
Data Mining and Knowledge Discovery (2023) 37:1374–1403
https://doi.org/10.1007/s10618-022-00887-4

FiSH: fair spatial hot spots

Deepak P.1 · Sowmya S. Sundaram2

Received: 30 August 2021 / Accepted: 25 October 2022 / Published online: 17 November 2022
© The Author(s) 2022

Abstract
Pervasiveness of tracking devices and enhanced availability of spatially located data
has deepened interest in using them for various policy interventions, through com-
putational data analysis tasks such as spatial hot spot detection. In this paper, we
consider, for the first time to our best knowledge, fairness in detecting spatial hot
spots. We motivate the need for ensuring fairness through statistical parity over the
collective population covered across chosen hot spots. We then characterize the task
of identifying a diverse set of solutions in the noteworthiness-fairness trade-off spec-
trum, to empower the user to choose a trade-off justified by the policy domain. Being
a novel task formulation, we also develop a suite of evaluation metrics for fair hot
spots, motivated by the need to evaluate pertinent aspects of the task. We illustrate
the computational infeasibility of identifying fair hot spots using naive and/or direct
approaches and devise a method, codenamed FiSH, for efficiently identifying high-
quality, fair and diverse sets of spatial hot spots. FiSH traverses the tree-structured
search space using heuristics that guide it towards identifying noteworthy and fair
sets of spatial hot spots. Through an extensive empirical analysis over a real-world
dataset from the domain of human development, we illustrate that FiSH generates
high-quality solutions at fast response times. Towards assessing the relevance of FiSH
in real-world context, we also provide a detailed discussion of how it could fit within
the current practice of hot spots policing, as read within the historical context of the
evolution of the practice.
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1 Introduction

With sensing and tracking devices such as mobile phones and IoT becoming pervasive
in this web-driven era, there is an abundance of spatial data across real-world settings.
Within such spatial datasets, it is often of interest to identify geographically localized
groups of entities that are of sufficient size and express a distinctive character so
strongly that it is unlikely to have occurred by chance. To illustrate an example from
our times, COVID-19 contact tracing apps accumulate large amounts of spatial data of
people, of which some are known to have aCOVID-19 infection. It would be of interest
to automatically identify localized regions of high COVID-19 incidence, referred to
as hot spots in contemporary reporting,1 so that the information could be channelized
to health experts to identify causal reasons, or to public policy experts to develop a
mitigation strategy for those regions.

While COVID-19 hot spots are characterized by high disease incidence rates, other
web and new age data scenarios may call for different formulations of hot spot charac-
ter, viz., high crime rates (law enforcement), intense poverty (development studies),
high mobile data usage (mobile network optimization) and so on. For example, Fig. 1
illustrates hot spots of educational underachievement in India as identified from a
human development dataset. In each case, identifying a set of hot spots would be
of use so they could be subjected to an appropriate policy action. The unsupervised
learning task of detecting spatial hot spots was pioneered by the spatial scan statistic
(SSS) (Kulldorff 1997). The spatial scan statistic and its variants within the SaTScan2

toolkit have remained extremely popular for detecting spatial hot spots over the past
two decades. While health and communicable diseases form the most popular appli-
cation area of SSS (e.g., Pinchoff et al. 2015), they have been used within domains as
diverse as archaeology (Wilczek et al. 2015) and urban planning (Helbich 2012).

1.1 Fairness in hot spots

In scenarios where spatial hot spots are to be used to inform government and public
sector action, especially in sensitive policy domains (e.g., law enforcement (Mohler
et al. 2018), development), it is often important to ensure that the collective population
subject to the policy action is diverse in terms of protected/sensitive attributes3 such
as ethnicity, caste, religion, nationality or language, among others.

Consider hot spot detection on a crime database to inform policy action that could
include sanctioning higher levels of police patrols for those regions. This would likely
lead to higher levels of stop and frisk checks in the identified hot spots, and would
translate to heightened inconvenience to the population in the region. Against this
backdrop, consider a sensitive attribute such as ethnicity. If the distribution of those
who land up in crime hot spots is skewed towards particular ethnicities, say minorities

1 https://www.nbcnews.com/news/us-news/map-track-summer-2020-coronavirus-hotspots-united-states-
n1231332.
2 https://www.satscan.org/.
3 We use sensitive and protected interchangeably, in the context of attribute adjectives, throughout this
paper.
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Fig. 1 An illustration of hot spots of low educational achievement in India

as often happens (Meehan and Ponder 2002), it directly entails that they are subject
to much more inconvenience than others. These, and analogous scenarios in various
other sectors, provide a normatively compelling case to ensure that the inconvenience
load stemming from crime hot spot detection (and other downstream processing) be
proportionally distributed across ethnicities. The same kind of reasoning holds for
groups defined over other sensitive attributes such as religion and nationality. It is also
notable that ethnically skewed hot spot detection and patrolling would exacerbate the
bias in future data, leading to viscious cycles and runaway feedback loops (Ensign
et al. 2018). Minor crimes are recorded in the data only when committed as well
as observed. Thus, majority and minority areas with similar real crime prevalance,
alongside minority-oriented patrolling, would lead to data that records higher crime
prevalance in the latter. Second, even in cases where the intended policy action is
positive (e.g., setting up job support centres for unemployment hot spots), the policy
being perceived as aligned to particular ethnicities could risk social solidarity and open
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avenues for populist backlash (Greven 2016), which could ultimately jeopardize the
policy action itself.

While considerations as above are most felt in policy domains such as policing
and human development, these find expression in hot spot based prioritization in
provisioning any common good. Ensuring fair distribution of the impact of any policy
action, across sensitive attributes such as ethnicities, is aligned with the theory of luck
egalitarianism (Knight 2009), one that suggests distributive shares (of inconvenience
or benefits) be not influenced by arbitrary factors, especially those of ‘brute luck’ that
manifest as membership in sensitive attribute groups such as ethnicity, religion and
gender (since individuals do not choose those memberships are are often just born
into one). Such notions have been interpreted as a need for orthogonality between
groups in the output and groups defined on sensitive attributes, and has been embedded
into machine learning algorithms through the formulation of statistical parity (e.g.,
Abraham et al. 2020).

In summary, there is an compelling case, as in the case of other machine learning
tasks, for hot spot detection to be tailored in a way that the population covered across
the chosen hot spots be diverse along protected demographic groups such as ethnicity,
gender religion, caste and similar. We discuss some practical scenarios for fair hot
spots further in Sect. 7.

1.2 Our contributions

We now outline our contributions in this paper. First, we characterize the novel task
of detection of fair spatial hot spots, for the first time. In particular, we outline a task
formulation for enumerating a diverse sample of trade-off points in the noteworthiness-
fairness spectrum, to suit diverse scenarios that require different trade-off points
between noteworthiness and fairness. We note that straightforward solutions for the
task would be computationally infeasible for even moderate dataset sizes. Second, we
develop a method, FiSH, short for Fair Spatial Hot Spots, for efficiently enumerating
sets of hot spots along the quality-fairness trade-off. FiSH works as a layer over any
chosen fairness-agnostic spatial hot spot detection method, making it available across
diverse scenarios and existing methodologies for those scenarios. Third, we outline a
suite of evaluation measures to assess the quality and fairness of results for the novel
fair spatial hot spots task. Lastly, we perform an extensive empirical evaluation over a
real-world dataset over two separate contexts, which illustrates the effectiveness and
efficiency of FiSH in identifying diverse and fair hot spots.

Given that fairness in spatial hot spots is a novel problem, we consider related work
across two streams. We start by considering work on identifying outliers and spatial
hot spots. These tasks are starkly different in terms of how the results are characterized.
Outliers are determined based on neighborhood density over all relevant attributes in
the data, whereas hot spots are determined based on hotness on a chosen hotness
attribute (e.g., diseased, poor etc.) within an area of pre-specified type defined over
spatial attributes. In particular, the notions of hotness attribute and spatial attributes are
absent in the formulation for outlier detection, making them fundamentally different
tasks. The interested reader may refer to Deepak (2016) (Fig. 2 and associated text) for
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a systematic analysis of the relationships between several allied taskswithin this space.
Despite being very different tasks, there are similarities in the overall spirit of outlier
detection and hot spots, which makes outlier identification relevant to the interested
reader. We start with a discussion on methods for the tasks of outlier detection and
spatial hot spots, and then move on to work on fairness in machine learning as applied
to tasks allied to ours.

2 Related work

We now discuss related work along three streams viz., outlier detection, spatial hot
spots, and fairness in unsupervised learning.

2.1 Outlier identification

There have been a variety of problem settings that seek to identify objects that are
distinct from either their surroundings or the broader dataset. The more popular for-
mulations use the former notion, that of measuring contrast from the surroundings
of the data object, i.e., making use of neighborhood density. LOF (Breunig et al.
2000) (and improvements (Kriegel et al. 2009)) consider identifying individual objects,
aka outliers, which are interesting due to their (relatively sparser) spatial neighbor-
hoods. It is noteworthy that these make object-level decisions informed purely by
spatial attributes without reference to hotness attributes like diseased/non-diseased, as
required forCOVID-19hot spot determination. SLOM(Chawla andSun2006) extends
the object-level local neighborhood-based decision making framework to incorporate
information from non-spatial attributes (e.g., age and gender of a COVID-19 patient),
but do not consider hotness attributes such as diseased/non-diseased. Among outlier
detection methods that assess the contrast of individual data objects with the dataset
as a whole, the popular paradigm is to build a dataset level statistical model, followed
by assessing the conformance of individual objects to the model; those that are less
conformant would be regarded as outliers. Such statistical models could be a clustering
(Yu et al. 2002), dirichlet mixture (Fan et al. 2011), or more recently, auto-encoders
(Chen et al. 2017; Lai et al. 2020).

2.2 Spatial hot spots

Spatial scan statistics (SSS), pioneered by Kulldorff (1997), are methods that identify
localized regions that encompass multiple objects (in contrast to making decisions on
individual objects, as in LOF) which collectively differ from overall dataset on chosen
non-spatial hotness attributes (e.g. diseased, poor etc.). The focus is on characterizing
regions which may be interpreted as hot spots due to the divergence of their charac-
ter from the overall dataset. This makes SSS a markedly different task from outlier
identification in specification, input data requirements, internal workings and output
format. SSS spatial hot spots are vetted using a statistical likelihood ratio test to ascer-
tain significant divergence from global character. This makes SSS as well as its various
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variants, as implemented within SaTScan, a statistically principled family of methods
to detect spatial hot spots. While Kulldorff’s initial proposal is designed to identify
circular hot spots, the framework has been generalized to identify arbitrary shapes
in several ways; ULS (Patil and Taillie 2004) is a notable work along that direction.
Other methods such as bump hunting (Friedman and Fisher 1999) and LHA (Telang
et al. 2014) address related problems and leverage data mining methods. Despite an
array of diverse research in identifying spatial hot spots, SSS methods have remained
extremely popular. Just since 2020, there have been 2000+ papers4 that make use of
SSS and other scan statistics within SaTScan. Our technique, FiSH, can work along-
side any method that can provide an ordered output of hot spots, such as SaTScan
methodologies.

2.3 Fair unsupervised learning

While most attention within the flourishing field of fairness in machine learning
(Chouldechova and Roth 2020) has focused on supervised learning tasks, there has
been some recent interest in fairness for unsupervised learning tasks (Jose et al. 2020).
Among the two streams of fairness explored inML, viz., individual and group fairness
(refer (Binns 2020) for a critical comparative analysis), most work on fair unsuper-
vised learning has focused on group fairness. Group fairness targets to ensure that the
outcomes of the analytics task (e.g., clusters, top-k results etc.) embody a fair distri-
bution of groups defined on protected attributes such as gender, ethnicity, language,
religion, nationality or others. As alluded to earlier, the most common instantiation
of group fairness has been through the computational notion of statistical parity, ini-
tially introduced within the context of classification (Dwork et al. 2012). Group fair
unsupervised learning work includes those on fair clustering (e.g., Chierichetti et al.
2017), retrieval (e.g., Zehlike et al. 2017) and representation learning (e.g., Olfat and
Aswani 2019). While there has been no work on fair spatial hot spots yet, there has
been some recent work on fairness in outlier detection which we discuss below.

2.3.1 Fair outliers

There has been some recent work on fair outlier detection. We start by outlining the
core differences between outlier detection and hot spots to illustrate why fairness
enhancements targeted at outlier detection would not be applicable for spatial hot
spots. First, outlier detection often involves object-level decision making, whereas hot
spotness can intrinsically be determined only at the level of object groups. Second,
outlier detection methods do not make use of any non-spatial hotness attribute (e.g.,
diseased, poor etc.) to determine outlierness,whereas a key non-spatial attribute is used
to characterize hot spots. The second difference makes algorithms for outlier detec-
tion contrast highly from those for identifying spatial hot spots. The first paper on fair
outlier detection (Davidson and Ravi 2020) develops a framework for the task which
is unique on multiple fronts. First, it is designed to be able to address unfairness over
combinations of protected attributes leading to a deeper notions of fairness than meth-

4 https://scholar.google.com/scholar?as_ylo=2020&q=satscan&hl=en&as_sdt=0,5.
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ods that treat protected attributes one by one. Secondly, it leverages human know-how
through seeking expert inputs on interpreting an explanation of potential unfairness.
FairLOF (Deepak and Abraham 2020, 2021) focuses on automated group fair outlier
detection, developing a technique that extends LOF (discussed above) for fairness.
FairLOF adapts LOF to incorporate adjustments based on protected attribute mem-
berships of the object in question and its neighbors, to ensure that protected groups
are fairly represented among outliers. It may be noted that the protected attributes
are used exclusively to embed fairness, and not to characterize outlierness. FairOD
(Shekhar et al. 2020) makes a proposition of achieving group fairness (on protected
attributes) while being expressly unaware of protected attributes at decision time (per-
haps to avoid what is known as formal disparate treatment). A recent work (Zhang
and Davidson 2021) on deep learning for fair anomalies/outliers proposes the usage of
adversarial training and de-correlated representation learning to ensure that protected
attributes are not correlated with outputs. To our best knowledge, there has been no
prior work on fairness in detecting spatial hot spots or anomalous object groups of
other kinds.

3 Problem statement

Consider a finite dataset D = {. . . , D, . . .}. Each object D is associated with a set
of spatial attributes such as (x, y) for a 2D space, or (lat, long) for locations of
people. Further, each D is associated with a non-spatial hotness attribute v ∈ {0, 1}
such as diseased (for epidemiology) or poor (for human development), which is used
to determine spatial hot spots. D is also associated with protected attributes (e.g.,
ethnicity, religion) as we will see momentarily.

Consider a method for detecting spatial hot spots, such as spatial scan statistics, that
is capable of providing a ranked list of top spatial hot spots, as S = [S1, S2, . . . , Sm].
Each Si is associated with a spatial region Ri (circular/spherical in the case of the
basic SSS) such that the data objects (from D) that fall within Ri have a significantly
different hotness profile than the overall dataset. For example, the population within
Ri may have a significant high (or low) incidence rate of poverty as compared to
the whole population. Noteworthiness of spatial hot spots, analyzed statistically (as
in SSS), is directly related to both the size of the population within the hot spot
and the extent of divergence on the hotness attribute. S is the list of spatial hot spots
ordered in decreasing statistical noteworthiness; thus Si is more noteworthy than Si+1.
When k (typically, k << m) noteworthy spatial hot spots are to be chosen to action
upon without consideration to fairness, the most noteworthy k hot spots, i.e., Stopk =
[S1, . . . , Sk], would be a natural choice.

3.1 Fair spatial hot spots

The task of fair spatial hot spots detection is to ensure that the k hot spots chosen for
policy action, in addition to noteworthiness considerations as above, together encom-
pass a diverse population when profiled along protected attributes such as ethnicity,
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religion, nationality etc, as motivated earlier. In other words, each demographic group
is to be accorded a fair share within the collective population across the chosen hot
spots. Asmentioned earlier, this notion of statistical parity has been widely used as the
natural measure of fairness in unsupervised learning (Chierichetti et al. 2017; Deepak
andAbraham2020; Bera et al. 2019).When the protected attributes are chosen as those
that an individual has no opportunity to actively decide for herself (observe that this
is the case with ethnicity, gender as well as religion and nationality to lesser extents),
statistical parity aligns particularly well with the philosophy of luck egalitarianism
(Knight 2013), as noted in Sect. 1.1.

We will use S f airk to denote a set of k hot spots (from S) that are selected in
a fairness-conscious way. It is desired that S f airk fares well on both the following
measures:

N (S f airk) =
∑

S∈S f airk

rankS(S) (1)

F(S f airk) =
∑

P∈P
DivP (D, Pop(S f airk)) (2)

The first, N (.), relates with noteworthiness and is simply the sum of the ranks
(ranks within S) of the chosen spatial hot spots (S denotes a spatial hot spot, a set of
items); rankS(S) denotes the rank of S within the list S. Lower values of N (.) are
desirable, and Stopk scores best on N (.), due to comprising the top-k (so, N (Stopk) =∑k

i=1 i = k×(k+1)
2 ). The second, F(.), is a fairness measure, which requires that the

population subset covered across the hot spots within S f airk (denoted Pop(S f airk))
beminimally divergent to the overall population, whenmeasured on a pre-specified set
of protected attributes P (e.g., ethnicity, gender); DivP (., .) measures divergence on
attribute P ∈ P . In otherwords, Pop(S f airk) denotes the population subset chosen for
policy action, and we are interested in measuring how divergent this population subset
is, from the overall population, on the sensitive attributes.We useWasserstein distance
(Vallender 1974; Yoon et al. 2020) to compute divergence yielding the following
formula:

DivP (D, Pop(S f airk)) = Wass(DistribP (D), DistribP (Pop(S f airk))) (3)

where DistribP (.) is the normalized distribution of the population across the values of
attribute P5. For example, if D has a 50:50 distribution on males and females and the
sub-population in Pop(S f airk) has a 55:45 distribution, DivP (., .) for this case will
beWass([0.5, 0.5], [0.55, 0.45]), whereWass(., .) denotes theWasserstein distance.
When the distributions are identical, statistical parity is achieved, and DivP (., .) eval-
uates to 0.0. The usage of Wasserstein measure as an evaluation measure for various
fair ML algorithms (Wang and Davidson 2019; Deepak and Abraham 2020) and other
contexts in fair ML (Miroshnikov et al. 2020) motivate its usage here. Intuitively,
Wasserstein measures the minimal cost of transporting one distribution to another.

5 While this design is motivated by categorical protected attributes which form the most popular type of
protected attributes, this could be extended to other attributes as well.
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DivP (., .) can be easily modified to use another distance measure should such a moti-
vation arise in a particular domain. As in the case for N (.), lower values of F(.) are
desirable too. Since F(.) is an aggregate of DivP (.)s, achievement of statistical parity
over each of the protected attributes would naturally lead to F(.) evaluating to 0.0.
Though lower, and not higher, values of N (.) and F(.) indicate deeper noteworthi-
ness and fairness, we refer to these measures as noteworthiness and fairness to avoid
introducing new terminology.

Fair hot spots and fair ranking The notion of fair hot spots is quite different, and
arguably more complex, than tasks such as fair ranking that have been explored in
literature (e.g., Zehlike et al. 2017). We briefly discuss the relationship between these
tasks. Without loss of generality, fair ranking may be easily conceptualized within a
hiring shortlisting scenario where the fairness need is to ensure a fair representation of
gender and race groups within the pool of shortlisted candidates. Here each object—
which is an applicant in the hiring scenario—has a membership within the protected
group (e.g., male when gender is the chosen protected group), and group fairness is
sought to be achieved within the shortlisted pool. Despite the superficial high-level
structural similarity that fair hot spots seeks to re-order objects in S in accordance
with fairness, the sharp departure is evident when one observes that what is sought
to be ranked within the fair hot spots formulation are hot spots, which are not indi-
vidual objects, but sets of objects. Hot spots relate to one another in set relationships
(e.g., disjoint, overlapping, subset etc.), and each hot spot, due to comprising multiple
objects, has a distribution of memberships over a protected attribute (e.g., gender).
These two factors make the task of fair hot spots much more nuanced and intricate
than fair ranking. It is also notable that given the structure of fair hot spots task, there
is no direct dependency on the dataset size other than through the hot spots detection
method employed.

3.2 Diverse selection ofSfairk candidates

The noteworthiness and fairness considerations are expected to be in tension (an
instance of the often discussed fairness-accuracy tension (Menon and Williamson
2018)), since fairness is not expected to come for free (as argued extensively in Kearns
and Roth (2019)). One can envision a range of possibilities for S f airk , each of which
choose a different point in the trade-off between N (.) and F(.). At one end is the Stopk

(best N (.), likely worst F(.)), and the other end is a maximally fair configuration that
may include extremely low-ranked hot spots from S. These would form the Pareto
frontier6 when all the mCk (k sized) subsets of S are visualized as points in the 2D
noteworthiness-fairness space, as illustrated in Fig. 2. Each point in the Pareto frontier
(often called skyline (Borzsony et al. 2001)) is said to be Pareto efficient or Pareto
optimal since there is no realizable point which is strictly better than it on both N and
F measures. Thus, S f airk candidates that are not part of the Pareto frontier can be
safely excluded from consideration, since there would be a Pareto frontier candidate
that is strictly better than it on both noteworthiness and fairness.

6 https://en.wikipedia.org/wiki/Pareto_efficiency#Pareto_frontier.
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Fig. 2 Illustration of the N–F space with k-sized subsets of S. The Pareto frontier is marked with a dotted
line. The circled points indicates a possible solution to the approximate τ -dpe problem (τ = 4). The exact
τ -dpe would comprise equally spaced points from the Pareto frontier

Each policy domain may choose a different point in the trade-off offered across
candidates in the Pareto frontier, after due consideration of several available trade-off
points. For example, policing may require a high-degree of fairness, whereas epidemi-
ology interventions may be able to justify policy actions on less diverse populations
based on the extent of supporting medical evidence. The Pareto frontier may be large
(could contain hundreds of candidates, bounded above only byO(mCk)) for a human
user to fully peruse. The extreme case, where each of mCk k-sized subsets of C are
in the Pareto frontier, appears where no pairs are involved in a Pareto domination
relationship. Thus, an obvious recourse would be to identify τ diverse Pareto efficient
candidates (henceforth, τ -dpe), where τ is a pre-specified parameter, so the human
user may be able to choose appropriately from a varied set of possibilities. A natural
and simple but incredibly inefficient solution would be to (i) enumerate the entire
Pareto frontier, (ii) trace the sequence of Pareto efficient points from the top-left to
the bottom-right (i.e., the dotted line), (iii) split the sequence into τ − 1 equally sized
segments, and (iv) take the τ segment end points as the result.

To summarize, the diverse candidate selection task outlined as τ -dpe requires a
diverse set of Pareto efficient candidates in theN–F space, each candidate representing
a k sized subset of S.

3.3 Approximate �-dpe

It may be observed that it is infeasible to enumerate the mCk subsets (e.g., 40C10 =
8.5E+8) in theN–F space just due to the profusion of possibilities, making exact τ -dpe
identification (as outlined in the four-step process in the previous section) infeasible
for practical scenarios. This makes the task of identifying a close approximation of
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Table 1 Table of notations for easy reference

Notation What it stands for

S The ordered list of spatial hot spots used as

Starting point for τ -dpe task

Stopk The subset of k most noteworthy hot spots from S
S f airk k-sized subset of S, a candidate for fair

selection of hot spots

N (S f airk ) Sum of ranks of the spatial hot spots within

S f airk ; lower denotes better noteworthiness

F(S f airk ) Deviation of S f airk ’s population from dataset on

Protected attributes; Lower denotes better fairness

m Cardinality of S
k # hot spots from S Desired in each output candidate

τ Number of candidates desired in output

b Beam width parameter used by FiSH (Sect. 4)

τ -dpe results efficiently a natural alternative for a policy expert to examine the trade-
off points and arrive at a reasonable choice of S f airk to subject to policy action. This
brings us to the approximate τ -dpe task, which is that of efficiently identifying a close
approximation of the exact τ -dpe result. The set of circled points in Fig. 2 illustrates
a possible solution to the approximate τ -dpe task. All pertinent notations are outlined
in Table 1 for easy reference.

It is useful to note the nature of likely usage contexts for τ -dpe to provide some
perspective on scalability. Whether it be the case of crime hot spots to inform police
patrolling strategies, the case of poverty hot spots to inform public policy or even
mobile data usage hot spots to inform network provisioning decisions, all of these are
what we could call as offline tasks. In other words, while it is necessary to ensure that
hot spots be identified in reasonable time, real-time responses are neither expected
nor necessary. For example, while a response time in days or months (as would be
required to traverse an exponential space) would be unacceptable, a response time
of a few hours would be quite fine for practical scenarios. This is often common in
unsupervised outlier detection as well; for example, the response time of a recently
proposed random projection based outlier detection method (Bhattacharya et al. 2021)
is of the order of several minutes or hours7. The approximate τ -dpe formulation thus
intends to bring the τ -dpe task from the region of infeasible response times to the
region of feasibility. Our method, FiSH, that addresses the approximate τ -dpe task, is
detailed below.

7 They refer only to speedup rates in the paper; however, the KDD presentation has absolute response
times.
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4 FiSH: fair spatial hot spots

FiSH is an efficient heuristic-driven technique addressing the approximate τ -dpe task
outlined above. We first describe a systematic organization of the search space, fol-
lowed by a heuristic method that traverses the space prioritizing the search using three
considerations: Pareto efficiency, diversity and efficient search.

4.1 Search space organization

Recall that we start with a noteworthiness-ordered list of spatial hot spots S =
[S1, . . . , Sm]. Our full search space comprises the mCk distinct k-sized subsets of
S. We use the lexical ordering in S to organize these candidates as leaves of a tree
structure, as shown in Fig. 3. Each node in the tree is labelled with an element from
S, and no node in the FiSH search tree has a child that is lexically prior to itself. Such
a hierarchical organization is popular for string matching tasks, where they are called
prefix trees (Yazdani and Min 2001). In devising FiSH, we draw inspiration from
using prefix structures for skyline search over databases (Deshpande et al. 2009).
Each internal node at level l (root level = 0) represents a l-sized subset of S compris-
ing the l nodes indicated in the path from root to itself. The lexical ordering ensures
that each subset of S has a unique position in the tree, one arrived at by following
branches corresponding to nodes in the subset according to the lexical ordering. The
mCk candidates would be the nodes at level k. It is infeasible to enumerate them fully,
as observed earlier. Thus, FiSH adopts a heuristic search strategy to traverse the tree
selectively to follow paths leading to a good solution (i.e., set of τ nodes at level k)
for the approximate τ -dpe task.

Fig. 3 FiSH’s search tree: nodes at level k represent k sized subsets of S, and form points in the N–F space
(Fig. 2)
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4.2 FiSH search strategy

The exact τ -dpe result set is characterized by Pareto efficiency and diversity, when
applied over the mCk candidates. The FiSH search strategy uses precisely these criteria
as heuristics to traverse the search tree efficiently from the root downward. The core
idea behind this search strategy is our conjecture that Pareto efficiency and diversity
at a given level in the FiSH search tree would be predictive of Pareto efficiency and
diversity at the next level. We operationalize this heuristic strategy using beam search,
a classical memory-optimized search meta-heuristic (Steinbiss et al. 1994) that has
received much recent attention (Wiseman and Rush 2016).

Having outlined all relevant notation and an overview of the search strategy, we
now describe it in simple terms. FiSH starts its search from the root node, expanding to
the first-level child nodes, each of which represent singleton-sets denoting the choice
of a particular spatial hot spot from S. This forms the candidate set at level 1 of the
FiSH tree, C1 = {{S1}, {S2}, . . .}. These 1-sized subsets of S are then arranged in an
N–F space as in Fig. 2. Note that the N–F space of 1-sized subsets is distinct and
different from the N–F space of k-sized subsets (Fig. 2). The Pareto-efficient subset
of C1 is then identified as P(C1). The candidates in P(C1) are then arranged in a linear
sequence tracing the Pareto frontier from the top-left to the bottom-right point (similar
to the illustration of Pareto frontier in Fig. 2). This linear sequence is split into b − 1
equally spaced segments, and the b points at the segment end-points are chosen as
Db(P(C1)), a b-sized subset of Pareto efficient points from C1. The candidate set at
the next level of the tree search process, i.e., C2, is simply the set of all children of
nodes in Db(P(C1)) (actually, the subsets of S that they stand for).

C2 =
⋃

c∈Db(P(C1))
children(c) (4)

It may be noted that C2 is a small subset of the set of all 2-sized subsets of S, since
only children of the b nodes selected from the previous level are selected for inclusion
in C2. Next, C2 is subject to the same processing as C1 comprising:

1. identifying Pareto efficient candidates P(C2),
2. identifying a diverse b sized subset Db(P(C2)), and
3. following the children pointers,

to arrive at the candidate set for the next level. This process continues up until Ck
whereby the Pareto frontier P(Ck) is identified followed by the choice of τ diverse
candidates which will eventually form FiSH’s result set for the approximate τ -dpe
task. This search strategy is illustrated formally in Algorithm 1. The one-to-one cor-
respondence between nodes in the search tree and subsets of S allows us to use them
interchangeably in the pseudocode.
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Algorithm 1: FiSH Search Technique
input : S organized as a search tree, k, τ
parameters: beam width b

1 C1 = {{S1}, {S2}, . . . , }
2 for i ← 1 to k − 1 do
3 P(Ci ) = Pareto frontier of C1 in the N–F space
4 Db(P(Ci )) = equally spaced b candidates from Pareto frontier P(Ci )
5 Ci+1 = ⋃

C∈Db(P(Ci )) Children(C)

6 P(Ck ) = Pareto frontier of Ck in the N–F space
7 R = equally spaced τ points from P(Ck );
8 ReturnR

4.3 Discussion

FiSH’s search strategy makes use of Pareto efficiency and diversity directly towards
identifying a small set of nodes to visit at each level of the tree. Restricting the search
to only b nodes at each level before moving to the next enables efficiency. Smaller
values of b enable more efficient traversal, but at the cost of risking missing out on
nodes that could lead to more worthwhile members of the eventual result set. In other
words, a high value of b allows a closer approximation of the τ -dpe result, but at a
slower response time. It may be suggested that b be set to≥ τ , since the algorithm can
likely afford to visit more options than a human may be able to peruse eventually in
the result set. The candidate set size at any point, and thus the memory requirement,
is in O(bm). The computational complexity is in O(kb2m2), and is dominated by
the Pareto frontier identification (which is in O(b2m2)) at each level. While b is a
controllable hyperparameter (likely in the range of 5-20), m can be constrained by
limiting FiSH to work with the top-m result set (as S) from the upstream spatial hot
spot technique.

5 Evaluating approx �-dpe results

Given that (approximate) τ -dpe is a new task we proposed, we now describe novel
evaluation metrics to assess the quality of FiSH’s results. Recall that, given the N–F
space comprising all k-sized subsets of S, the choice of τ equally spaced skyline can-
didates forms the result set for the exact τ -dpe task that we propose in this paper. This
result set, which we call Exact, is computationally infeasible for moderate datasets,
but forms our natural baseline for measuring FiSH’s effectiveness. In other words,
the results of Exact form the ground truth that FiSH seeks to approximate efficiently.
Approximate τ -dpe results from FiSH may be evaluated either directly based on how
well they approximate the expected results of the exact τ -dpe task, or based on how
well they adhere to the spirit of the τ -dpe task of identifying a diverse group of Pareto
efficient subsets of S. We now devise evaluation measures along the lines above. In
what follows, we use P to denote the mCk k-sized subsets of S.
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5.1 Direct comparison

Let the result of the exact τ -dpe task be E = [E1, . . . , Eτ ], and FiSH’s result be F =
[F1, . . . , Fτ ]. We would like the average distance between corresponding elements to
be as low as possible.

DC(E,F) = 1

τ

τ∑

i=1

Eucl(Ei , Fi ) (5)

where Eucl(., .) is the euclidean distance in the N–F space. Notice that when E = F ,
DC(., .) evaluates to 0.0. Given that N (.) and F(.) would be in different ranges, we
will compute the distance after normalizing both of these to [0, 1] across the dataset.
As may be obvious, smaller values, i.e., as close to 0.0 as possible, of DC(., .) are
desirable.

5.2 Quantifying Pareto-ness: coverage

A diverse and Pareto efficient set may be expected to collectively dominate most
objects in the N -F space. Accordingly, we devise a measure, called coverage, that
measures the fraction of candidates in P that are Pareto dominated by at least one
candidate in F :

Cov(F) = 1

|P|
∑

P∈P
I(∃F ∈ F |F � P) (6)

where F � P is true when F Pareto dominates P . A point Pareto dominates another
if the latter is no better than the former on both attributes, excluding the case where
both are identical in terms of their N–F co-ordinates. A candidate being dominated
by another indicates that the latter characterizes an absolutely better trade-off point
than the former (on both N (.) and F(.)). Thus, we would like the result set to be in
a way that most, if not all, candidates are dominated by one or more candidates in
the result set. Cov(.) is measured as a fraction of the candidates dominated, hence it
is in the range [0, 1]. Full coverage (i.e., Cov(.) = 1.0) may not be attainable given
that only τ candidates can be chosen in the result; instead, if we were to choose the
entire skyline, we would get Cov = 1.0 by design. Thus, the extent to which Cov(F)

(FiSH’s coverage) approaches Cov(E) (coverage attained by the exact result) is a
measure of FiSH’s quality. Coverage, being modelled using Pareto domination, may
be seen as modelling Pareto-ness of FiSH’s result.

5.3 Diversity of results

Given that our formulation of the approximate τ -dpe task hinges on the idea that the
candidates should be diverse (so that they may embody a variety of different trade-off
points), diversity is a key aspect to measure the adherence of the solution to the spirit
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of the approximate τ -dpe task. We model diversity as the minimum among pairwise
distances between candidates in F :

MD(F) = min{Eucl(Fi , Fj )|{Fi , Fj } ⊆ F , Fi �= Fj } (7)

Unlike the average of pairwise distances that allows nearby pairs to be compensated
by the existence of far away ones, this is a stricter measure of diversity. On the other
hand, this is quite brittle, in the sense just one pair of results being proximal would
cause MD(.) to go down significantly; in such cases, the MD(.) would not be that
representative of the overall diversity in F . Hence, all the evaluation measures must
be seen in cognisance of the others. Coming to desirable values of MD(.), we would
like MD(F), which measures the lower bound of distances among elements in F , to
be as high as possible, and approach the diversity of E , i.e., MD(E).

5.4 Discussion

As obvious from the construction, lower values of DC , and higher values on bothCov
andMD indicate the quality of FiSH’s approach. It is also to be seen thatCov andMD
should be judged together, since it is easy to maximize coverage without being diverse
and vice versa. Cov and MD requires all mCk subsets of S to be enumerated, whereas
DC requires additionally that the exact τ -dpe results be computed. This makes these
evaluations feasible only in caseswhere such enumeration can be done, i.e., reasonably
low values of m. In addition to the above quality measures, a key performance metric
that FiSH seeks to optimize for, is the response time.

6 Experimental evaluation

We now describe our empirical study evaluating FiSH. In this section, we describe the
dataset used, the experimental setup, our evaluation measures and our experimental
results.

6.1 Dataset and experimental setup

We describe the dataset and experimental setup in separate subsections.

6.1.1 Dataset

We used the Indian HumanDevelopment Survey (IHDS)8 dataset, a large-scale survey
of India’s population conducted in 2011-12. This is one among very rare datasets—
the only one we came across—that comprises personal information attributes along
with locations. In particular, we used a random sample of 10000 individuals from the
data with distinct locations. The location (lat, long) was determined through querying

8 https://ihds.umd.edu/data.
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GoogleMaps based on the district and other location information available in the data.
The binary hotness attributewas chosen as either (i) (annual) income< It may be noted
that100k,9 or (ii) education < 2 years. For each setting, we use caste and religion as
sensitive attributes and low income/education as hot spot criterion. In other words, we
would like to identify a set of spatial hot spots such that the population across them
fare poorly on income (education) but religion and caste groups are fairly represented.
These choices of attributes for hotness and fairness are abundantly informed by social
realities in contemporary India; for example, caste discrimination remains rampant
across India, including in urban settlements.10

6.1.2 Experimental setup

Weused SaTScanBernoulli model to discover hot spots. SaTScan is among the earliest
and most popular hot spots detection methods; most improvements upon them are for
more specialized scenarios. This backdrop makes usage of SaTScan most appropriate
to showcase generality ofFiSH, given that it operates as a layer over hot spots detection.
We implementedFiSH as well as theExact τ -dpe computation (i.e., enumerate all mCk

subsets, find Pareto efficient frontier, and identify τ diverse subsets) on Python 3 on
an Intel 64 bit i5-8265 at 1.6 GHz with 8 GB RAM. Unless otherwise mentioned, we
use the following parameter settings: m = 20, k = 5 and τ = b = 5. The source code
for FiSH is available at https://github.com/Sowms/FiSH-Fair-Spatial-Hotspots.

6.2 Overall comparison

We performed extensive empirical analyses over varying settings. We present repre-
sentative results and analyses herein. Table 2 illustrates a representative sample of
the overall trends in the comparison between FiSH and Exact. The low values of DC
indicate that FiSH’s results are quite close to those of Exact, which is further illus-
trated by the trends on the Cov measure where FiSH follows Exact closely. For MD,
we observe a 20% deterioration in the case of Income, and a 50% deterioration in the
case of Education. We looked at the case of Education and found that the low value
ofMD for FiSHwas due to one pair being quite similar (distance of 0.041), possibly a
chance occurrence that coincided with this setting; the second least distance was more
than three times higher, at 0.1349. On an average, the pairwise distances for FiSH
was only 20% less than that for Exact. Across varying parameter settings, a 15-20%
deterioration of MD was observed for FiSH vis-a-vis Exact. For the record, we note
that the choice of first k hot spots from S as the result yielded DC ≈ 0.8 and Cov 3 to
10 percentage points lower; this confirms that τ -dpe task formulation is significantly
different from top-k not just analytically, but empirically too.

Apart from being able to approximate the Exact results well, FiSH is also seen to be
able to generate results exceptionally faster (as expected, given the design of FiSH),
a key point to note given that bringing the τ -dpe task into the realm of computational

9 100k INR is approximately 1.35k$; India’s per capita income is ≈ 2k$.
10 https://www.economist.com/asia/2020/07/23/even-as-india-urbanises-caste-discrimination-remains-
rife.
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Table 2 Comparative results
(task setting: τ = 5, k = 5,
m = 20 and parameter setting:
b = 5 for FiSH); arrows denote
whether low or high values are
desirable

Setting Method DC ↓ Cov ↑ MD ↑ Time(s) ↓
Income FiSH 0.112 0.995 0.034 23.11

Exact N/A 0.998 0.042 6536.54

Education FiSH 0.045 0.987 0.041 23.87

Exact N/A 0.997 0.081 4413.78

Table 3 Scalability analysis:
running time (in seconds) with
varying m; Exact did not
complete in reasonable time for
m > 25

Education

m FiSH Exact

15 17.83 840.37

20 23.87 4413.78

25 39.46 33151.91

30 49.28

35 61.49

40 71.09

feasibility was our main motivation in devising FiSH, as outlined in Sect. 3.3. In
particular, FiSH’s sub-minute response times compare extremely favourably against
those of Exact which is seen to take more than an hour; we will illustrate later that
Exact scales poorly and rapidly becomes infeasible for usage within most practical
real-life scenarios.

The FiSH versus Exact trends, reported in Table 2 is representative of results across
variations in parameter settings. FiSH was consistently seen to record 0–10% deterio-
rations inCov, around 15–25% deterioration inMD, and multiple orders of magnitude
improvements in response time. The trends on the effectiveness measures as well as
the response time underline the effectiveness of the design of the FiSH method.

6.3 Scalability analysis

With FiSH being designed for efficient computation of a reasonable approximation
of τ -dpe results, it is critical to ensure that FiSH scales with larger m; recall that
m = |S|, the size of the initial list of hot spots chosen to work upon. Table 3 illustrates
the FiSH and Exact response times with varying m. While Exact failed to complete in
reasonable time (we set a timeout to 12 h) for m > 25, FiSH was seen to scale well
with m, producing results many orders of magnitude faster than Exact. In particular,
it was seen to finish its computation in a few minutes even for m ≈ 100, which
is highly promising in terms of applicability for practical scenarios. Similar trends
were obtained with scalability with higher values of k and τ ; Exact quickly becomes
infeasible, whereas FiSH’s response time grows gradually.
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Fig. 4 Cov versus m

Fig. 5 Cov versus b, tau

6.4 FiSH fairness analysis

In addition to being able to generate good approximations of Exact at fast response
times, it is also pertinent to analyze the fairness achieved over sensitive attributes by
FiSH to get a sense of the levels of fairness achieved by FiSH. One may recollect
that FiSH generates a set of results spread across the N–F spectrum. At the Fairness
end, we expect high degrees of fairness, where we expect that the distribution over
sensitive attributes achieved over Pop(S f airk) (Ref. Eq. 2) closely approximates that
in the whole dataset; statistical parity is said to be achieved absolutely when these
distributions are identical. The extent to which the F-end result’s distribution on the
sensitive attributes reflects the dataset distribution is thus a key fairness metric for
FiSH. Table 4 tabulates the distributions for this analysis. As may be seen therein,
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Fig. 6 Cov versus k

Fig. 7 MD versus m

the distribution over the religion and caste for the Income case closely follows the
full dataset distributions, with deviations under 2% on an average. The corresponding
deviations are just over 2% for the Education dataset. These indicate that FiSH is able
to provide a result option that achieves very high levels of fairness over the sensitive
attributes.

6.5 Analysis over varying settings

We now analyze the performance of FiSH in varying settings. This analysis helps us
evaluate the sensitivity of FiSH to specific parameter values; for example, smooth
movements along small variations in parameter values will help build confidence in
the generalizability of FiSH across varying scenarios. With Exact being unable to

123



1394 Deepak P., S. S. Sundaram

Fig. 8 MD versus b, tau

Fig. 9 MD versus k

complete running within reasonable amounts of time for higher search spaces (e.g.,
m > 25, k = 7, τ > 5 etc.), we restrict our attention to FiSH trends over Cov andMD;
this is so since results from Exact are necessary to compute the DC measure. Among
Cov and MD, our expectation is that the brittleness of the MD measure, as noted in
Sect. 5.3, could lead to more fluctuations in MD when compared to Cov, even when
FiSH results change only gradually. We now study the trends with varying parameter
settings, changing parameters one at a time, keeping all parameters at their reference
settings from Sect. 6.1.2, except the one being varied.
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Table 4 FiSH fairness analysis

Scenario Income Education

Religion Caste Religion Caste

Full dataset [0.270 0.730] [0.210 0.790] [0.310 0.690] [0.200 0.800]
F-end FiSH [0.267 0.733] [0.217 0.783] [0.303 0.697] [0.195 0.805]

6.5.1 Varyingm

We now analyze the effectiveness of FiSHwhen operating over a larger set of SaTScan
results, i.e., with larger values of m (recall m = |S|). With the number of points in the
N–F space being mCk , increases in m lead rapidly to much denser N–F spaces, and
correspondingly larger search spaces. We vary m from 15 to 30 in steps of 5; the Cov
and MD trends appear in Figs. 4 and 7 respectively. As expected, Cov consistently
remains at high values, higher than 0.985, whereas there is higher volatility in the case
of MD. The trends indicate that FiSH is not highly sensitive to m and the quality of
its results varies gradually with varying values of m.

6.5.2 Varying �

The number of trade-off points that is provided to the user, or τ , is another important
parameter in the τ -dpe task. The beam size in FiSH, as observed earlier in Sect. 5.4, is
intimately related to τ , andmay be expected to be set such that b ≥ τ . Higher values of
b yield better results at the cost of slower responses; we consistently set b = τ in our
result quality analysis. Higher values of τ enable choosing more points from the N–F
space in the output, and this provides an opportunity to improve on Cov. However,
choosing more points obviously would lead to deterioration in the MD measure that
measures the minimum of pairwise distances. We vary τ (and thus b) from 3 to 7,
and plot the Cov and MD trends in Figs. 5 and 8 respectively, which show gentle and
consistent variations. As expected, Cov is seen to improve and saturate close to the
upper bound of 1.0. MD on the other hand, is seen to deteriorate but stabilizes soon;
the patterns are consistent except for the case of τ = 5 for Education, likely a chance
occurrence as analyzed in Sect. 6.2.

6.5.3 Varying k

The third parameter of importance for the τ -dpe task is k, which denotes the number
of hot spots to be chosen within each trade-off point in the result. Increasing values of
k (up to m/2) lead to larger number of points in the N–F space. With the number of
trade-off points to be output pegged at τ , achieving the same coverage would become
harder with increasing k. This is in contrast with MD where there is no expectation
of a consistent deterioration or improvement. From the Cov and MD plots in Figs. 6
and 9, the Cov is quite stable with a deterioration kicking in at k = 7 (even there, Cov
remains at 0.90+), whereas MD remains consistent.
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Fig. 10 Example results; kindly view in color. FiSH results in green and Exact results in mustard yellow

6.5.4 Setting b

The beamwidth, b inFiSH, offers amechanism to trade-off effectiveness for efficiency.
We experimented with varying values of b and found that the gains on effectiveness
measures (i.e., DC, Cov and MD) taper off beyond b > 2 × τ . The response times
were seen to increase with b; there are two ways in which b affects the complexity,
one is by providing more candidates at each level (which increases linearly with b),
and another by increasing the cost of Pareto frontier identification (which is inO(b2)).
From the trends which indicated a linear trend between response time and b, it may
be reasonably suspected that the former factor dominates.

6.6 Example results in the N–F space

Having analyzedFiSH quantitatively, we now consider a qualitative evaluation ofFiSH
vis-a-vis Exact. Fig 10 illustrates the N–F space for our reference setting (Sect. 6.1.2)
for Income, with results from FiSH (green points) juxtaposed against Exact results
(mustard yellow) and other points in red. This result is representative of FiSH’s
strengths and weaknesses. While three of five FiSH results are seen to be almost on
the Pareto frontier, the others are only slightly inward. As in the case of any heuristic-
driven method, FiSH may miss some good results; here, FiSH’s sampling misses out
on the top-left region of the Pareto frontier, which explains the slight deterioration in
Cov for FiSH when compared with Exact.

7 Fair hot spots in practice

Against the backdrop of having discussed the technical details of our method, we
now discuss the applicability of FiSH in practical scenarios. In particular, we motivate
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the role of fair hot spots—and methods such as FiSH—within the domain of crime
prevention and surveillance, focusing on the specific context of hot spot policing.

7.1 Hot spots policing: the context

Policing and crime prevention is a policy domain where hot spot detection is used in
an apparent and visible manner, with much social and political implications. We scan
the historical context of policing and crime prevention, and how the role of hot spot
policing has evolved within it. Traditional notions of policing and crime prevention
have focused on people, given the inarguable role of human agency in crime. With
such people-focused policing, geographical considerations have traditionally focused
on high-level and long-term decision making such as determining locations where
police force needs to be stationed to ensure timely responses. The emergence of place
as an important and explicit consideration within crime prevention arguably may be
traced across four decades. A 1982 article titled ’broken windows’ (Wilson andKelling
1982) foregrounded the idea that visible signs of anti-social behavior, such as broken
windows, could be read as an evidence of enhanced crime-proneness within a place.
This theory found much favor under the mayoralty of Rudy Giuliani11 in New York in
the 1990s whose implementation of the theory included harsh crackdowns on minor
crimes such as graffiti and turnstile jumping. This, probably among the firstwidespread
place-focused policing in a wide scale, has led to much criticism and accusations of
racism, with a 2007 book titled ’Why blacks fear America’s Mayor’ (Noel 2007) using
the phrase ’one of the most racially divisive leaders in the nation’ to describe him.
On the other hand, there has been much support for the approach, often citing sharp
drops in crime in New York city under the Mayoralty of Giuliani (Langan and Durose
2003).

While broken windows is a place-based approach, modern approaches towards
crime prevention often use the phrase hot spot policing 12 explicitly, to denote a vari-
ety of place-based approaches in crime prevention. This relies on the assumption that
police can be effective in addressing crime and disorder when they focus on small
units of geography with high rates of crime. These hot spots and policing strategies
and tactics focused on such areas are usually referred to as hot spots policing. The
effectiveness of such strategies in deterring and/or reducing crime have been estab-
lished through various studies (Sherman and Weisburd 1995). Over the past decades,
the logic of hot spots policing has only gained in prominence, and has even been
referred to as ’the law of crime concentration in places’ within an article (Braga et al.
2017) that says ’The empirical observation that a small number of micro places gen-
erate the bulk of urban crime problems has become a criminological axiom.’ The high
impetus on hot spot policing is reflected in an increasing prioritization of government
funding towards it13. The widespread emergence of the usage of AI-based tooling

11 https://en.wikipedia.org/wiki/Rudy_Giuliani.
12 https://cebcp.org/evidence-based-policing/what-works-in-policing/research-evidence-review/hot-
spots-policing/.
13 https://www.gov.uk/government/news/forces-given-funding-boost-to-increase-roll-out-of-hotspot-
policing.
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to assist place-based predictive policing (e.g., PredPol (Meliani 2018)) has played a
significant role in the increased impetus on hot spot policing within contemporary
society.

7.2 Fairness and hot spots policing

As often observed in fair machine learning research, effectiveness and fairness are
often in tension (Kearns and Roth 2019). The growth of place-based policing—often
enacted through increased surveillance of hot spot locations within the city—has
sharply coincided with concerns on systemic racism within policing. A recent book
(Gordon 2022) uses the phrase remaking of segregation and—through a police shad-
owing study within a US context—draws a contrast between two sides of the city: ’one
where rich, white neighborhoods are protected, and another where poor, black neigh-
borhoods are punished’. Such observations, one might recollect, dominated the public
discourse during theGeorgeFloyd protests of 2020.14 Whilemost studies have focused
on US contexts, similar issues of bias in place-based policing have been brought up in
other contexts within the Global South, such as the impact gradient of policing along
caste lines within India (Narayan 2021). The developing narrative arguing against new
policing, a term often used for technology-based and hot spot policing, and instead
proposing a newer policing, one that is focused on rights, fairness and policing legit-
imacy, has seen growing acceptance. An article in The Hill15 says: ’The epidemic of
police brutality—primarily affecting black males—can be linked to the history of a
technique called hot spot policing, ...’. The prominence of this narrative was acknowl-
edged by a pioneer of hot spot policing,DavidWeisburd, whose 2016 article (Weisburd
2016) is titled: Does Hot Spots Policing Inevitably Lead to Unfair and Abusive Police
Practices, or Can We Maximize Both Fairness and Effectiveness in the New Proactive
Policing?. While Weisburd offers a positive view of hot spot policing in addressing
this question through observing that hot spots policing encompasses a wide variety
of implementation possibilities, he notes that ’Hot spots policing programs should
be developed and implemented by police managers with the ideas of legitimacy and
fairness in mind.’

Apart from such extant observations that policing is being unfair and thus antithet-
ical to a modern society, these additionally undermine the legitimacy of the police
force, sowing the seeds for greater disharmony. We observe a sharp contrast between
such emerging understanding within social science literature on the tensions between
fairness and hot spot policing, and the lack of AI literature to provide enabling techno-
logical pathways towards bridging this tension. It is this deficit that our paper seeks to
foreground and make initial strides towards addressing. Having outlined the context
of hot spot policing and the need for fairness, we now consider how aspects of FiSH
could be aligned with the challenges of fair hot spot policing.

14 https://en.wikipedia.org/wiki/George_Floyd_protests.
15 https://thehill.com/blogs/congress-blog/civil-rights/265795-police-brutality-is-not-invisible/.
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7.3 FiSH and fair hot spots policing

A key aspect of the fairness conceptualization within FiSH is that fairness is sought
to be achieved across the collection of hot spots to be chosen for policy action rather
than within each hot spot. This is based on the observation that imposing fairness
conditions at the individual hot spot level could lead to an extremely constrained
technical formulation. As emphasized in a recent interdisciplinary critical studies
work (Webber and Burrows 2018), demographic identities in large urban locations
are increasingly correlated with postcodes, making fairness imposition at the hot spot
level impractical. This makes the fairness constraint best placed at the across hot
spots level rather than any lower level of granularity. The next characterizing aspect
of FiSH is the identification of multiple possible result sets comprising trade-offs in
the noteworthiness-fairness spectrum. This is a conscious decision choice to distribute
the agency in determining precise choice within the noteworthiness-fairness trade-off
across the technique and the user, rather than being decided solely by the technology.
These aspects, we believe, are highly aligned with the practical realities of policing,
making FiSH a potentially important step towards fairness in hot spot policing.

7.4 FiSH’s applicability gradient in hot spots policing

FiSH obviously has sub-contexts within hot spots policing where its applicability
varies. While teasing out details of the applicability gradient requires on-field studies
and correlation with pertinent literature (such studies are outside the scope of this
work), we discuss some important considerations herewith. Themostwidely discussed
contexts of policing fairness within the Western world relate to race, a protected
attribute that happens to also be geo-correlated (Webber and Burrows 2018), making
the across-hotspots fairness conceptualization within FiSH reasonably appropriate.
We also note that there are similar cases within other geographies, such as fairness
over the caste/religion dimension in India.16 However, in scenarioswhere fairness over
other dimensions (e.g., affluence, education, and class) aremore important and the geo-
correlationon themmaynot be as pervasivewithin them, theremayexist anopportunity
to use a deeper notion of fairness viz., fairness constraints at the level of each hot spot.
The next point where FiSH’s applicability gradient is apparent is to do with the nature
and number of protected attribute to ensure fairness over. The current construction of
FiSH addresses the categorical attribute case, but is amenable to be adapted to numeric
attributes to accommodate protected attributes such as age and income, observed to
be pertinent in the relationship between policing and gentrification.17 Towards using
a numeric protected attribute, the entire numeric range can be bucketized, so it may be
treated as a categorical attribute to leverage FiSH as it is. However, this may require
bespoke bucketing mechanisms which are informed by domain knowledge. FiSH, in
its present form, can only admit one protected attribute. FiSHmay be extended—with
non-trivial technical effort—to consider N–F trade-offs across a multi-dimensional

16 https://thewire.in/caste/police-casteist-communal.
17 https://housingmatters.urban.org/research-summary/neighborhoods-gentrify-police-presence-
increases.
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space comprising one noteworthiness dimension and several fairness dimensions, one
for each protected attribute.

8 Conclusions and future work

In this paper, for the first time to our best knowledge, we considered the task of fair
detection of spatial hot spots. In this web era where spatially-anchored digital data is
collected extensively, spatial hot spot detection is used extensively to inform substan-
tive policy interventions across a variety of domains, making fairness an important
considerationwithin them.We characterized fairness using the popular notion of statis-
tical parity when computed collectively over k chosen hot spots, and outlined the task
of identifying a diverse set of solution candidates along the fairness-noteworthiness
Pareto frontier. Observing the computational infeasibility of identifying exact solu-
tions, we developed a method, FiSH, that performs a highly efficient heuristic-driven
search to identify good quality approximate solutions for the task. We then formulated
a suite of evaluationmetrics for the novel task of fair hot spots.Weperforman extensive
empirical evaluation over a real-world dataset from the human development domain
where fairness may be considered indispensable, and illustrated that FiSH delivers
high-quality results, and offers good scalability, consistently returning results orders
of magnitude faster than what is required to compute exact results. This illustrates the
effectiveness of FiSH in achieving fairness in detection of spatial hot spots, and that it
offers fast response times, making it appropriate for real-world scenarios. Through a
detailed discussion on the context of hot spot policing, we illustrated how FiSH could
provide significant strides in deepening fairness within place-based policing.

8.1 Future work

While we have considered enhancing fairness by working upon a ranked list of spatial
hot spots, FiSH extends easily to work over techniques that are capable of providing
scores (in addition to ranks, which is basically an ordering over the scores) for each
hot spot as well; we are considering evaluating FiSH’s effectiveness in working over
such scored lists. Our formulation of diverse candidates assumes that the user may be
interested equally in all parts of the noteworthiness-fairness trade-off space. However,
in several cases, users may have a preference to exclude some parts of the space. For
example, the maximum relaxation of noteworthiness may be bounded above in some
scenarios. We are considering how user’s trade-off preferences can be factored into
the FiSH search process to deliver diverse results within the sub-spectrum of interest.
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