set median)
or above (110, 618 athletes) and ’short’ (class 0) those athleteswith height below 175.0
(95, 547). This was the classification task.We were interested in studying the biases in
models trained on these data, by focusing onmale SouthAsian athletes as the protected
minority. First, we created a new data set with only male athletes, where 7, 851 were
from South Asian countries and 131, 603 were from non South Asian countries. Then,
we trained an MLP as described above in a centralized manner, in which the training
set consisted of 104, 590 samples and the test set of 34, 864 samples. This was the
baseline scenario, whose metrics we show in Table 3.

Then, we prepared the data set to be evaluated in a federated learning scenario with
fair malicious client detection as described above. In this case, we split the data into
90 shards, again, with three different kinds of clients:

– 60 shards contained records of non SouthAsian athletes, i.e., ’Country’= 1. These
corresponded to the majority clients. Each shard consisted of 1, 500 records, of
which 1, 400 were reserved for training and 100 for testing.

– 29 shards contained records of South Asian athletes, i.e. ’Country’ = 0. These
shards corresponded to theminority clients. Each shard consisted of 1, 500 records,
of which 1, 400 were reserved for training and 100 for testing.
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Table 4 Performance measures
for the Marketing centralized
baseline scenario

Divorced NonDivorced

Accuracy 85.74% 88%

FNR 0.1102 0.1063

FPR 0.0787 0.0709

ROC AUC 0.79 0.80

– The last shard contained both tall South Asian athletes (25%) and short South
Asian athlethes (75%) whose labels had been flipped to tall. This shard is assigned
to the attacker.

Again, our purpose was to detect the attacker and discard its updates without affect-
ing the performance of the model or causing South Asian athletes to be misclassified
in a larger proportion than in the baseline scenario.

5.1.3 Bank Marketing data set

The last data set we used is related with direct marketing campaigns (phone calls)
of a Portuguese banking institution. Its classification goal is to predict whether the
individual will subscribe to a term deposit (’yes’ = 0, ’no’ = 1). It is an imbalanced
data set with the class 1 (’no’, that is, not subscribed) being the majority class (88.7%).

In this case, we used the Marital − status attribute as the sensitive attribute.
The majority of the individuals are married (60.19%) and these are the most likely to
subscribe to a termdeposit. The rest are singles (28.29%) or divorced (11.52%). Tofind
out whether this imbalance caused bias in classification, we first labeled ’Divorced’
individuals in the variable ’Marital-status’ as 0 and the rest as 1, which are the ’non-
divorced’. 5, 207 records belonged to divorced individuals and 40, 004 belonged to
individuals who are not. Then, we trained an MLP as described above in a centralized
manner, with a training data set of size 33, 908 and a testing data set of size 11, 303.
We show the metrics for this baseline scenario in Table 4.

To prepare the data set for experiments with malicious clients, we split it in 50
shards as follows:

– 30 shards contained records of non-divorced clients, i.e. ’Marital-status’ = 1.
These corresponded to themajority clients. Each shard consisted of 1, 500 records,
of which 1, 400 were reserved for training and 100 for testing.

– 19 shards contained records of divorced individuals. These shards corresponded
to the minority clients. Each shard consisted of 1, 500 records, of which 1, 400
were reserved for training and 100 for testing.

– 1 shard of 1,500 records included 622 divorced individuals who had not subscribed
to a term deposit. The label for 90% of those 622 records was flipped from ’no’
to ’yes’ . This shard represented a malicious client trying to poison the model into
misclassifying non-suscribers to term deposits as subscribers.
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5.2 Detection of malicious updates

We compared four approaches to detect malicious updates on the generated data sets:

1. FL baseline. In the FL baseline experiment we trained a federated learning model
using a distance-basedmethod to detect outliers as inDomingo-Ferrer et al. (2020).
In summary, an average update was computed from all client-provided updates.
Then, the Euclidean distance between every individual update and the average
update was computed. All updates whose distance fell outside the bounds in
Expression (2) with τ = 1.5 were considered malicious and thus discarded. This
FL baseline must not be confused with the centralized baseline of Tables 2, 3 and 4.

2. Microaggregation. The second experiment modeled FL with microaggregation-
based attack detection. We used different parameters for the experiments to show
how varying them affects the metrics. The local learning steps varied among 1, 2
and 5, and for parameter k we chose 1, 3 and 5. Note that microaggregation with
k = 1 (no clusters) yields the FL baseline described in the previous paragraph.

3. GMM. This experiment tested the GMM-based approach.
We used the GMM implementation in Scikit-learn (Pedregosa et al. 2011),
with parameters K = n_components = 3 (3 mixture components) and
covariance_t ype = “ f ull ′′ (each component had its own general covariance
matrix).
Any update whose log-likelihood fell below τ = −20, 000 was considered mali-
cious and was discarded. We used different parameters to see how this affected
the metrics. The local learning steps were the same as in the previous experiment,
the mean μ took values 0 and 2, and the covariance σ 2 took values 1 and 4. To get
the optimal number of clusters, we used the Bayesian Information Criterion (BIC)
function. The optimal value is the one that minimizes BIC.

4. DBSCAN. The last experiment was similar to the previous one, but using
Algorithm 3 to detect malicious updates. The algorithm used the DBSCAN imple-
mentation provided in Scikit-learn with parameters Eps = 0.5, 3, 5, and minPts
depending on the data set as follows:

– Adult Income data set: minPts = 5, 15, 28.
– Athletes data and Bank Marketing data sets: minPts = 5, 18, 34.

Values for Eps other than 0.5 and values for MinPts other than 5 were selected
following the procedure in Section 4.2 of Sander et al. (1998).

5.3 Performancemeasures and discussion

In Table 5 we count the number of good updates sent by genuine minority clients
but flagged as malicious, for each of the four approaches and for each of the three
data sets. The numbers are cumulative over all epochs (100 epochs were used for all
approaches). Clearly, the three methods we propose misclassified genuine minority
updates as malicious in a smaller proportion than the FL baseline for the three studied
data sets. In particular, the method based on microaggregation offered the best results
among our three proposals.
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Table 5 Number of genuine minority updates misclassified as malicious

FL baseline Microaggregation GMM DBSCAN

Adult data set 183 102 131 126

Athletes data set 385 213 227 234

Bank Marketing data set 271 158 172 164

Table 6 Performance measures for Adult Income data set with different microaggregation parameters.

Accuracy ROC AUC PE EO

Parameters B NB Att B NB Att − −
k=1, LS=1 0.9003 0.9307 0.7712 0.82 0.83 0.68 0.0323 0.238

k=1, LS=2 0.9125 0.9362 0.8298 0.82 0.84 0.72 0.0271 0.0205

k=1, LS=5 0.9072 0.9251 0.7809 0.83 0.83 0.71 0.0308 0.0251

k=3, LS=1 0.9395 0.9591 0.7421 0.84 0.85 0.72 0.0097 0.0061

k=3, LS=2 0.9594 0.9873 0.8406 0.86 0.87 0.73 0.0022 0.031

k=3, LS=5 0.9775 0.9849 0.7421 0.89 0.90 0.78 0.0035 0.0029

k=5, LS=1 0.92 0.9401 0.8103 0.84 0.83 0.73 0.0106 0.0095

k=5, LS=2 0.9261 0.9387 0.8164 0.83 0.84 0.71 0.0182 0.0206

k=5, LS=5 0.9122 0.9394 0.8027 0.82 0.83 0.72 0.0213 0.0285

‘B’ stands for black (minority clients), ‘NB’ for non-black (majority clients), ‘Att’ for attacker clients

Further, we used Accuracy and ROC AUC as performance metrics for majority,
minority, and attacker clients. The basic objective of our mechanisms was to increase
these performancemetrics for bothmajority andminority clientswhile ensuring attack-
ers achieved worse results. Additionally, we used the above mentioned Predictive
Equality (PE) and Equal Opportunity (EO) metrics to detect the presence of unfair-
ness towards the majority or the minority. According to these two metrics, the closer
PE and EO to 0, the fairer is a method2.

Results are summarized in the following tables. Tables 6, 7 and 8 report the above
metrics for the microaggregation experiment with different parameter k and learning
steps LS. Tables 9, 10 and 11 report the above metrics for the GMM experiment with
different mean, covariance and learning steps. Finally, Tables 12, 13 and 14 report the
above metrics for the DBSCAN experiment with different Eps,minPts, and learning
steps.

The results show that all methods perform comparably or slightly better than the
FL baseline scenario (microaggregation with k = 1) in terms of accuracy and ROC
AUC. These results indicate that our methods allow the models to better capture the
differences present between the majority and minority groups, while still being able

2 Note that fairness metrics computed in what follows refer to clients, more precisely to the decision made
by the model manager to accept or reject a client’s update. This is different from fairness referred to subjects,
when the decision ismade by the classifier to classify a subject’s record into the positive or negative category
(e.g. > $50K, resp. ≤ $50K in the case of Adult). To avoid confusion between both types of fairness, we
did not compute PE or EO in the centralized baseline tables (Tables 2, 3, and 4).
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Table 7 Performance measures for Athletes data set with different microaggregation parameters.

Accuracy ROC AUC PE EO

Parameters SA NSA Att SA NSA Att − −
k=1, LS=1 0.9227 0.9546 0.8115 0.83 0.85 0.71 0.0118 0.0241

k=1, LS=2 0.9395 0.9591 0.802 0.82 0.85 0.72 0.0172 0.0283

k=1, LS=5 0.9282 0.9487 0.8146 0.82 0.84 0.71 0.0105 0.0199

k=3, LS=1 0.9582 0.9721 0.7903 0.87 0.89 0.69 0.0081 0.0065

k=3, LS=2 0.9689 0.9984 0.8049 0.88 0.9 0.72 0.0037 0.0103

k=3, LS=5 0.9508 0.9714 0.8021 0.87 0.89 0.71 0.0073 0.0091

k=5, LS=1 0.9372 0.9522 0.8241 0.85 0.86 0.73 0.011 0.0183

k=5, LS=2 0.9388 0.9564 0.8173 0.84 0.86 0.72 0.0256 0.0174

k=5, LS=5 0.9261 0.947 0.8153 0.84 0.85 0.72 0.0234 0.0201

‘SA’ stands for South Asian (minority clients), ‘NSA’ for non-South-Asian (majority clients), ‘Att’ for
attacker clients

Table 8 Performance measures for Bank Marketing data set with different microaggregation parameters.

Accuracy ROC AUC PE EO

Parameters D ND Att D ND Att − −
k=1, LS=1 0.9106 0.9212 0.7572 0.81 0.83 0.68 0.0147 0.0132

k=1, LS=2 0.9163 0.9387 0.7681 0.83 0.84 0.72 0.0212 0.0263

k=1, LS=5 0.9201 0.93 0.7657 0.83 0.83 0.72 0.0178 0.0224

k=3, LS=1 0.9695 0.9691 0.7521 0.86 0.87 0.74 0.0098 0.0113

k=3, LS=2 0.9738 0.9888 0.7806 0.87 0.89 0.75 0.0096 0.0077

k=3, LS=5 0.9572 0.9614 0.7521 0.87 0.88 0.74 0.0103 0.0094

k=5, LS=1 0.9362 0.9584 0.7662 0.86 0.86 0.73 0.0152 0.188

k=5, LS=2 0.9344 0.9482 0.78 0.85 0.86 0.73 0.0183 0.0205

k=5, LS=5 0.9272 0.9439 0.7638 0.85 0.85 0.72 0.0175 0.0226

‘D’ stands for divorced (minority clients), ‘ND’ stands for non-divorced (majority clients), ‘Att’ for attacker
clients

to discard malicious updates. In all cases, attacker clients achieve worse accuracy than
legitimatemajority andminority clients.Additionally, allmethods reduce inmost cases
the differences between majority and minority groups with respect to FL baseline; this
can be observed with the EO and PE metrics.

Regarding the different parameters, we can see in the results for microaggregation
that the accuracy with k = 3 is better than with k = 1. However, further increasing k
to 5 decreases accuracy. A plausible explanation is that larger values of k yield larger
clusters, which entails some information loss and thus a performance degradation.
Thus, k = 3 seems best for accuracy, and it also yields the best values (closer to 0) for
fairness metrics PE and EO between majority and minority groups.
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Table 9 Performance measures for Adult Income data set with different GMM parameters

Accuracy ROC AUC PE EO

Parameters B NB Att B NB Att − −

μ = 0, σ 2 = 1, LS=1 0.9117 0.9398 0.7251 0.83 0.83 0.72 0.042 0.0158

μ = 0, σ 2 = 1, LS=2 0.9295 0.9401 0.7288 0.83 0.84 0.71 0.0301 0.0242

μ = 0, σ 2 = 1, LS=5 0.9272 0.9464 0.73 0.83 0.84 0.71 0.0323 0.0168

μ = 0, σ 2 = 4, LS=1 0.939 0.9591 0.7321 0.84 0.84 0.70 0.0285 0.0315

μ = 0, σ 2 = 4, LS=2 0.9208 0.9446 0.74 0.83 0.83 0.71 0.0273 0.0205

μ = 0, σ 2 = 4, LS=5 0.9384 0.9516 0.7461 0.84 0.85 0.72 0.0207 0.0186

μ = 2, σ 2 = 4, LS=1 0.9473 0.9628 0.7582 0.87 0.89 0.73 0.0096 0.105

μ = 2, σ 2 = 4, LS=2 0.9578 0.9763 0.7534 0.88 0.91 0.74 0.0062 0.0091

μ = 2, σ 2 = 4, LS=5 0.9455 0.9682 0.7495 0.87 0.89 0.73 0.0071 0.0112

Table 10 Performance measures for Athletes data set with different GMM parameters

Accuracy ROC AUC PE EO

Parameters SA NSA Att SA NSA Att − −

μ = 0, σ 2 = 1, LS=1 0.9109 0.9423 0.7762 0.83 0.84 0.69 0.0289 0.0213

μ = 0, σ 2 = 1, LS=2 0.9154 0.9365 0.7864 0.84 0.84 0.7 0.0162 0.0197

μ = 0, σ 2 = 1, LS=5 0.9277 0.9488 0.7742 0.83 0.83 0.7 0.0256 0.0301

μ = 0, σ 2 = 4, LS=1 0.9293 0.9491 0.7821 0.84 0.84 0.71 0.0143 0.0106

μ = 0, σ 2 = 4, LS=2 0.9207 0.9456 0.7895 0.83 0.85 0.71 0.0187 0.0259

μ = 0, σ 2 = 4, LS=5 0.9156 0.9327 0.7759 0.83 0.83 0.7 0.0175 0.0201

μ = 2, σ 2 = 4, LS=1 0.9476 0.9702 0.8143 0.86 0.89 0.73 0.0084 0.0107

μ = 2, σ 2 = 4, LS=2 0.9587 0.9765 0.8278 0.87 0.89 0.73 0.0051 0.0038

μ = 2, σ 2 = 4, LS=5 0.9443 0.9631 0.8109 0.87 0.88 0.72 0.0096 0.012

Table 11 Performance measures for Bank Marketing data set with different GMM parameters

Accuracy ROC AUC PE EO

Parameters D ND Att D ND Att − −

μ = 0, σ 2 = 1, LS=1 0.8906 0.9273 0.8064 0.82 0.84 0.69 0.0359 0.0401

μ = 0, σ 2 = 1, LS=2 0.9159 0.9365 0.7929 0.83 0.84 0.7 0.0225 0.0362

μ = 0, σ 2 = 1, LS=5 0.9066 0.9284 0.7942 0.84 0.83 0.7 0.0274 0.0207

μ = 0, σ 2 = 4, LS=1 0.9224 0.9391 0.7831 0.84 0.84 0.71 0.0148 0.0262

μ = 0, σ 2 = 4, LS=2 0.9282 0.9256 0.7995 0.83 0.85 0.71 0.0197 0.0211

μ = 0, σ 2 = 4, LS=5 0.9144 0.9397 0.8059 0.83 0.84 0.7 0.025 0.0193

μ = 2, σ 2 = 4, LS=1 0.9376 0.9551 0.8142 0.86 0.89 0.73 0.0123 0.0085

μ = 2, σ 2 = 4, LS=2 0.9554 0.9672 0.8178 0.87 0.89 0.73 0.011 0.0152

μ = 2, σ 2 = 4, LS=5 0.9437 0.9614 0.8109 0.87 0.88 0.72 0.0097 0.0104
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Table 12 Performance measures for the Adult Income data set with different DBSCAN parameters

Accuracy ROC AUC PE EO

Parameters B NB Att B NB Att − −
Eps = 0.5, minPts=5, LS=1 0.9632 0.9861 0.7994 0.89 0.91 0.72 0.0062 0.0031

Eps = 0.5, minPts=5, LS=2 0.9777 0.9636 0.7885 0.9 0.9 0.71 0.0045 0.0081

Eps = 0.5, minPts=5, LS=5 0.9592 0.9622 0.7839 0.89 0.9 0.71 0.0093 0.0106

Eps = 3, minPts=15, LS=1 0.94 0.9546 0.8047 0.85 0.85 0.7 0.0126 0.0174

Eps = 3, minPts=15, LS=2 0.9584 0.9603 0.8021 0.85 0.86 0.69 0.0117 0.0109

Eps = 3, minPts=15, LS=5 0.9401 0.9514 0.7962 0.84 0.85 0.7 0.0183 0.0196

Eps = 5, minPts=28, LS=1 0.9225 0.9347 0.8139 0.83 0.84 0.7 0.0241 0.0273

Eps = 5, minPts=28, LS=2 0.9332 0.9289 0.8016 0.84 0.84 0.71 0.0191 0.0262

Eps = 5, minPts=28, LS=5 0.9187 0.9311 0.7812 0.83 0.84 0.72 0.0285 0.0306

Table 13 Performance measures for the Athletes data set with different DBSCAN parameters

Accuracy ROC AUC PE EO

Parameters SA NSA Att SA NSA Att − −
Eps = 0.5, minPts=5, LS=1 0.9505 0.9682 0.8082 0.88 0.89 0.76 0.0105 0.0138

Eps = 0.5, minPts=5, LS=2 0.9602 0.9688 0.7943 0.89 0.9 0.75 0.0078 0.0063

Eps = 0.5, minPts=5, LS=5 0.9558 0.9592 0.8031 0.88 0.89 0.76 0.0097 0.0115

Eps = 3, minPts=18, LS=1 0.9372 0.9546 0.8147 0.85 0.85 0.71 0.0167 0.0199

Eps = 3, minPts=18, LS=2 0.9434 0.9501 0.8104 0.85 0.86 0.7 0.0202 0.0186

Eps = 3, minPts=18, LS=5 0.9386 0.9427 0.8175 0.84 0.83 0.7 0.0231 0.0295

Eps = 5, minPts=34, LS=1 0.9269 0.9335 0.8268 0.83 0.84 0.72 0.0282 0.0334

Eps = 5, minPts=34, LS=2 0.9037 0.9284 0.82 0.82 0.83 0.7 0.0227 0.0285

Eps = 5, minPts=34, LS=5 0.8948 0.9005 0.8293 0.82 0.82 0.73 0.0312 0.0294

Table 14 Performance measures for the Bank Marketing data set with different DBSCAN parameters

Accuracy ROC AUC PE EO

Parameters D ND Att D ND Att − −
Eps = 0.5, minPts=5, LS=1 0.9522 0.9568 0.8121 0.88 0.89 0.72 0.0061 0.0074

Eps = 0.5, minPts=5, LS=2 0.9641 0.9759 0.8195 0.89 0.88 0.71 0.0094 0.0103

Eps = 0.5, minPts=5, LS=5 0.9548 0.9607 0.805 0.88 0.88 0.71 0.0114 0.0101

Eps = 3, minPts=18, LS=1 0.9476 0.9532 0.8048 0.85 0.86 0.7 0.0182 0.0192

Eps = 3, minPts=18, LS=2 0.94 0.9503 0.8021 0.85 0.86 0.7 0.0174 0.0152

Eps = 3, minPts=18, LS=5 0.9366 0.9407 0.7932 0.84 0.85 0.7 0.0252 0.0138

Eps = 5, minPts=34, LS=1 0.913 0.9328 0.8039 0.82 0.84 0.7 0.0322 0.0285

Eps = 5, minPts=34, LS=2 0.9174 0.9349 0.7963 0.83 0.84 0.71 0.0387 0.0393

Eps = 5, minPts=34, LS=5 0.9021 0.9136 0.7812 0.82 0.82 0.71 0.0372 0.0414
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Table 15 Performance measures for Adult Income data set with Zhao et al. (2018) approach.

FL_Zhao Microaggregation_Zhao GMM_Zhao DBSCAN_Zhao

Accuracy 0.8108 0.9075 0.9023 0.864

PE 0.0195 0.009 0.0103 0.0110

EO 0.0351 0.0192 0.0201 0.0273

The reported accuracy is for the minority clients. Microaggregation parameter: k = 3. GMM parameters:
μ = 0, σ 2 = 1. DBSCAN parameters: Eps = 0.5, minPts = 5. Local learning steps: LS = 1 in all
methods

In the case of GMM, the results improve as we increase the mean. When the
means are too low, then the maximum-likelihood of the model fits Gaussians that may
encompass legitimate users not distinguishable from malicious ones.

For the last method, with low minPts, the outliers are more clear. This is because
with a higher number of minPts, smaller clusters will be incorporated into the larger
ones, making it difficult to differentiate between majority and minority groups. More-
over, the accuracy and ROC AUC are better when minPts are lower.

Also, for the three methods, taking LS = 2 local learning steps appears as a better
choice than LS = 1, 5.

Again, this allows us to conclude that our proposed outlier detection mechanisms
are capable of distinguishing between genuine minority groups and attackers. In par-
ticular, the microaggregation-based method achieves the best performance in most
cases. This was to be expected because microaggregation implements a finer-grained
assessment of inter-client likeness not only to a prototypical majority, but to prototyp-
ical minorities. In this way, minority groups are properly (and fairly) considered and
only true outliers within these minority groups are discarded.

Finally, from the related work approaches mentioned in Sect. 3 for non-i.i.d. data
in FL, we took Zhao et al. (2018) and its implementation3. We implemented our three
methods on top of their approach and measured how much performance improve-
ment they brought on the non-i.i.d. shards described above for the Adult data set.
Table 15 shows the results, where FL_Zhao, Microaggregation_Zhao, GMM_Zhao,
and DBSCAN_Zhao are, respectively, the method in Zhao et al. (2018), and our
microaggregation, GMM, and DBSCAN-based methods on top of Zhao et al. (2018).
The reported accuracy is for the minority clients, that is, those with shards corre-
sponding to black individuals. See the table caption about the parameters used in the
methods. We observe that using any of our methods improves on the plain method
of Zhao et al. (2018). In particular, we see that the best results are obtained with our
microaggregation method.

6 Conclusions and future research

In this work, we have dealt with the problem of distinguishing abnormal/malicious
behaviors from legitimate ones in federated learning. We focus on scenarios with

3 https://github.com/yjlee22/FedShare.
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clients having legitimate minority data, whose updates are likely to be classified as
outlying/malicious by the standard attack detection mechanisms proposed in the lit-
erature. To make progress towards fair attack detection, we propose three different
methods, one based on microaggregation, another based on the Gaussian mixture
model and the third one based on DBSCAN.

To evaluate and compare the performance of these methods, we computed standard
evaluation metrics, namely accuracy, ROC AUC, PE and EO. Our results indicate that
the microaggregation method is especially effective at differentiating malicious model
updates from normal (even minority) model updates. This results in improvements in
all observed evaluation metrics. From a more qualitative perspective, our approach
avoids discriminating minority groups.

Beyond fairness being an ethical value to be satisfied, it brings rewards in terms
of model quality: taking into account the updates from minority groups enriches the
resulting model.

As future work, we plan to apply similar approaches to those proposed in this paper
to protect against other kinds of poisoning attacks, such as collusion attacks, while
taking the fairness of the classification tasks into account.
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