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Abstract

In the meantime, a wide variety of terminologies, motivations, approaches, and eval-
uation criteria have been developed within the research field of explainable artificial
intelligence (XAI). With the amount of XAI methods vastly growing, a taxonomy of
methods is needed by researchers as well as practitioners: To grasp the breadth of the
topic, compare methods, and to select the right XAl method based on traits required
by a specific use-case context. Many taxonomies for XAl methods of varying level
of detail and depth can be found in the literature. While they often have a different
focus, they also exhibit many points of overlap. This paper unifies these efforts and
provides a complete taxonomy of XAI methods with respect to notions present in the
current state of research. In a structured literature analysis and meta-study, we identi-
fied and reviewed more than 50 of the most cited and current surveys on XAl methods,
metrics, and method traits. After summarizing them in a survey of surveys, we merge
terminologies and concepts of the articles into a unified structured taxonomy. Single
concepts therein are illustrated by more than 50 diverse selected example methods
in total, which we categorize accordingly. The taxonomy may serve both beginners,
researchers, and practitioners as areference and wide-ranging overview of XAl method
traits and aspects. Hence, it provides foundations for targeted, use-case-oriented, and
context-sensitive future research.
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1 Introduction

Machine learning (ML) models offer the great benefit that they can deal with hardly
specifiable problems as long as these can be exemplified by data samples. This
has opened up a lot of opportunities for promising automation and assistance sys-
tems, like highly automated driving, medical assistance systems, text summaries and
question-answer systems, just to name a few. However, many types of models that are
automatically learned from data will not only exhibit high performance, but also be
black-box—i.e., they hide information on the learning progress, internal representa-
tion, and final processing in a format not or hardly interpretable by humans.

There are now diverse use-case specific motivations for allowing humans to under-
stand a given software component, i.e., to build up a mental model approximating
the algorithm in a certain way. This starts with legal reasons, like the General Data
Protection Regulation (Goodman and Flaxman 2017) adopted by the European Union
in recent years. Another example are domain specific standards, like the functional
safety standard ISO 26262 (ISO/TC 22/SC 32 2018) requiring accessibility of software
components in safety-critical systems. This is even detailed to an explicit requirement
for explainability of machine learning based components in the ISO/TR 4804 (ISO/TC
22 Road vehicles 2020) draft standard. Many further reasons of public interest, like
fairness or security, as well as business interests like ease of debugging, knowledge
retrieval, or appropriate user trust have been identified (Arrieta et al. 2020; Langer
et al. 2021). This requirement to translate behavioral or internal aspects of black-box
algorithms into a human interpretable form gives rise to the broad research field of
explainable artificial intelligence (XAI).

In recent years, the topic of XAl methods has received an exponential boost in
research interest (Arrieta et al. 2020; Linardatos et al. 2021; Adadi and Berrada 2018;
Zhou et al. 2021). For practical application of XAl in human-Al interaction systems,
it is important to ensure a choice of XAl method(s) appropriate for the correspond-
ing use case. Without question, thorough use-case analysis including the main goal
and derived requirements is one essential ingredient here (Langer et al. 2021). Nev-
ertheless, we argue that a necessary foundation for choosing correct requirements is
a complete knowledge of the different aspects (traits, properties) of XAI methods
that may influence their applicability. Well-known aspects are, e.g., portability, i.e.,
whether the method requires access to the model internals or not, or locality, i.e.,
whether single predictions of a model are explained or some global properties. As will
become clear from our literature analysis in Sect. 5, this only just scratches the surface
of aspects of XAI methods that are relevant for practical application.

This paper aims to (1) help beginners in gaining a good initial overview and starting
point for a deeper dive, (2) support practitioners seeking a categorization scheme for
choosing an appropriate XAI method for their use-case, and (3) to assist researchers
in identifying desired combination of aspects that have not or little been considered so
far. For this, we provide a complete collection and a structured overview in the form

@ Springer



A comprehensive taxonomy for explainable Al

of a taxonomy of XAI method aspects in Sect. 5, together with method examples for
each aspect. The method aspects are obtained from an extensive literature survey on
categorization schemes for explainability and interpretability methods, resulting in a
meta-study on XAI surveys presented in Sect. 4. Other than similar work, we do not
aim to provide a survey on XAI methods. Hence, our taxonomy is not constructed
as a means of a sufficient chapter scheme. Instead, we try to compile a taxonomy
that is complete with respect to existing valuable work. We believe that this gives a
good starting point for an in-depth understanding of sub-topics of XAl research, and
research on XAI methods themselves.
Our main contributions are:

e Complete XAl method taxonomy: A structured, detailed, and deep taxonomy of
XAI method aspects (see Fig. 7); In particular, the taxonomy is complete with
respect to application relevant XAl method and evaluation aspects that have so far
been considered in literature, according to our structured literature search.

e Extensive XAl method meta-study: A survey-of-surveys of more than 50 works on
XAl related topics that may serve to pick the right starting point for a deeper dive
into XAl and XAI sub-fields. To our knowledge, this is the most extensive and
detailed meta-study specifically on XAl and XAI methods available so far.

e Broad XAI method review: A large collection, review, and categorization of more
than 50 hand-picked diverse XAl methods (see Table 6). This shows the practical
applicability of our taxonomy structure and the identified method aspects.

The rest of the paper reads as follows: In Sect. 2 we reference some related work,
recapitulate major milestones in the history of XAl and provide important definitions
of terms. This is meant for those readers less familiar with the topic of XAI. After
that, we detail our systematic review approach in Sect. 3. The results of the review
are split into the following chapters: The detailed review of the selected surveys is
presented in Sect. 4, including their value for different audiences and research focus;
and Sect. 5 details collected XAI method aspects and our proposal of a taxonomy
thereof. Each considered aspect is accompanied by illustrative example methods, a
summary of which can be found in Table 6. We conclude our work in Sect. 6.

2 Background

This chapter gives some background regarding related work (Sect. 2.1), and the history
of XAl including its main milestones (Sect. 2.2). Lastly, Sect. 2.3 introduces some
basic terms and definitions used throughout this work. Experienced readers may skip
the respective subsections.

2.1 Related work

Meta-studies on XAI methods

Short meta-studies collecting surveys of XAI methods are often contained in the
related work section of XAI reviews like (Linardatos et al. 2021, Sec. 2.3). These
are, however, by nature restricted in length and usually concentrate on most relevant
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and cited reference works like Gilpin et al. (2018), Adadi and Berrada (2018), Arri-
eta et al. (2020). We here instead consider a very broad and extensive collection of
surveys. By now, also few dedicated meta-studies can be found in literature. One is
the comprehensive and recent systematic literature survey conducted by Vilone and
Longo (2020, Chap. 4). This reviews 53 survey articles related to XAl topics, which
are classified differentially according to their focus. Their literature analysis reaches
further back in time and targets even more general topics in XAl than ours. Hence,
several of their included surveys are very specific, quite short, and do not provide any
structured notions of taxonomies. Also, the focus of their review lies in research top-
ics, while the slightly more detailed survey-of-surveys presented here also takes into
account aspects that relate to suitability for beginners and practitioners. Another ded-
icated survey-of-surveys is the one by Chatzimparmpas et al. (2020). With 18 surveys
on visual XAl this is smaller compared to ours, and has quite a different focus: They
review the intersection of XAl with visual analytics. Lastly, due to their publication
date they only include surveys from 2018 or earlier, which misses on important recent
work as will be seen in Fig. 2. The same holds for the very detailed DARPA report by
Mueller et al. (2019) from 2019 Hence, both papers miss many recent works covered
in our meta-study (cf. Fig. 2). Further, the DARPA report has a very broad focus, also
including sibling research fields related to XAI. And, similar to Vilone et al., they
target researchers, hence give no estimation of what work is especially suitable for
beginners or practitioners. Most recently, Saeed and Omlin (2021) conducted a meta-
survey of 58 XAl related papers, but with the focus of identifying current challenges
in the field.

(Meta-)studies on XAI method traits

Related work on taxonomies is mostly shallow, focused on a sub-field, or is purely
functional in the sense that taxonomies merely serve as a survey chapter structure.
A quite detailed, but less structured collection of XAI method traits can be found in
the courses of discussion in Murdoch et al. (2019), Carvalho et al. (2019), Burkart
and Huber (2021), Mueller et al. (2019), Li et al. (2020). The focus of each will be
discussed later in Sect. 4. But despite their detail, we found that each article features
unique aspects that are not included in the others. The only systematic meta-review on
XAI method traits known to us is the mentioned survey by Vilone and Longo (2020).
They, however, generally review notions related to XAlI, not concretely XAI method
traits. Only a shallow taxonomy is derived from parts of the retrieved notions (cf.
Vilone and Longo 2020, Sec.5).

Use-case analysis

A related, wide and important field which is out-of-scope of this paper is that of
use-case and requirements analysis. This, e.g., includes analysis of the background
of the explanation receiver (Miller 2019). Instead, we here concentrate on finding
aspects of the XAI methods themselves that may be used for requirements analysis
and formulation, e.g., whether the explainability method must be model-agnostic or
the amount of information conveyed to the receiver must be small. For further detail
on use-case specific aspects the reader may be referred to one of the following surveys
further discussed in Sect. 4 (Miller 2019; Guidotti et al. 2018; Gleicher 2016; Langer
et al. 2021; Arrieta et al. 2020).
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2.2 History of XAl

XAl is not a new topic, although the number of papers published in recent years might
suggest it. The abbreviation XAI for the term explainable artificial intelligence was
first used by van Lent et al. (2004) (see Carvalho et al. 2019, Sec.2.3). According
to Belle (2017), the first mention of the underlying concept already dates back to
the year 1958, when McCarthy described his idea of how to realize Al systems. In
his seminal paper he promoted a declarative approach, based on a formal language
and a problem-solving algorithm that operates on data represented in the given formal
language. Such an approach could be understood by humans and the system’s behavior
could be adapted, if necessary (McCarthy 1958). Basically, McCarthy described the
idea of inherently transparent systems that would be explainable by design.

Inherently transparent approaches paved the way for expert systems that were
designed to support human decision-makers (see Jackson 1998). Due to the big chal-
lenge to integrate, often implicit, expert knowledge, these systems lost their popularity
in the 90’s of the last century. Meanwhile, deep neural networks (DNNs) have become
a new and powerful approach to solve sub-symbolic problems. The first approaches
aiming at making neural network decisions transparent for debugging purposes date
back to the mid 90’s. For example in 1992, Craven and Shavlik presented several
methods to visualize numerical data, such as decision surfaces (Craven and Shavlik
1992).

Due to the introduction of the new European General Data Protection Regulation
(GDPR) in May 2018, transparency of complex and opaque approaches, such as neural
networks, took on a new meaning. Researchers and companies started to develop new
Al frameworks, putting more emphasis on the aspect of accountability and the “right
of explanation” (Goodman and Flaxman 2017; Council 2017). Besides debugging
and making decisions transparent to developers or end-users, decisions of a system
now also had to be comprehensible for further stakeholders. According to Adadi and
Berrada (2018) the term XAI gained popularity in the research community after the
Defense Advanced Research Projects Agency (DARPA) published its paper about
explainable artificial intelligence, see Gunning and Aha (2019).

In their definition, XAl efforts aim for two main goals. The first one is to cre-
ate machine learning techniques that produce models that can be explained (their
decision-making process as well as the output), while maintaining a high level of
learning performance. The second goal is to convey a user-centric approach, in order
to enable humans to understand their artificial counterparts. As a consequence, XAl
aims for increasing the trust in learned models and to allow for an efficient partnership
between human and artificial agents (Gunning and Aha 2019). In order to reach the
first goal, DARPA proposes three strategies: deep explanation, interpretable models
and model induction, which are defined in Sect. 2.3. Among the most prominent XAI
methods that implement this goal for deep learning, especially in computer vision, are
for example LIME (Ribeiro et al. 2016), LRP (Bach et al. 2015) and Grad-CAM (Sel-
varaju et al. 2017). The second, more user-centric, goal defined by DARPA requires a
highly inter-disciplinary perspective. This is based on fields such as computer science,
social sciences as well as psychology in order to produce more explainable models,
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intrinsic understanding, global explanations

explanandum: ML Model
transparent
: " actions / decision
global interpretability
necessary condition (focus of iML)
necessary condition Trust, Joint
Performance
sufficient condition
local interpretability comprehensible
(focus of xAl) actions / decision
explanandum: ML Results

ex post understanding, local explanations

Fig.1 A framework for comprehensible artificial intelligence (Bruckert et al. 2020)

suitable explanation interfaces, and to communicate explanations effectively under
consideration of psychological aspects.

Miller (2019), e.g., made an important contribution to the implementation of the
user-centric perspective with his paper on artificial intelligence from the viewpoint
of the social sciences. He considers philosophical, psychological, and interaction-
relevant aspects of explanation, examining different frameworks and requirements.
An important turn towards a user-centric focus of XAI was also supported by Rudin
(2019) in her paper from 2019, where she argues for using inherently interpretable
models instead of opaque models, motivated by the right to explanation and the societal
impact of intransparent models.

Another milestone in the development of XAl is the turn toward evaluation metrics
for explanations (Mueller et al. 2021). The XAI community now acknowledges more
in depth that it is not enough to generate explanations, but that it is also crucial to
evaluate how good they are with respect to some formalized measure.

2.3 Basic definitions

This section introduces some basic terms related to XAI which are used throughout
this paper. Detailed definitions of the identified XAI method aspects will be given in
Sect. 5.

Important work that is concerned with definitions for XAl can be foundin, e.g., Lip-
ton (2018), Adadi and Berrada (2018), and the work of Doshi-Velez and Kim (2017)
who are often cited as base work for formalizing XAl terms [cf. e.g. (Linardatos et al.
2021)]. Some definitions are taken from Bruckert et al. (2020), who present explana-
tion as a process involving recognition, understanding and explicability respectively
explainability, as well as interpretability. The goal of the process is to achieve mak-
ing an Al system’s actions and decisions transparent as well as comprehensible. An
overview is given in Fig. 1.

In the following we will assume we are given an Al system that should (partly) be
explained to a human. The system encompasses one (or several) Al models and any
pre- and post-processing. We use the following nomenclature:

Understanding is described as the human ability to recognize correlations, as well as
the context of a problem and is a necessary precondition for explanations (Bruckert
et al. 2020). The concept of understanding can be divided into mechanistic under-
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standing ("How does something work?") and functional understanding ("What is
its purpose?") (Paez 2019).

Explicability refers to making properties of an Al model inspectable (Bruckert et al.
2020).

Explainability goes one step further than explicability and aims for making (a) the
context of an Al system’s reasoning, (b) the model, or (c) the evidence for a decision
output accessible, such that they can be understood by a human (Bruckert et al.
2020).

Transparency is fulfilled by an Al model, if its algorithmic behavior with respect to
decision outputs or processes can be understood by ahuman mechanistically (Pdez
2019). Transparency will be discussed more closely in Sect. 5.1.2.

Explaining means utilizing explicability or explainability to allow a human to under-
stand a model and its purpose (Bruckert et al. 2020; Paez 2019).

Global explanations explain the model and its logic as a whole (“How was the
conclusion derived?”) (Adadi and Berrada 2018).

Local explanations explain individual decisions or predictions of a model (“Why
was this example classified as a car?”’) (Adadi and Berrada 2018).

Interpretability means that an Al model’s decision can be explained globally or
locally (with respect to mechanistic understanding), and that the model’s purpose
can be understood by a human actor (Pdez 2019)(i.e. functional understanding).

Correctability means that an Al system can be adapted by a human actor in a
targeted manner in order to ensure correct decisions (Kulesza et al. 2015; Teso and
Kersting 2019; Schmid and Finzel 2020). Adaptation refers either to re-labelling
of data (Teso and Kersting 2019) or to changing of a model by constraining the
learning process (Schmid and Finzel 2020).

Interactivity applies if one of the following is possible: (a) interactive explanations,
meaning a human actor can incrementally explore the internal working of a model
and the reasons behind its decision outcome; or (b) the human actor may adapt the
Al system (correctability).

Comprehensibility relies, similar to interpretability, on local and global expla-
nations and functional understanding. Additionally, comprehensible artificial
intelligence fulfills interactivity (Bruckert et al. 2020; Schmid and Finzel 2020).
Both, interpretable presentation and intervention are considered as important
aspects for in depth understanding and therefore preconditions to comprehen-
sibility (see also Gleicher 2016).

Human-AlI system is a system that contains both algorithmic components and a
human actor, which have to cooperate to achieve a goal (Schmid and Finzel 2020).
We here consider in particular explanation systems, i.e., such human-Al systems
in which the cooperation involves explanations about an algorithmic part of the
system (the explanandum) by an explanator component, to the human interaction
partner (the explainee) resulting in an action of the human (Bruckert et al. 2020).

Explanandum (what is to be explained, cf. Sect. 5.1) refers to what is to be explained
in an explanation system. This usually encompasses a model (e.g., a deep neural
network). We here also refer to an explanandum as the object of explanation.

Explanator (the one that explains, cf. Sect. 5.2; also called explainer) is the expla-
nation system component providing explanations.
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Explainee (the one to whom the explanandum is explained) is the receiver of the
explanations in the explanation system. Note that this often but not necessarily is
a human. Explanations may also be used, e.g., in multi-agent systems for com-
munication between the agents and without a human in the loop in most of the
information exchange scenarios.

Interpretable models are defined as machine learning techniques that learn more
structured representations, or that allow for tracing causal relationships. They are
inherently interpretable (cf. definition in Sect. 5.2), i.e., no additional methods need
to be applied to explain them, unless the structured representations or relationship
are too complex to be processed by a human actor at hand.

Interpretable machine learning (iML) is the area of research concerned with the
creation of interpretable Al systems (interpretable models).

Model induction (also called model distillation, student-teacher approach, or repro-
jection (Gleicher 2016)) is a strategy that summarizes techniques which are used
to infer an approximate explainable model—the (explainable) proxy or surrogate
model—Dby observing the input-output behavior of a model that is explained.

Deep explanation refers to combining deep learning with other methods in order to
create hybrid systems that produce richer representations of what a deep neural
network has learned, and that enable extraction of underlying semantic concepts
(Gunning and Aha 2019).

Comprehensible artificial intelligence (cAl) is the result of a process that unites
local interpretability based on XAl methods and global interpretability with the
help of iML (Bruckert et al. 2020). The ultimate goal of such systems would be
to reach ultra-strong machine learning, where machine learning helps humans
to improve in their tasks. For example, (Muggleton et al. 2018) examined the
comprehensibility of programs learned with Inductive Logic Programming, and
(Schmid et al. 2016; Schmid and Finzel 2020) showed that the comprehensibility
of such programs could help lay persons and experts to understand how and why
a certain prediction was derived.

Explainable artificial intelligence (XAI) is the area of research concerned with
explaining an Al system’s decision.

3 Approach to literature search

The goals of this paper are to (1) provide a complete overview of relevant aspects or
properties of XAl methods, and (2) ease finding the right survey providing further
details. In order to achieve this, a systematic and broad literature analysis was con-
ducted on papers in the time range of 2010-2021. The target of this meta-survey are
works that either contain reviews on XAI methods, or considerations on XAI metrics
and taxonomy aspects.
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Table 1 Main used search phrases for the search for XAl taxonomies in the Google Scholar database with
approximate number of matches

Matches Search phrase

> 300 Explain Al taxonomy

ca.80 XAI taxonomy toolbox guide

> 300 Explainable AI taxonomy toolbox guide

ca.20 Explain interpret Al artificial intelligence DNN Deep Learning ML

machine learning taxonomy framework toolbox guide XAI

3.1 Search

Our search consisted of two iterations, one directly searching for work on XAI tax-
onomies, and one more general search for general XAl surveys.

Work on XAI taxonomies

The iteration for work on XAI taxonomies started with an initial pilot phase. Here we
identified common terms associated directly with XAl taxonomies (for abbreviations
both the abbreviation and the full expression must be considered):

e machine learning terms: Al, DNN, Deep Learning, ML
e explainability terms: XAlI, explain, interpret
e terms associated with taxonomies: taxonomy, framework, toolbox, guide

In the second search phase, we collected Google Scholar! search results for combi-
nations of these terms. The main considered search terms are summarized in Table 1.
For each search, the first 300 search results were scanned by the title for relevance to
our search target. Promising ones then were scanned by abstract. Only work that we
could access was finally included. In the last phase, we scanned the works recursively
for references to further relevant reviews.

General XAI surveys
The second iteration collected search results for XAl surveys that do not necessarily
propose a taxonomy, but possibly implicitly use one. For this, we again conducted
the mentioned three search phases. The search terms now were the more general ones
“XAI” and “XAI survey”. These again were scanned first by title, then by abstract.
This resulted in a similar number of finally chosen and in-depth assessed papers as
the taxonomy search (not counting duplicate search results).

Lastly, we also included surveys and toolboxes that were additionally pointed out
by the reviewers.

3.2 Categorization

For the sub-selection and categorization, we considered the general focus, the length,
level of detail, target audience, citation count per year, and recency.

1 https://scholar.google.com.
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General focus Regarding the general focus, we sorted the obtained reviews into three
categories:

General XAI method collections (Sect. 4.2): Reviews that contain a broad col-
lection of XAI methods without an explicit focus on a specific sub-field;

Domain-specific XAI method collections (Sect. 4.3): Reviews that also contain a
collection of XAI methods, but with a concrete focus on application domain
(e.g. medicine), method technologies (e.g. inductive logic programming), or
method traits (e.g. black-box methods);

Conceptual reviews (Sect. 4.1): Reviews that do not contain or not focus on XAl
method examples, but on conceptual aspects for the field of XAl like taxonomy
or metrics;

Toolboxes (Sect. 4.4): Summary of a complete toolbox with implementation.

Length For the length we considered the number of pages up to the bibliography,
resulting in four categories (cf. Fig. 2): short (up to 6 pages), medium (up to
15 pages), long (up to 50 pages), and very long (more than 50 pages).

Target audience As farget audiences we considered three types: beginners in the
field of XAI (potentially coming from a different domain), practitioners, and
researchers. A review was associated with one or several target audiences, if it
specifically targeted that audience, or if it was judged practically suitable or inter-
esting for readers of that audience.

Citation count per year The citation count per year of the surveys was used as a
proxy for reception. It was collected from the popular citation databases Google
Scholar, Semantic Scholar,? OpenCitations,3 and NASA ADS.* The highest result
(mostly google scholar) was chosen for comparison.

Recency was compared via the publication year.

Using these categorizations, some further works were ruled out for inclusion into
the survey of surveys. Excluded were reviews which: would not sufficiently match our
search target; were too specific (e.g. comparison of only very few specific methods);
are very short (up to 4pages) and are covered by prior or successive work of the
authors, or are not often cited or not sufficiently focused.

3.3 Results

We reviewed over 70 surveys on XAI with publication date up to beginning of 2021
Most of them are from the years 2019 to 2021 (cf. Fig. 2), which well fits the exponential
increase in XAI methods that was observed so far (Arrieta et al. 2020; Linardatos
etal. 2021; Adadi and Berrada 2018; Zhou et al. 2021). These were analyzed for XAl
method aspects, taxonomy structuring proposals, and suitable example methods for
each aspect. In the following, a sub-selection of more than 50 surveys are detailed that
were most cited or of general interest, as well as some examples of toolboxes.

2 https://www.semanticscholar.org/.
3 https://opencitations.net/.
4 https://ui.adsabs.harvard.edu/.
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Fig.2 Distribution of the reviewed surveys over the years 2010 to 2021 (left), and distribution of the survey
lengths by general focus category (right)

To exemplify the aspects of our proposed taxonomy, we selected again more than 50
concrete XAl methods that are reviewed in example sections for the corresponding XAl
aspects. The selection focused on high diversity and recency of the methods, in order
to establish a broad view on the XAl topic. Finally, each of the methods were analyzed
for main taxonomy aspects, which is summarized in Table 6. During the finalization
phase of this paper we came across further interesting surveys (Guidotti 2022; Zhang
et al. 2021), and the base work (Tintarev and Masthoff 2007) on explanations in
recommender systems. We are happy to honorably mention these here, but we do not
analyze the works in detail in the following.

4 A survey of surveys on XAl methods and aspects

Along with the vastly growing demand and interest in XAI methods came an abun-
dance of helpful reviews on the topic. This encompasses overviews of all kinds of
aspects, methods, and metrics, each with custom focus. Given this battering amount
of literature, it may be hard, especially for beginners and practitioners, to find a survey
suited to their needs. The needs can encompass a specific focus, a desired level of
detail and length, or others. This chapter provides a short survey of XAl surveys that
shall help a reader in finding appropriate material to dig further into the topic of XAl

The focus of the literature search lay on works that use, propose, or deduce a
structured view on XAI methods and metrics. Search and categorization criteria are
detailed in Sect. 3. In the rest of this section, the more than 50 selected surveys are
reviewed with respect to their key focus points, level of detail, and their target audience.
While this survey of surveys for sure will not be complete, it should both give a good
overview on the breadth of XAl, as well as serve as a good starting point when looking
for a deeper dive into topics of the field.

Our results so far promise that many more helpful surveys on the topic of XAI will
come up within the next years (cf. Fig. 2). A key result of this structured meta-study
will be presented later in Sect. 5: The works are analyzed for taxonomy aspects of
XAI methods, resulting in the—to our knowledge—most complete taxonomy of XAl
methods available so far.

@ Springer



G. Schwalbe, B. Finzel

Table2 Overview on clusters of reviewed conceptual surveys on XAl

Focus

Broad Gunning et al. (2019), Lipton (2018), Mueller et al. (2019),
Guidotti et al. (2021)

Stakeholder perspective Gleicher (2016), Langer et al. (2021)

HCI perspective Miller (2019), Chromik and SchiiB3ler (2020), Ferreira and
Monteiro (2020), Mueller et al. (2021)

XAI method evaluation Doshi-Velez and Kim (2017), Zhou et al. (2021)

4.1 Conceptual reviews

By now, many works have gathered and formulated important concepts related to XAl
research. We here roughly divided the available literature by their main focus: broadly
focused surveys, surveys from the perspectives of stakeholders and human-computer
interaction, and finally surveys with an explicit focus on XAl metrics. An overview
can be found in Table 2.

Broad conceptual surveys

A very short, high-level, and beginner-friendly introduction to XAl can be found in
the work of Gunning et al. (2019). They derive four open challenges for the field:
user-centric explanations, tradeoff between accuracy and interpretability, automated
abstraction, and appropriate end-user trust. Regarding an XAI method taxonomy,
a base for many later surveys was by Lipton (2018). In this medium-length work,
Lipton provides a small and high-level XAI taxonomy. The focus, namely motiva-
tion and desiderata for interpretability, are held broad and suitable for beginners and
interdisciplinary discussion. In contrast, the very broad and long DARPA report by
Mueller et al. (2019) provided later in 2019 is targeted at researchers of the field. The
goal of the report is to broadly capture all relevant developments and topics in the
field of XAI. This resulted in a detailed meta-study on state-of-the-literature, and a
detailed list of XAI method aspects and metrics (chapters 7 and 8). More recently,
Guidotti et al. (2021) illustrate some key dimensions to distinguish XAl approaches
in a beginner-friendly book section. They present a broad collection of most com-
mon explanation types and state-of-the-art explanators respectively, and discuss their
usability and applicability. This results in a conceptual review of taxonomy aspects
and evaluation criteria.

XAI from a stakeholder perspective

The early work by Gleicher (2016) highlights the stakeholder perspective on XAl
problems. In the medium-length survey, Gleicher suggests a framework of general
considerations for practically tackling an explainability problem. A similar focus is
set by Langer et al. (2021) in their long recent work from 2021. They review in detail
XAI from the point of view of satisfying stakeholder desiderata. For this they collect
standard goals of XAI problems and propagate that XAl design choices should take
into account all stakeholders in an interdisciplinary manner.
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XAI from a HCI perspective

When humans interact with Al-driven machines, this human-machine-system can
benefit from explanations obtained by XAI. Hence, there are by now several surveys
concentrating on XAl against the background of human-computer-interaction (HCI).
An important and well-received base work in this direction is that of Miller (2019). He
conducts a long, detailed, and extensive survey of work from philosophy, psychology,
and cognitive science regarding explanations and explainability. The main conclusions
for XAl research are: (a) (local) explanations should be understood contrastively, i.e.,
they should clarify why an action was taken instead of another; (b) explanations are
selected in a biased manner, i.e., do not represent the complete causal chain but few
selected causes; (c) causal links are more helpful to humans than probabilities and
statistics; and (d) explanations are social in the sense that the background of the
explanation receiver matters. A much shorter paper was provided by Chromik and
Schiiler (2020). They rigorously develop a taxonomy for evaluating black-box XAl
methods with the help of human subjects. Furthermore, they make some concrete
suggestions for study design. The related survey by Ferreira and Monteiro (2020) is
slightly longer, and may serve as an entry point to the topic for researchers. They
present a taxonomy of XAI that links with computer science and HCI communities,
with a structured and dense collection of many related reviews. Very recent work on
XAl metricsis provided by Miieller et al. in their 2021 paper (Mueller etal. 2021). They
collect concrete and practical design principles for XAl in human-machine-systems.
Several relevant XAl metrics are recapitulated, and their broad collection of related
surveys may serve as an entry point to the research field of human-Al-systems.

Surveys with a focus on evaluation

Continuing on the HCI perspective, a hot topic in the field of XAI are metrics for
measuring the quality of explanations for human receivers. An early and base work
on XAl metric categorization is by Doshi-Velez and Kim (2017). The medium-length
survey collects latent dimensions of interpretability with recommendations on how to
choose and evaluate an XAl method. Their taxonomy for XAI metrics is adapted by
us, classifying metrics into human grounded, functionally grounded, and application
grounded ones (cf. Sect. 5.3). A full focus on metrics for evaluating XAl methods is
set in the recent work by Zhou et al. (2021). This medium-length, detailed meta-study
reviews diverse XAl metrics, aligned with shallow taxonomies both for methods and
metrics.

4.2 Broad method collections

There by now exists an abundance of surveys containing broad collections of XAI
methods, serving as helpful starting points for finding the right method. The following
shortly highlights surveys that feature a generally broad focus (for specifically focused
surveys see Sect. 4.3). This summary shall help to find a good starting point for diving
deeper into methods. Hence, the surveys are first sorted by their length (as a proxy
for the amount of information), and then by their reception (citations per year). The
latter was found to strongly correlate with age. An overview of the discussed surveys
is given in Table 3.
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Table 3 Overview on focus points/specialties and audience (Aud.) of discussed general XAl method col-

lections
Aud. Focus/specialty Detail
Short
Dosilovi¢ et al. (2018) B,R XAI for supervised learning 1
Biran and Cotton (2017) R Local explanations and interpretable models 1
Benchekroun et al. (2020) B,P Industry point of view 5
Medium
Gilpin et al. (2018) R XAl research aspects 1
Du et al. (2019) B Perturbation based attention visualization 3
Murdoch et al. (2019) B, P Predictive, descriptive, relevant desiderata for 5
explanations, practical examples
Goebel et al. (2018) Need for XAI 3
Islam et al. (2021) B,R Demonstration of XAI methods in case-study (credit 5
scoring)
Long
Adadi and Berrada (2018) P XAl research landscape (methods, metrics, 1
cognitive aspects, human-machine-systems)
Carvalho et al. (2019) B,R Aspects associated with XAl (esp. motivation, 2
properties, desirables)
Xie et al. (2020) B Explanation of DNNs 3
Das and Rad (2020) R Visualization methods for visual DNNs 3
Linardatos et al. (2021) P,R Technical, with source code 3
Bodria et al. (2021) B,P Comparative studies of XAI methods 4
Very long
Molnar (2020) B Fundamental concepts of interpretability 5
Arrieta et al. (2020) PR Notion of responsible Al: Terminology, broad
collection of examples
Burkart and Huber (2021) R Supervised machine learning; linear, rule-based 3
methods and decision trees, data analytics and
ontologies
Vilone and Longo (2020) R Systematic and broad review of XAI surveys, 3

theory, methods, and method evaluation

Sorted first by length, then reception (citations per year). Detail is manually ranked in values from 1 (short
discussion per method) to 5 (detailed discussion per method). The audience can be beginner (B), practitioner

(P), or researcher (R)

Short surveys

A short overview mostly on explanations of supervised learning approaches was pro-
vided by Dosilovi¢ et al. (2018). This quite short but broad and beginner-friendly
introductory survey shortly covers diverse approaches and open challenges toward
XAI Slightly earlier in 2017, Biran and Cotton published their XAl survey (Biran
and Cotton 2017). This is a short and early collection of explainability concepts. Their
general focus lies on explanations of single predictions, and diverse model types like
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rule-based systems and Bayesian networks, which are each shortly discussed. Most
recently, in 2020 Benchekroun et al. collected and presented XAI methods from an
industry point of view (Benchekroun et al. 2020). They present a preliminary tax-
onomy that includes pre-modelling explainability as an approach to link knowledge
about data with knowledge about the used model and its results. Regarding the industry
perspective, they specifically motivate standardization.

Medium-length surveys

An important and very well received earlier work on XAI method collections was pro-
vided by Gilpin et al. (2018). Their extensive survey includes very different kinds of
XAI methods, including, e.g., rule extraction. In addition, for researchers they provide
references to more specialized surveys in the field. It is very similar to the long sur-
vey by Adadi and Berrada (2018), only shortened by skipping detail on the methods.
More detail, but a slightly more specialized focus, is provided in the survey by Du et al.
(2019). The beginner-friendly high-level introduction to XAI features few, in detail
discussed examples. These concentrate on perturbation based attention visualization.
Similarly, the examples in Murdoch et al. (2019) also mostly focus on visual domains
and explanations. This review by Murdoch et al. in 2019 is also beginner-friendly,
and prefers detail over covering a high number of methods. The examples are embed-
ded into a comprehensive short introductory review of key categories and directions
in XAl. Their main focus is on the proposal of three simple practical desiderata for
explanations: The model to explain should be predictive (predictive accuracy), the
explanations should be faithful to the model (descriptive accuracy), and the informa-
tion presented by the explanations should be relevant to the receiver. Slightly earlier,
Goebel et al. (2018) concentrate in their work more on multimodal explanations and
question-answering systems. This survey contains a high-level review of the need for
XA, and discussion of some exemplary state-of-the-art methods. A very recent and
beginner-friendly XAI method review is by Islam et al. (2021). Their in-depth discus-
sion of example methods is aligned with a shallow taxonomy, and many examples are
practically demonstrated in a common simple case study. Additionally, they present a
short meta-study of XAl surveys, and a collection of future perspectives for XAl The
latter includes formalization, XAl applications for fair and accountable ML, XAl for
human-machine-systems, and more interdisciplinary cooperation in XAl research.

Long surveys

A well-received lengthy and extensive XAl literature survey was conducted by Adadi
and Berrada (2018). They reviewed and shortly discuss 381 papers related to XAI
to provide a holistic view on the XAl research landscape at that time. This includes
methods, metrics, cognitive aspects, and aspects related to human-machine-systems.
Another well-received, but more recent, slightly less extensive and more beginner-
friendly survey is that by Carvalho et al. (2019). They collect and discuss in detail
different aspects of XAl, especially motivation, properties, desirables, and metrics.
Each aspect is accompanied by some examples. Similarly beginner-friendly is the
introductory work of Xie et al. (2020). Their field guide explicitly targets newcomers
to the field with a general introduction to XAlI, and a wide variety of examples of
standard methods, mostly for explanations of DNNs. A more formal introduction is
provided by Das and Rad (2020) in their survey. They collect formal definitions of XAI
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related terms, and develop a shallow taxonomy. The focus of the examples is on visual
local and global explanations of DNNs based on (model-specific) backpropagation or
(model-agnostic) perturbation-based methods. More recent and much broader is the
survey of Linardatos et al. (2021). It provides an extensive technical collection and
review of XAl methods with code and toolbox references, which makes it specifically
interesting for practitioners. Similarly and in the same year, Bodria et al. (2021) review
in detail more than 60 XAI methods for visual, textual, and tabular data models. These
are selected to be most recent and widely used, and cover a broad range of explanation
types. Several comparative benchmarks of methods are included, as well as a short
review of toolboxes.

Very long surveys

By now there are a couple of surveys available that aim to give a broad, rigorous, and
in-depth introduction to XAI. A first work in this direction is the regularly updated
book on XAI by Molnar (2020), first published in 2017.> This book is targeted at
beginners, and gives a basic and detailed introduction on interpretability methods,
including many transparent and many model-agnostic ones. The focus lies more on
fundamental concepts of interpretability and detail on standard methods than on the
amount of discussed methods. Meanwhile, Arrieta et al. (2020) put up a very long and
broad collection of XAI methods in their 2020 review. The well-received survey can
also be considered a base work of state-of-the-art XAl, as they introduce the notion
of responsible Al i.e., development of Al models respecting fairness, model explain-
ability, and accountability. This is also the focus of their work, in which they provide
terminology, a broad but less detailed selection of example methods, and practical
discussion for responsible Al. A very recent extensive XAl method survey is that of
Burkart and Huber (2021). They review in moderate detail explainability methods,
primarily for classification and regression in supervised machine learning. Specifi-
cally, they include many rule-based and decision-tree based explanation methods, as
well as aspects on data analysis and ontologies for formalizing input domains. This is
preceded by a deep collection of many general XAl aspects. Finally and a little earlier,
Vilone and Longo (2020) published in 2020 an equally extensive systematic literature
survey on XAl in general. The systematic literature search was similar to ours, only
with a different focus. They include a broad meta-study of reviews, as well as reviews
and discussion of works on XAl theory, methods, and method evaluations.

4.3 Method collections with specific focus

Besides the many broad method collections, there by now are numerous ones specif-
ically concentrating on an application domain, specific input or task types, certain
surrogate model types, or other traits of XAl methods. We here manually clustered
surveys by similarity of their main focus points. An overview on the resulting clusters
is given in Table 4.

5 https://github.com/christophM/interpretable-ml-book/tree/v0.1.
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Table 4 Overview on survey clusters reviewed Sect. 4.3 with restricted (restr.) focus

Restr. by: Restr. to:
Application domain NLP Danilevsky et al. (2020)
Medicine Singh et al. (2020), Tjoa and Guan (2020)
Recommendation systems Nunes and Jannach (2017), Zhang and Chen
(2020)
Application type Interactive ML Anjomshoae et al. (2019), Baniecki and
Biecek (2020), Amershi et al. (2014)
Task Visual tasks Samek et al. (2019), Samek and Miiller
(2019), Nguyen et al. (2019), Ancona et al.
(2019), Alber (2019), Li et al. (2020), Zhang
and Zhu (2018)
Reinforcement ML Puiutta and Veith (2020); Heuillet et al. (2021)
Explanator output type Rule-based XAI Cropper et al. (2020), Vassiliades et al.
(2021/ed), Hailesilassie (2016), Calegari et al.
(2020)

Counterfactual explanations Byrne (2019), Artelt and Hammer (2019),
Verma et al. (2020), Keane et al. (2021),
Mazzine and Martens (2021), Karimi et al.
(2021), Stepin et al. (2021)

Other XAI method traits ~ Model-agnostic methods Guidotti et al. (2018)

XAl for specific application domains

Some method surveys focus on concrete practical application domains. One is by
Danilevsky et al. (2020), who survey XAI methods for natural language processing
(NLP). This includes a taxonomy, a review of several metrics, and a dense collection
of XAI methods. Another important application domain is the medical domain. For
example, Singh et al. (2020) provided a survey and taxonomy of XAI methods for
image classification with a focus on medical applications. A slightly broader focus on
general XAl methods for medical applications was selected by Tjoa and Guan (2020)
in the same year. Their long review shortly discusses more than sixty methods, and
sorts them into a shallow taxonomy. Another domain sparking needs for XAl is that of
recommendation systems, e.g., in online shops. An example here is the long, detailed,
and practically oriented survey by Nunes and Jannach (2017). Amongst others, they
present a detailed taxonomy of XAI methods for recommendation systems (cf. Nunes
and Jannach 2017, Fig. 11). A similar, but even more extensive and lengthy survey was
provided by Zhang and Chen (2020). They generally review recommendation systems
also in a practically oriented manner, and provide a good overview on models that are
deemed explainable.

XAl for interactive ML applications

Several studies concentrate on XAl to realize interactive machine learning. For exam-
ple, Anjomshoae et al. (2019) reviewed explanation generation, communication and
evaluation for autonomous agents and human-robot interaction. Baniecki and Biecek
(2020) instead directly concentrated on interactive machine learning in their medium-
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length survey on the topic. They present challenges in explanation, traits to overcome
these, as well as a taxonomy for interactive explanatory model analysis. The longer
but earlier review by Amershi et al. (2014) more concentrates on practical case studies
and research challenges. They motivate incremental, interactive and practical human-
centered XAl methods.

XAI for visual tasks

Some of the earlier milestones for the current field of XAI were methods to explain
input importance for models with image inputs (Das and Rad 2020), such as
LIME (Ribeiro et al. 2016) and LRP (Bach et al. 2015). Research on interpretability
and explainability of models for visual tasks is still very active, as several surveys
with this focus show. One collection of both methods and method surveys with a focus
on visual explainability is the book edited by Samek et al. (2019). This includes the
following surveys:

e Samek and Miiller (2019): A short introductory survey on visual explainable Al
for researchers, giving an overview on important developments;

e Nguyen et al. (2019): A survey specifically on feature visualization methods.
These are methods to find prototypical input patterns that most activate parts of a
DNN. The survey includes a mathematical perspective on the topic and a practical
overview on applications.

e Ancona et al. (2019): A detailed survey on gradient-based methods to find attri-
bution of inputs to outputs; and

e Alber (2019): A detailed collection of implementation considerations regarding
different methods for highlighting input attribution. The review includes code
snippets for the TensorFlow deep learning framework.

Similar to Ancona et al. (2019), Li et al. (2020) focus on XAI methods to obtain
heatmaps as visual explanations. They in detail discuss seven examples of methods, and
conduct an experimental comparative study with respect to five specialized metrics.
Another survey focusing on visual interpretability is the earlier work by Zhang and Zhu
(2018). This well-received medium-length survey specializes on visual explanation
methods for convolutional neural networks.

XAI for reinforcement learning tasks

Just as for visual tasks, there are some studies specifically focusing on explanations
in tasks solved by reinforcement learning. One is that by Puiutta and Veith (2020).
This medium long to lengthy review provides a short taxonomy on XAI methods
for reinforcement learning. It reviews more than 16 methods specific to reinforcement
learning in a beginner-friendly way. A comparable and more recent, but slightly longer,
more extensive, and more technical survey on the topic is by Heuillet et al. (2021).

XAI methods based on rules

One type of explanation outputs is that of (formal) symbolic rules. Both generation
of interpretable rule-based models, as well as extraction of approximate rule sets
from less interpretable models have a long history. We here collect some more recent
reviews on these topics. One is the historical review by Cropper et al. (2020) on the
developments in Inductive Logic Programming. Inductive logic programming sum-
marizes methods to automatically construct rule-sets for solving a task given some
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formal background knowledge and few examples. The mentioned short survey aims
to look back at the last 30 years of development in the field, and serve as a good
starting point for beginners. On the side of inherently interpretable rule-based models,
Vassiliades et al. (2021/ed) recently reviewed argumentation frameworks in detail.
An argumentation framework provides an interpretable logical argumentation line
that formally deduces a statement from (potentially incomplete) logical background
knowledge. This can, e.g., be used to find the most promising statement from some
choices, and, hence, as an explainable (potentially interactive) model on symbolic data.
The long, detailed, and extensive survey formally introduces standard argumentation
frameworks, reviews existing methods and applications, and promotes argumentation
frameworks as promising interpretable models. While the previous surveys concentrate
on directly training inherently interpretable models consisting of rules, Hailesilassie
(2016) shortly reviewed rule extraction methods. Rule extraction aims to approximate
a trained model with symbolic rule sets or decision trees. These methods have a long
history but faced their limits when applied to large-sized models like state-of-the-art
neural networks, as discussed in the survey. A more recent survey that covers both
rule extraction as well as integration of symbolic knowledge into learning processes
is the review by Calegari et al. (2020). Their long and in-depth overview covers the
main symbolic/sub-symbolic integration techniques for XAl, including rule extraction
methods for some steps.

Counterfactual and contrastive explanations

While the previous surveys were mostly concentrated on a specific type of task, there
are also some that are restricted to certain types of explainability methods. One rising
category is that of contrastive and counterfactual explanations (also counterfactuals).
The goal of these is to explain for an instance “why was the output P rather than
Q7 (Stepin et al. 2021), and, in particular for counterfactual explanations, how input
features can be changed to achieve Q (Mazzine and Martens 2021). To do this, one or
several other instances are provided to the user that produce the desired output. One
is the short survey by Byrne (2019). This reviews specifically counterfactual explana-
tions with respect to evidence from human reasoning. The focus here lies on additive
and subtractive counterfactual scenarios. Also as early as 2019, Artelt and Hammer
(2019) provide a beginner-friendly review on model-specific counterfactual explana-
tion methods. They consider a variety of standard ML models, and provide detailed
mathematical background for each of them. A more broad survey on counterfactuals
was conducted by Verma et al. (2020). The mid-length survey reviews 39 methods and
discusses common desiderata, a taxonomy, evaluation criteria, and open challenges
for this XAl subtopic. In particular, they suggest the following desiderata: counterfac-
tual examples should be valid inputs that are similar to the training data; the example
should be as similar as possible to the original (proximity), while changing as few fea-
tures as possible (sparsity); feature changes should be actionable, i.e., the explainee
should be able to achieve them (e.g., increase age, not decrease); and they should be
causal, acknowledging known causal relationships in the model. Later studies confirm
these desirables. In particular, Keane et al. (2021) review in total 100 methods with
respect to common motivations for counterfactual explanations and typical shortcom-
ings thereof, in order to guide researchers. In their short survey, they find that better
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psychological grounding of counterfactuals as well as their evaluation is required, in
specific for validity and feature selection. Also, methods up to that point in time are
often missing user studies and comparative tests. A closer look at how to tackle com-
parative studies was taken by Mazzine and Martens (2021) in their extensive survey.
They benchmarked open source implementations of 10 strategies for counterfactual
generation for DNNs on 22 different tabular datasets. The controlled experimental
environment may serve as a role model for researchers for future evaluations. In con-
trast to functional aspects of counterfactual methods, Karimi et al. (2021) in parallel
focused on the use-case perspective: The mid-length survey highlights the impact of the
mentioned desiderata on the use-case of algorithmic recourse. Algorithmic recourse
here means to provide explanations and actionable recommendations for individuals
who encountered an unfavorable treatment by an automated decision-making sys-
tem. Lastly, the broad and extensive survey by Stepin et al. (2021) unites research
perspectives on conceptual and methodological work for advanced researchers. They
rigorously survey 113 studies on counterfactual and contrastive explanations reaching
back as far as the 1970s. The reader is provided with a review of terms and definitions
used throughout the primary literature, as well as a detailed taxonomy. The obtained
conceptual insights are then related to the methodological approaches.

Model-agnostic XAI methods

A very well received, long and extensive survey for model-agnostic XAI methods on
tabular data is by Guidotti et al. (2018). Besides the method review, they also develop
a formal approach to define XAl use-cases that is especially useful for practitioners.

4.4 Toolboxes

A single XAl method often does not do the full job of making all relevant model aspects
clear to the explainee. Hence, such toolboxes have become usual that implement more
than one explainability method in a single library with acommon interface. For detailed
lists of available toolboxes the reader is referred to, e.g., the related work in Arya et al.
(2019, Tab. 1), the repository links in Linardatos et al. (2021, Tabs. A.1, A.2), and the
toolbox review in Bodria et al. (2021, Sec. 7). For implementation considerations in
the case of visual interpretability the review (Alber 2019) is a suitable read. We here
provide some examples of publications presenting toolboxes published since 2019
that we analyzed for taxonomy aspects, summarized in Table 5.

Already in 2018, first toolboxes like Skater (Choudhary 2018) were available for
several XAl tasks. Skater, in specific, provides in total seven XAl methods for both
global and local explanation of different kinds of trained models, including DNNs for
visual and textual inputs. The beginner-friendly Microsoft toolbox InterpretML (Nori
et al. 2019) implements five model-agnostic and four transparent XAl methods that
are shortly introduced in the paper. Another toolbox from that year is iNNvesti-
gate by Alber et al. (2019). They specifically concentrate on some standard post-hoc
heatmapping methods for visual explanation. Arya et al. (2019) presented the IBM
Al explainability 360 toolbox with 8 diverse XAI methods in 2019. The implemented
workflow follows a proposed practical, tree-like taxonomy of XAI methods. Imple-
mented methods cover a broad range of explainability needs, including explainability
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Table5 Overview on the sub-selection of papers introducing explainability toolboxes that were considered
in Sect. 4.4 with their respective code repository; more extensive overviews can be found, e.g., in (Arya
et al. 2019, Tab. 1), (Linardatos et al. 2021, Tabs. A.1, A.2), and (Bodria et al. 2021, Sec.7)

Toolbox Publication Code repository

Skater Choudhary (2018) https://github.com/oracle/Skater
InterpretML Nori et al. (2019) https://github.com/interpretml/interpret
iNNvestigate Alber et al. (2019) https://github.com/albermax/innvestigate

Al Fairness 360 Arya et al. (2019) https://github.com/Trusted- AI/AIF360
explAlner Spinner et al. (2020) https://github.com/dbvis-ukon/explainer
FAT Forensics Sokol et al. (2020) https://github.com/fat-forensics/fat-forensics
Alibi Klaise et al. (2021) https://github.com/SeldonIO/alibi

of data, inherently interpretable models, and post-hoc explainability both globally and
locally. More recently, Spinner et al. (2020) presented their toolbox explAlner. This
is realized as a plugin to the existing TensorBoard® toolkit for the TensorFlow deep
learning framework. The many post-hoc DNN explanation and analytics tools are
aligned with the suggested pipeline phases of model understanding, diagnosis, and
refinement. Target users are both researchers, practitioners, and beginners. In 2020
also the FAT Forensics (for Fairness, Accountability, Transparency) toolbox was pub-
lished (Sokol et al. 2020). Based on scikit-learn, several applications toward model and
data quality checks and local and global explainability are implemented. The focus
is on black-box methods, providing a generic interface for two use-cases: research
on new fairness metrics (for researchers) and monitoring of ML models during pre-
production (for practitioners). At the time of writing, methods for image and tabular
data are supported. The most recent toolbox considered here is the Alibi explainability
kit by Klaise et al. (2021). It features nine diverse, mostly black-box XAI methods
for classification and regression. This includes both local and (for tabular data) global
state-of-the-art analysis methods for image or tabular input data, with some addition-
ally supporting textual inputs. Alibi targets practitioners, aiming to be an extensively
tested, production-ready, scalable, and easy to integrate toolbox for explanation of
machine learning models.

5 Taxonomy

This section establishes a taxonomy of XAI methods that unites terms and notions
from the literature and that helps to differentiate and evaluate XAI methods. More
than 70 surveys that have been selected in the course of our literature search (cf.
Sect. 3), including the ones discussed in Sect. 4, were analyzed for such terms. We then
identified synonymous terms. Finally, we sub-structured the notions systematically
according to practical considerations in order to provide a complete picture of the
state-of-the-art XAl method and evaluation aspects. This section details the found

6 TensorBoard toolkit: https://www.tensorflow.org/tensorboard.
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Requirements
formulation:
Use case
aspecis

(1) Problem definition:
Specifying the explanation.

(2) Explanator:
Generating the explanation.

XAI method
aspects

(3) Metrics:
Evaluating the explanation.

Fig.3 Overview of the top-level categorization of taxonomy aspects explained in Sect. 5. Find a visualization
of the complete taxonomy in Fig. 7

notions and synonyms, and our proposed structure thereof, which defines the outline.
An overview of the root-level structure is provided in Fig. 3, and a complete overview
of the final structure in Fig. 7. The sub-trees for the first-level categories can be found
at the beginning of each section.

At the root level, we propose to categorize in a procedural manner according to the
steps for building an explanation system. The following gives a high-level overview
of the first two levels of the taxonomy structure and the outline of this chapter (cf.
overview in Fig. 3):

1. Problem definition (Sect. 5.1): One usually should start with the problem defini-
tion. This encompasses

e traits of the rask, and
o the explanandum (precisely: the interpretability of the explanandum).

2. Explanator properties (Sect. 5.2): Then, we detail the explanator properties
(Sect. 5.2), which we functionally divided into properties of

input,

output,

interactivity with the user, and

any further formal constraints posed on the explanator.

3. Metrics (Sect. 5.3): Lastly, we discuss different metrics (Sect. 5.3) that can be
applied to explanation systems in order to evaluate their qualities. Following Doshi-
Velez and Kim (2017), these are divided by their dependence on subjective human
evaluation and the application into:

e functionally-grounded metrics (independent of human judgment),
e human-grounded metrics (subjective judgment required), and
e application-grounded (full human-Al-system required).

The presented aspects are illustrated by selected example methods. The selection of
example methods is by no means complete. Rather it intends to give an impression

@ Springer



A comprehensive taxonomy for explainable Al

about the wide range of the topic and how to apply our taxonomy to both some well-
known and less known but interesting methods. An overview of the discussed method
examples is given in Table 6.

On requirements derivation
Note that from a procedural perspective, the first step when designing an explana-
tion system should be to determine the use-case-specific requirements (as part of the
problem definition). The requirements can be derived from all the taxonomy aspects
that are collected in this review. This gives rise to a similar sub-structuring as the
procedural one shown above:

e Both explanandum and explanator must match the rask,

e the explanandum should be chosen to match the (inherent) interpretability needs,
and

o the explanator must fulfill any other (functional and architectural) explanator con-
straints (see Sect. 5.2), as well as

e any metric target values.

This should be motivated by the actual goal or desiderata of the explanation. These
can be, e.g., verifiability of properties like fairness, safety, and security, knowledge
discovery, promotion of user adoption respectively trust, or many more. An extensive
list of desiderata can be found in the work of Langer et al. (2021). As noted in Sect. 2.1,
a detailed collection of XAl needs, desiderata, and typical use-cases is out of the scope
of this work. Instead, our collection of taxonomy aspects shall serve as a starting point
for effective and complete use-case analysis and requirements derivation.

5.1 Problem definition

The following aspects consider the concretion of the explainability problem (Fig. 4).
Apart from the use-case analysis, which is skipped in this work, details on the following
two aspects must be clear:

e Task: the rask that is to be explained must be clear, and

e Model interpretability: the solution used for the task, meaning the fype of
explanandum. For explainability purposes, the level of interpretability of the
explanandum model is the relevant point here.

5.1.1 Task

Out-of-the-box, XAI methods usually only apply to a specific set of

e task types of the to-be-explained model, and
e input data types.

For white-box methods that access model internals, additional constraints may hold
for the architecture of the model [cf. portability aspect in Yao (2005)].
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Data type
Task type P

tabular (numerical, categorical,

classification binary, ordinary)

. detecthn ) o text (natural or formal)
e semantic /.mstance o images, point clouds
segmentation e temporal resolution
o clustering e audio
regression e graph

Requirements
Jormulation: Intrinsically / inherently o decision tables / rules
Use case interpretable

e decision tree

e Bayesian networks and
naive Bayes

o lincar / logistic model

e SVM with simple kernel

o general linear model

aspects

(1) Problem definition:
Specifying the explanation. simulatable (size- or
computation-based)
decomposable
algorithmically

transparent ar
Type of o general additive model
ana : _Blended models e graphs
B o finite state automata

Model

interpretability Self-explaining

Post-hoc
explanations

e simple clustering amd
nearest neighbors
o diagrams

o disentangled
representation

e capsule nets

o attention maps

o textual explanations

.

Fig. 4 Overview of the taxonomy aspects related to the problem definition that are detailed in Sect. 5.1.
Find a visualization of the complete taxonomy in Fig. 7

Task type
Typical task categories are unsupervised clustering (clu), regression, classification
(cls), detection (det), segmentation (seg), either semantic, which is pixel-wise clas-
sification, or segmentation of instances. Many XAI methods that target a question
for classification, e.g., “Why this class?” can be extended to det, seg, and temporal
resolution. This can be achieved by snippeting of the new dimensions: “Why this
class in this spatial/temporal snippet?”. It must be noted that XAI methods working
on classifiers often require access to the prediction of a continuous classification score
instead of the final discrete classification. Such methods can also be used on regression
tasks to answer questions about local trends, i.e., “Why does the prediction tend in
this direction?”. Examples of regression predictions are bounding box dimensions in
object detection.
Examples
RISE (Petsiuk et al. 2018). RISE (Randomized Input Sampling for Explanation)
by Petsiuk etal. (2018) is a model-agnostic attribution analysis method specializing
in image classification. For an input image, it produces a heatmap that highlights
those superpixels in the image, which, when deleted, have the greatest influence on
the class confidence. High-attribution superpixels are found by randomly dimming
superpixels of the input image.
D-RISE (Petsiuk et al. 2021). The method D-RISE by Petsiuk et al. (2021) extends
this to object detection. It considers not a one-dimensional class confidence but
the total prediction vector of a detection. The influence of dimming is measured
as the distance between the prediction vectors.
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ILP (Cropper et al. 2020). The mentioned image-specific (i.e., local) explanation
methods use the continuous class or prediction scores of the explanandum, and,
hence, are in principle also applicable to regressors. In contrast, surrogate models
produced using inductive logic programming (ILP) (Cropper et al. 2020) require
the binary classification output of a model. ILP frameworks require input back-
ground knowledge (logical theory), together with positive and negative examples.
From this, a logic program in the form of first-order rules is learned that covers as
many of the positive samples as possible.

CA-ILP (Rabold et al. 2020). An example of an ILP-based XAl method for con-
volutional image classifier is CA-ILP (Concept Analysis for ILP) by Rabold et al.
(2020). In order to explain parts of the classifier with logical rules, they first train
small global models that extract symbolic features from the DNN intermediate out-
puts. These feature outputs are then used to train an ILP surrogate model. Lastly,
clustering tasks can often be explained by providing examples or prototypes of the
final clusters, which will be discussed in Sect. 5.2.

Input data type

Not every XAI method supports every input and output signal type, also called data
type (Guidotti et al. 2018). One input type is tabular (symbolic) data, which encom-
passes numerical, categorical, binary, and ordinary (ordered) data. Other symbolic
input types are natural language or graphs, and non-symbolic types are images and
point clouds (with or without temporal resolution), as well as audio.

Examples Typical examples for image explanations are methods producing
heatmaps. These highlight parts of the image that were relevant to the decision or
a part thereof. This highlighting of input snippets can also be applied to textual
inputs where single words or sentence parts may serve as snippets.

LIME (Ribeiro et al. 2016). A prominent example of heatmapping that is
both applicable to images and text inputs is the model-agnostic LIME (Ribeiro
et al. 2016) method (Local Interpretable Model-agnostic Explanations). It locally
approximates the explanandum model by a linear model on feature snippets of the
input. For training of that linear model, randomly selected snippets are removed.
In the case of textual inputs, the words are considered as snippets, and for images
pixels are grouped into superpixels. The removal of superpixels is here realized
by coloring them with a neutral color, e.g., black. While LIME is suitable for
image or textual input data, Guidotti et al. (2018) provide a broad overview of
model-agnostic XAI methods for tabular data.

5.1.2 Model interpretability

Model interpretability here refers to the level of interpretability of the explanandum,
i.e., the model used to solve the original task of the system. A model is interpretable if it
gives rise not only to mechanistic understanding (transparency) but also to a functional
understanding by a human (Pdez 2019). Explainability of (aspects of) the explanation
system can be achieved by one of the following choices:
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e start from the beginning with an intrinsically interpretable explanandum model
(also called ante-hoc interpretable (Burkart and Huber 2021) or intrinsically inter-
pretable) or a

e blended, i.e., partly interpretable model (also called interpretable by design
(Burkart and Huber 2021));

e design the explanandum model to include self-explanations as additional output;
or

e post-hoc find an interpretable helper model without changing the trained explanan-
dum model.

Intrinsic or inherent interpretability

As introduced by Lipton (2018), one can further differentiate between different levels
of model transparency. The model can be understood as a whole, i.e., a human can
adopt it as a mental model [simulatable (Arrieta et al. 2020)]. Alternatively, it can be
split up into simulatable parts [decomposable (Arrieta et al. 2020)]. Simulatability can
either be measured based on the size of the model or based on the needed length of
computation (cf. discussion of metrics in Sect. 5.3). As a third category, algorithmic
transparency is considered, which means the model is mathematically understood,
e.g., the shape of the error surface is known. This is considered the weakest form of
transparency, because the algorithm may not be simulatable as a mental model. The
following models are considered inherently transparent in the literature [cf. Molnar
(2020, Chap. 4), Guidotti et al. (2018, Sec. 5), Nori et al. (2019)]:

Decision tables and rules as experimentally evaluated by Huysmans et al. (2011),
Allahyari and Lavesson (2011), Freitas (2014); This encompasses boolean rules as
can be extracted from decision trees or fuzzy or first-order logic rules. For further
insights into inductive logic programming approaches to find the latter kind of rules,
see, e.g., the recent survey by Cropper et al. (2020).

Decision trees as empirically evaluated by Huysmans et al. (2011), Freitas (2014),
Allahyari and Lavesson (2011);

Bayesian networks and naive Bayes models as of Burkart and Huber (2021); inter-
pretability of Bayesian network classifiers was, e.g., experimentally evaluated by
Freitas (2014).

Linear and logistic models as of, e.g., Molnar (2020);

Support vector machines as of Singh et al. (2020); as long as the used kernel function
is not too complex, non-linear SVMs give interesting insights into the decision
boundary.

General linear models (GLM) to inherently provide weights for the importance of input
features; Here, it is assumed that there is a transformation, such that there is a linear
relationship between the transformed input features and the expected output value.
For example, in logistic regression, the transformation is the logit. See, e.g., Molnar
(2020, Sec. 4.3) for a basic introduction and further references.

General additive models (GAM) also inherently come with feature importance weights;
Here, it is assumed that the expected output value is the sum of transformed features.
See the survey by Chang et al. (2020) for more details and further references.
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Examples

Additive Model Explainer (Chen et al. 2019b). One concrete example of
general additive models is the Additive Model Explainer by Chen et al. (2019b).
They train predictors for a given set of features, and another small DNN predicts
the additive weights for the feature predictors. They use this setup to learn a
GAM surrogate model for a DNN, which also provides a prior to the weights:
They should correspond to the sensitivity of the DNN with respect to the
features.

Graphs as of, e.g., Xie et al. (2020);
Finite state automata as of Wang et al. (2018b);
Simple clustering and nearest neighbors approaches as of Burkart and Huber (2021);

Examples Examples are k-nearest neighbors (supervised) or k-means cluster-
ing (unsupervised).

k-means clustering (Hartigan and Wong 1979). The standard k-means clus-
tering method introduced by Hartigan and Wong (1979) works with an intuitive
model, simply consisting of k prototypes and a proximity measure, with infer-
ence associating new samples to the closest prototype representing a cluster.
k-NN (Altman 1992) k-nearest neighbors (k-NN) determines for a new input
the k samples from a labeled database that are most similar to the new input
sample. The majority vote of the nearest labels is then used to assign a label to
the new instance. As long as the proximity measure is not too complex, these
methods can be regarded as unsupervised respectively supervised inherently
interpretable models. k-NN was experimentally evaluated for interpretability
by Freitas (2014).

Diagrams as of Heuillet et al. (2021).

Blended models

Blended models (also called interpretable by design (Burkart and Huber 2021)) consist
partly of intrinsically transparent, symbolic models that are integrated in sub-symbolic
non-transparent ones. These kinds of hybrid models are especially interesting for
neuro-symbolic computing and similar fields combining symbolic with sub-symbolic
models (Calegari et al. 2020).

Examples

Logic Tensor Nets (Donadello et al. 2017). An example of a blended model is
the Logic Tensor Network. Their idea is to use fuzzy logic to encode logical
constraints on DNN outputs, with a DNN acting as a fuzzy logic predicate. The
framework by Donadello et al. (2017) allows additionally to learn semantic rela-
tions subject to symbolic fuzzy logic constraints. The relations are represented
by simple linear models.

FoldingNet (Yang et al. 2017), Neuralized clustering (Kauffmann et al. 2019).
Unsupervised deep learning can be made interpretable by several approaches,
e.g., combining autoencoders with visualization approaches. Another approach
explains choices of “neuralized” clustering methods (Kauffmann et al. 2019)
(i.e., clustering models translated to a DNN) with saliency maps. Enhancing
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an autoencoder was applied, for example, in the FoldingNet (Yang et al. 2017)
architecture on point clouds. There, a folding-based decoder allows for view-
ing the reconstruction of point clouds, namely the warping from a 2D grid into
the point cloud surface. A saliency-based solution can be produced by algo-
rithms such as layer-wise relevance propagation, which will be discussed in
later examples.

Self-explaining models

Self-explaining models provide additional outputs that explain the output of a single
prediction. According to Gilpin et al. (2018), there are three standard types of outputs
of explanation generating models: attention maps, disentangled representations, and
textual or multi-modal explanations.

Attention maps These are heatmaps that highlight the relevant parts of a given single
input for the respective output.

Examples The work by Kim and Canny (2017) adds an attention module to a
DNN that is processed in parallel to, and later multiplied with, convolutional
outputs. Furthermore, they suggest a clustering-based post-processing of the
attention maps to highlight the most meaningful parts.

Disentangled representations Representations in the intermediate output of the
explanandum are called disentangled if single or groups of dimensions therein
directly represent symbolic (also called semantic) concepts.

Examples One can, by design, force one layer of a DNN to exhibit a disentan-
gled representation.

Capsule Nets (Sabour et al. 2017). One example is the capsule network by
Sabour et al. (2017), where groups of neurons, the capsules, characterize each
an individual entity, e.g., an object or object part. The length of a capsule vec-
tor is interpreted as the probability that the corresponding object is present,
while the rotation encodes the properties of the object (e.g., rotation or color).
Later capsules get as input the weighted sum of transformed previous capsule
outputs, with the transformations learned and the weights obtained in an itera-
tive routing process. A simpler disentanglement than an alignment of semantic
concepts with groups of neurons is the alignment of single dimensions.
ReNN (Wang 2018). This is done, e.g., in the ReNN architecture developed by
Wang (2018). They explicitly modularize their DNN to ensure semantically
meaningful intermediate outputs.

Semantic Bottlenecks (Losch et al. 2019). Other methods rather follow a
post-hoc approach that fine-tunes a trained DNN toward more disentangled
representations, as suggested for Semantic Bottleneck Networks (Losch et al.
2019). These consist of the pretrained backbone of a DNN, proceeded by
a layer in which each dimension corresponds to a semantic concept, called
semantic bottleneck, and finalized by a newly trained front DNN part. During
fine-tuning, first, the connections from the backend to the semantic bottleneck
are trained, then the parameters of the front DNN.

Concept Whitening (Chen et al. 2020). Another interesting fine-tuning
approach is that of concept whitening by Chen et al. (2020), which supple-
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ments batch-normalization layers with a linear transformation that learns to
align semantic concepts with unit vectors of an activation space.

Textual or multi-model explanations These provide the explainee with a direct verbal
or combined explanation as part of the model output.

Examples (Kim et al. 2018b). An example are the explanations provided by Kim
et al. (2018b) for the application of end-to-end steering control in autonomous
driving. Their approach is two-fold: They add a custom layer that produces
attention heatmaps similar to those from (Kim and Canny 2017); a second
custom part uses these heatmaps to generate textual explanations of the decision,
which are (weakly) aligned with the model processing.

ProtoPNet (Chen et al. 2019a). ProtoPNet by Chen et al. (2019a) for image
classification provides visual examples rather than text. The network architec-
ture is based on first selecting prototypical image patches and then inserting a
prototype layer that predicts similarity scores for patches of an instance with
prototypes. These can then be used for explanation of the final result in the
manner of “This is a sparrow as its beak looks like that of other sparrow exam-
ples”.

(Hendricks et al. 2016). A truly multi-modal example is that by Hendricks et al.
(2016), which trains alongside a classifier a long-short term memory DNN
(LSTM) to generate natural language justifications of the classification. The
LSTM uses both the intermediate features and predictions of the image classifier
and is trained toward high-class discriminativeness of the justifications. The
explanations can optionally encompass bounding boxes for features that were
important for the classification decision, making it multi-modal.

Post-hoc
Post-hoc methods use a (local or global) helper model from which to derive an expla-
nation. This explainable helper model can either aim to

o fully mimic the behavior of the explanandum, or
e only approximate sub-aspects like input attribution.

Helper models that fully approximate the explanandum are often called surrogate or
proxy models, and the process of training them is termed model distillation, student-
teacher approach, or model induction. However, it is often hard to differentiate between
the two types. Hence, for consistency, we here use the terms proxy and surrogate model
for any type of helper model. Many examples of post-hoc methods are given in the
course of the upcoming taxonomy aspects.

5.2 Explanator

One can consider an explanator simply as an implemented function that outputs expla-
nations. This allows to structure aspects of the explanator into the main defining aspects
of a function:

o the input,
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e the output,
e the function class described by mathematical properties or constraints, and
e the actual processing of the explanation function, like its interactivity.

An overview of the aspects discussed in this section is given in Fig. 5.
5.2.1 Input

The following explanator characteristics are related to the explanator input:

e What are the required inputs (the explanandum model, data samples, or even user
feedback)?

e In how far is the method portable to other input types, e.g., explanandum model
types?

e In how far are explanations local to an input instance or global for the complete
input?

Regquired input

The necessary inputs to the explanator may differ amongst methods (Spinner et al.
2020). The explanandum must usually be provided to the explanator. Many methods
do also require valid data samples. Some even require user feedback (cf. Sect. 5.2.3)
or further situational context (cf. (Dey 2001) for a more detailed definition of context).

Portability

An important practical aspect of post-hoc explanations is whether or how far the
explanation method is dependent on access to the internals of the explanandum model.
This level of dependency is called portability, translucency, or transferability. In the
following, we will not further differentiate between the strictness of requirements of
model-specific methods. Transparent and self-explaining models are always model-
specific, as the interpretability requires a special model type or model architecture
(modification). Higher levels of dependency are:

Model-agnostic also called pedagogical (Yao 2005) or black-box: This means that
only access to model input and output is required.

Examples A prominent example of model-agnostic methods is the previously
discussed LIME (Ribeiro et al. 2016) method for local approximation via a
linear model.

SHAP (Lundberg and Lee 2017). Another method to find feature importance
weights without any access to model internals is SHAP (SHapley Additive
exPlanation) by Lundberg and Lee (2017). Their idea is to axiomatically
ensure: local fidelity; features missing from the original input have no effect;
an increase in weight also means an increased attribution of the feature to the
final output and uniqueness of the weights. Just as LIME, SHAP just requires
a definition of “feature” or snippet on the input in order to be applicable.

Model-specific also called decompositional (Yao 2005) or white-box: This means that
access is needed to the internal processing or architecture of the explanandum
model, or even constraints apply.
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Required input

e model
o data (see task)
o user feedback
e context

Portability

e model-agnostic
o partly to fully
model-specific

Locality

o global (how?)

e local (why?), on
single or group of
predictions

~—

Object of explanation

e representation
(layers, units, vectors)
e processing
(decision boundary, feature
attribution)
e training
e data
e uncertainty

Interactivity

e interaction task in human-
Al system
(e.g. explorative, corrective)
e explanation process
(sequential analysis,
users' capabilities, context)

Mathematical explanator
constraints

linearity

e monotonicity

o satisfiability

e number of iterations

e size (sparsity, tree
width/depth)

(2) Explanator:
Generating the explanation.

Presentation

Privacy awareness

Presentation form

/ Explanator output type \

o by example (e.g. closest other

samples, word cloud)

e contrastive / counterfactual / near

visual

o verbal
(textual,
formal)

o auditive

combinations

miss example (e.g. adversarial ex.)
prototype (e.g. generated, concept

vector)
o feature importance

of-n, hyperplane)
e dimension reduction
o dependence plots
e graph
e diagrams

\- combinations

o rule-based (e.g. if-then, binary, m-

/

Level of abstraction

Accessibility

e simple
e complex &
symbolic

Information units

e raw feature

o derived feature

e semantic feature

e abstract semantic
feature

e with or without

\ interactions

Fig. 5 Overview of the taxonomy aspects related to the explanator that are detailed in Sect. 5.3. Find a
visualization of the complete taxonomy in Fig. 7
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Examples Methods relying on gradient or relevance information for the gen-
eration of visual attention maps are strictly model-specific.

Sensitivity Analysis (Bachrens et al. 2010). A gradient-based method is Sen-
sitivity Analysis by Baehrens et al. (2010). They pick the vector representing
the steepest ascension in the gradient tangential plane of a sample point. This
method is independent of the type of input features but can only analyze a
single one-dimensional output at once.

Deconvnet (Zeiler and Fergus 2014), Backprop (Simonyan et al. 2014),
Guided Backprop (Springenberg et al. 2015). Deconvnet by Zeiler and Fergus
(2014) instead is agnostic to the type of output, but depends on a convolutional
architecture and image inputs. The same holds for its successors Backprop-
agation (Simonyan et al. 2014) and Guided Backpropagation (Springenberg
et al. 2015). They approximate a reconstruction of input by defining inverses
of pool and convolution operations. This allows for backpropagating the acti-
vation of single filters back to input image pixels (see (Weitz 2018) for a good
overview).

LRP (Bach et al. 2015). The idea of Backpropagation is generalized axiomat-
ically by LRP (Layer-wise Relevance Propagation): Bach et al. (2015) require
that the sum of linear relevance weights for each neuron in a layer should be
constant throughout the layers. The rationale behind this is that relevance is
neither created nor extinguished from layer to layer. Methods that achieve this
are, e.g., Taylor decomposition or the backpropagation of relevance weighted
by the forward-pass weights.

PatternAttribution (Kindermans et al. 2018). The advancement PatternAt-
tribution by Kindermans et al. (2018) fulfills the additional constraint to be
sound on linear models.

Hybrid also called eclectic (Yao 2005) or gray-box: This means the explanator only
depends on access to parts of the model intermediate output, but not the full
architecture.

Examples DeepRED (Zilke et al. 2016). The rule extraction technique
DeepRED (Deep Rule Extraction with Decision tree induction) by Zilke et al.
(2016) is an example of an eclectic method, so neither fully model-agnostic
nor totally reliant on access to model internals. The approach conducts a back-
ward induction over the layer outputs of a DNN, between each two applying a
decision tree extraction. While they enable rule extraction for arbitrarily deep
DNNSs, only small networks will result in rules of decent length for explana-
tions.

Explanation locality

Literature differentiates between different ranges of validity of an explanation respec-
tively surrogate model. A surrogate model is valid in the ranges where high fidelity
can be expected (see Sect. 5.3). The range of input required by the explanator depends
on the targeted validity range, so whether the input must represent a local or the global
behavior of the explanandum. The general locality types are:
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Local An explanation is considered local if the explanator is valid in a neighborhood
of one or a group of given (valid) input samples. Local explanations tackle the
question of why a given decision for one or a group of examples was made.

Examples Heatmapping methods are typical examples for local-only explana-
tors, such as the discussed perturbation-based model-agnostic methods
RISE (Petsiuk et al. 2018), D-RISE (Petsiuk et al. 2021), LIME (Ribeiro
et al. 2016), SHAP (Lundberg and Lee 2017), as well as the model-specific
sensitivity and backpropagation based methods LRP (Bach et al. 2015), Pat-
ternAttribution (Kindermans et al. 2018), Sensitivity Analysis (Baehrens et al.
2010), and Deconvnet and its successors (Zeiler and Fergus 2014; Simonyan
et al. 2014; Springenberg et al. 2015).

Global An explanation is considered global if the explanator is valid in the complete
(valid) input space. Other than the why of local explanations, global interpretability
can also be described as answering how a decision is made.

Examples Explanatory Graphs (Zhang et al. 2018). A graph-based global
explanator is generated by Zhang et al. (2018). Their idea is that semantic
concepts in an image usually consist of sub-objects to which they have a con-
stant relative spatial relation (e.g., a face has a nose in the middle and two
eyes next to each other) and that the localization of concepts should not only
rely on high filter activation patterns, but also on their sub-part arrangement.
To achieve this, they translate the convolutional layers of a DNN into a tree
of nodes (concepts), the explanatory graph. Each node belongs to one filter,
is anchored at a fixed spatial position in the image, and represents a spatial
arrangement of its child nodes. The graph can also be used for local expla-
nations via heatmaps. For localizing a node in an input image, the node is
assigned the position closest to its anchor for which (1) its filter activation is
highest, and (2) the expected spatial relation to its children is best fulfilled.
Feature Visualization (Olah et al. 2017). While most visualization-based
methods provide only local visualizations, Feature Visualizations as reviewed
by Olah et al. (2017) give a global, prototype-based, visual explanation. The
goal here is to visualize the functionality of a DNN’s part. It is achieved by
finding prototypical input examples that strongly activate that part. These can
be found via picking, search, or optimization.

VIA (Thrun 1995). Other than visualizations, rule extraction methods usually
only provide global approximations. An example is the well-known model-
agnostic rule extractor VIA (Validity Interval Analysis) by Thrun (1995), which
iteratively refines or generalizes pairs of input- and output-intervals.

SpRAy (Lapuschkin et al. 2019). An example of getting from local to global
explanations is SpRAy (Spectral Relevance Analysis) by Lapuschkin et al.
(2019). They suggest to apply spectral clustering (von Luxburg 2007) to local
feature attribution heatmaps of data samples in order to find spuriously distinct
global behavioral patterns. The heatmaps were generated via LRP (Bach et al.
2015).
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5.2.2 Output

The output is characterized by several aspects:

e what is explained (the object of explanation),

e how it is explained (the actual output type, also called explanation content type),
and

e how it is presented.

Object of explanation
The object (or scope (Molnar 2020)) of an explanation describes which item of the
development process should be explained. Items we identified in the literature:

Processing The objective is to understand the (symbolic) processing pipeline of the
model, i.e., to answer parts of the question “How does the model work?”. This is the
usual case for model-agnostic analysis methods. Types of processing to describe
are, e.g., the decision boundary and feature attribution (or feature importance).
Note that these are closely related, as highly important features usually locally
point out the direction to the decision boundary. In case a symbolic explanator is
targeted, one may need to first find a symbolic representation of the input, output,
or the model’s internal representation. Note that model-agnostic methods that do
not investigate the input data usually target explanations of the model processing.

Examples Feature attribution methods encompass all the discussed attribution
heatmapping methods (e.g., RISE (Petsiuk et al. 2018), LIME (Ribeiro et al.
2016), LRP (Bach et al. 2015)). LIME can be considered a corner case: In addi-
tion to explaining feature importance it approximates the decision boundary
using a linear model on superpixels. The linear model itself may already serve
as an explanation. Typical ways to describe decision boundaries are decision
trees or sets of rules, as extracted by the discussed VIA (Thrun 1995), and
DeepRED (Zilke et al. 2016) approaches.

TREPAN (Craven and Shavlik 1995). Standard candidates for model-agnostic
decision tree extraction are TREPAN by Craven and Shavlik (1995), and C4.5
by Quinlan (1993). TREPAN uses M-of-N rules at the split points of the
extracted decision tree.

C4.5 (Quinlan 1993). C4.5 uses interval-based splitting points, and generates
shallower but wider trees compared to TREPAN.

Concept Tree (Renard et al. 2019). Concept tree is a recent extension of
TREPAN by Renard et al. (2019) that adds automatic grouping of correlated
features into the candidate concepts to use for the tree nodes.

Inner representation Machine learning models learn new representations of the input
space, like the latent space representations found by DNNs. Explaining these inner
representations answers, “How does the model see the world?”. A more fine-
grained differentiation considers whether layers, units, or vectors in the feature
space are explained.

Examples
e Units: One example of unit analysis is the discussed Feature Visualiza-
tion (Olah et al. 2017).
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NetDissect (Bau et al. 2017). In contrast to this unsupervised assignment
of convolutional filters to prototypes, NetDissect (Network Dissection)
by Bau et al. (2017) assigns filters to pre-defined semantic concepts in
a supervised manner: For a filter, that semantic concept (color, texture,
material, object, or object part) is selected for which the ground truth
segmentation masks have the highest overlap with the upsampled filter’s
activations. The authors also suggest that concepts that are less entangled,
so less distributed over filters, are more interpretable, which is measurable
with their filter-to-concept-alignment technique.

e Vectors:
Net2Vec (Fong and Vedaldi 2018). Other than NetDissect, Net2Vec by
Fong and Vedaldi (2018) also wants to assign concepts to their possibly
entangled representations in the latent space. Given a concept, they train a
linear 1 x 1-convolution on the output of a layer to segments the respective
concept with an image. The weight vector of the linear model for a concept
can be understood as a prototypical representation (embedding) for that
conceptin the DNN intermediate output. They found that such embeddings
behave like vectors in a word vector space: Concepts that are semantically
similar feature embeddings with high cosine similarity.
TCAV (Kim et al. 2018a). Similar to Net2Vec, TCAV (Testing Concept
Activation Vectors) also aims to find embeddings of NetDissect concepts.
Kim et al. (2018a) are not interested in embeddings that are represented
as a linear combination of convolutional filters, but instead in embedding
vectors lying in the space of the complete layer output. In other words,
they do not segment concepts, but make an image-level classification of
whether the concept is present. These are found by using an SVM model
instead of the 1 x 1-convolution. Additionally, they suggest using partial
derivatives along those concept vectors to find the local attribution of a
semantic concept to a certain output.
ACE (Ghorbani et al. 2019). Other than the already mentioned supervised
methods, ACE (Automatic Concept-based Explanations) by Ghorbani
et al. (2019) does not learn a linear classifier but does an unsupervised
clustering of concept candidates in the latent space. The cluster center is
then selected as the embedding vector. A superpixeling approach is used
together with outlier removal to obtain concept candidates.

e Layers:
Concept completeness (Yeh et al. 2020), IIN (Esser et al. 2020). The
works of Yeh et al. (2020) and the IIN (invertible interpretation networks)
approach by Esser et al. (2020) extend on the previous approaches and ana-
lyze a complete layer output space at once. For this, they find a subspace
with a basis of concept embeddings, which allows an invertible transfor-
mation to a disentangled representation space. While IIN uses invertible
DNN:ss for the bijection of concept space to latent space, Yeh et al. (2020)
use linear maps in their experiments. These approaches can be seen as
a post-hoc version of the Semantic Bottleneck (Losch et al. 2019) archi-
tecture, only not replacing the complete later part of the model, but just

@ Springer



G. Schwalbe, B. Finzel

learning connections from the bottleneck to the succeeding trained layer.
Yeh et al. (2020) additionally introduce the notion of completeness of a
set of concepts as the maximum performance of the model intercepted by
the semantic bottleneck.

Development (during training) Some methods focus on assessing the effects during
training (Molnar 2020, Sec. 2.3): “How does the model evolve during the training?
What effects do new samples have?”

Examples (Shwartz-Ziv and Tishby 2017). One example is the work of
Shwartz-Ziv and Tishby (2017), who inspect the model during training to
investigate the role of depth in neural networks. Their findings indicate that
depth actually is of computational benefit.

Influence Functions (Koh and Liang 2017). An example which can be used
to provide, e.g., prototypical explanations are Influence Functions by Koh and
Liang (2017). They gather the influence of training samples during the training
to later assess the total impact of samples on the training. They also suggest
using this information as a proxy to estimate the influence of the samples on
model decisions.

Uncertainty Molnar (2020) suggests to capture and explain (e.g., visualize) the
uncertainty of a prediction of the model. This encompasses the broad field of
Bayesian deep learning (Kendall and Gal 2017) and uncertainty estimation (Henne
et al. 2020). Several works argue why it is important to make the uncertainty of
this for medical applications, and McAllister et al. (2017) for autonomous driving.

Data Pre-model interpretability (Carvalho et al. 2019) is the point where explain-
ability touches the large research area of data analysis and feature mining.

Examples PCA (Jolliffe 2002). Typical examples for projecting high-dimensional
data into easy-to-visualize 2D space are component analysis methods like PCA
(Principal Component Analysis) which was introduced by Jolliffe (2002).
t-SNE (van der Maaten and Hinton 2008). A slightly more sophisticated
approach is t-SNE (t-Distributed Stochastic Neighbor Embedding) by van der
Maaten and Hinton (2008). In order to visualize a set of high-dimensional data
points, they try to find a map from these points into a 2D or 3D space that is
faithful to pairwise similarities.

Spectral Clustering (von Luxburg 2007). And also clustering methods can be
used to generate prototype- or example-based explanations of typical features
in the data. Examples here are k-means clustering (Hartigan and Wong 1979)
and graph-based spectral clustering (von Luxburg 2007).

Output type

The output type, also considered the actual explanator (Guidotti et al. 2018), describes
the type of information presented to the explainee. Note that this (“what” is shown) is
mostly independent of the presentation form (“how” it is shown). Typical types are:

By example instance, e.g., closest other samples, word cloud;
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Examples The discussed ProtoPNet (Chen et al. 2019a) is based on selecting
and comparing relevant example snippets from the input image data.

Contrastive / counterfactual / near miss examples, including adversarial examples;

The goal here is to explain for an input why the respective output was as obtained
instead of a desired output. This is done by presenting how the input features have to
change in order to obtain the alternative output. Counterfactual examples are some-
times seen as a special case of more general contrastive examples (Stepin et al. 2021).
Desirables associated specifically with counterfactual examples are that they are valid
inputs close to the original examples and with few features changed (sparsity) that are
actionable for the explainee and that they adhere to known causal relations (Guidotti
et al. 2021; Verma et al. 2020; Keane et al. 2021).

Examples CEM (Dhurandhar et al. 2018). The perturbation-based feature
importance heatmapping approach of RISE is extended in CEM (Contrastive,
Black-box Explanations Model) by Dhurandhar et al. (2018). They do not only
find positively contributing features but also the features that must minimally
be absent to not change the output.

Prototype, e.g., generated, concept vector;

Examples A typical prototype generator is used in the discussed Feature Visu-
alization method (Olah et al. 2017): images are generated, e.g., via gradient
descent, that represent the prototypical pattern for activating a filter. While this
considers prototypical inputs, concept embeddings as collected in TCAV (Kim
et al. 2018a) and Net2Vec (Fong and Vedaldi 2018) describe prototypical acti-
vation patterns for a given semantic concept. The concept mining approach
ACE (Ghorbani et al. 2019) combines prototypes with examples: They search a
concept embedding as a prototype for an automatically collected set of example
patches, that, in turn, can be used to explain the prototype.

Feature importance that will highlight features with high attribution or influence on
the output;

Examples A lot of feature importance methods producing heatmaps have been
discussed before, such as RISE (Petsiuk et al. 2018), D-RISE (Petsiuk et al.
2021), CEM (Dhurandhar et al. 2018), LIME (Ribeiro et al. 2016), SHAP (Lund-
berg and Lee 2017), LRP (Bach et al. 2015), PatternAttribution (Kindermans
et al. 2018), Sensitivity Analysis (Baehrens et al. 2010), Deconvnet and succes-
sors (Zeiler and Fergus 2014; Simonyan et al. 2014; Springenberg et al. 2015).
(Fong and Vedaldi 2017). One further example is the work by Fong and Vedaldi
(2017), who follow a perturbation-based approach. Similar to RISE, their idea
is to find a minimal occlusion mask that, if used to perturb the image (e.g.,
blur, noise, or blacken), maximally changes the outcome. To find the mask,
backpropagation is used, making it a model-specific method.

CAM (Zhou et al. 2016), Grad-CAM (Selvaraju et al. 2017). Some older
but popular and simpler example methods are Grad-CAM by Selvaraju et al.
(2017) and its predecessor CAM (Class Activation Mapping) by Zhou et al.
(2016). While Deconvnet and its successors can only consider the feature impor-
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tance with respect to intermediate outputs, (Grad-)CAM produces class-specific
heatmaps, which are the weighted sum of the filter activation maps for one
(usually the last) convolutional layer. For CAM, it is assumed the convolutional
backend is finalized by a global average pooling layer that densely connects
to the final classification output. Here, the weights in the sum are the weights
connecting the neurons of the global average pooling layer to the class outputs.
For Grad-CAM, the weights in the sum are the averaged derivation of the class
output by each activation map pixel.

Concept-wise Grad-CAM (Zhou et al. 2018). This is also used in the more
recent work of Zhou et al. (2018), who do not apply Grad-CAM directly to
the output but to each of a minimal set of projections from a convolutional
intermediate output of a DNN that predict semantic concepts.

SIDU (Muddamsetty et al. 2021). Similar to Grad-CAM, SIDU (Similarity Dis-
tance and Uniqueness) by Muddamsetty et al. (2021) also adds up the filter-wise
weighted activations of the last convolutional layer. The weights encompass a
combination of a similarity score and a uniqueness score for the prediction out-
put under each filter activation mask. The scores aim for high similarity of a
masked prediction with the original one and low similarity to the other masked
prediction, leading to masks capturing more interesting object regions.

Rule-based, e.g., decision tree; or if-then, binary, m-of-n, or hyperplane rules (cf. (Haile-
silassie 2016));

Examples The mentioned exemplary rule-extraction methods DeepRED (Zilke
et al. 2016) and VIA (Thrun 1995), as well as decision tree extractors
TREPAN (Craven and Shavlik 1995), Concept Tree (Renard et al. 2019), and
C4.5 (Quinlan 1993) all provide global, rule-based output. For further rule extrac-
tion examples, we refer the reader to the comprehensive surveys Hailesilassie
(2016), Wang et al. (2018a), Augasta and Kathirvalavakumar (2012) on the topic
and the survey by Wang et al. (2018b) for recurrent DNNs.

LIME-Aleph (Rabold et al. 2018). An example of a local rule-extractor is the
recent LIME-Aleph approach by Rabold et al. (2018), which generates a local
explanation in the form of first-order logic rules. This is learned using inductive
logic programming (ILP) (Cropper et al. 2020) trained on the symbolic knowl-
edge about a set of semantically similar examples. Due to the use of ILP, the
approach is limited to tabular input data and classification outputs, but just like
LIME, it is model-agnostic.

NBDT (Wan et al. 2020). A similar approach is followed by NBDT (Neural-
Backed Decision Trees). Here, Wan et al. (2020) assume that the concept
embeddings of super-categories are represented by the mean of their sub-
category vectors (e.g., the mean of “cat” and “dog” should be “animal with four
legs”). This is used to infer from bottom-to-top a decision tree where the nodes
are super-categories, and the leaves are the classification classes. At each node,
it is decided which of the sub-nodes best applies to the image. As embedding for
a leaf concept (an output class), they suggest taking the weights connecting the
penultimate layer to a class output, and as similarity measure for the categories,
they use dot-product (cf. Net2Vec and TCAV).
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Dimension reduction, i.e., sample points are projected to a sub-space;

Examples Typical dimensionality reduction methods mentioned previously are
PCA (Jolliffe 2002) and t-SNE (van der Maaten and Hinton 2008).

Dependence plots which plot the effect of an input feature on the final output of a
model (cf. (Adadi and Berrada 2018; Carvalho et al. 2019));

Examples

PDP (Friedman 2001). PDP (Partial Dependency Plots, cf. (Molnar 2020,
sec. 5.1)) by Friedman (2001) calculate for one input feature, and for each
value of this feature, the expected model outcome averaged over the dataset.
This results in a plot (for each output) that indicates the global influence of the
respective feature on the model.

ICE (Goldstein et al. 2015). The local equivalent by Goldstein et al. (2015), ICE
(Individual Conditional Expectation, cf. (Molnar 2020, sec. 5.2)) plots, obtain
the PDP for generated data samples locally around a given sample.

Graphs as of e.g. Mueller et al. (2019, 2021); Linardatos et al. (2021);

Examples The previously discussed Explanatory Graph (Zhang et al. 2018)
method provides, amongst others, a graph-based explanation output.

Combinations of mentioned model types.

Presentation

The presentation of information can be characterized by two categories of properties:
the used presentation form and the level of abstraction used to present available infor-
mation. The presentation form simply summarizes the human sensory input channels
utilized by the explanation, which can be: visual (the most common one including
diagrams, graphs, and heatmaps), textual in either natural language or formal form,
auditive, and combinations thereof. In the following, the aspects influencing the level
of abstraction are elaborated. These can be split up into (1) aspects of the smallest
building blocks of the explanation, the information units, and (2) the accessibility
or level of complexity of their combinations (the information units). Lastly, further
filtering may be applied before finally presenting the explanation, including privacy
filters.

Information units The basic units of the explanation, cognitive chunks (Doshi-Velez
and Kim 2017), or information units, may differ in the level of processing applied
to them. The simplest form are unprocessed raw features, as used in explanations
by example. Derived features capture some indirect information contained in the
raw inputs, like superpixels or attention heatmaps. These need not necessarily have
semantic meaning to the explainee, in contrast to explicitly semantic features, e.g.,
concept activation vector attributions. The last type of information unit are abstract
semantic features not directly grounded in any input, e.g., generated prototypes.
Feature interactions may occur as information units or be left unconsidered for the
explanation.

Examples Some further notable examples of heatmapping methods for feature
attribution are SmoothGrad by Smilkov et al. (2017) and Integrated Gradients
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by Sundararajan et al. (2017). One drawback of the methods described so far is
that they linearly approximate the loss surface in a point-wise manner. Hence,
they struggle with “rough” loss surfaces that exhibit significant variation in the
point-wise values, gradients, and thus feature importance (Samek et al. 2020).
SmoothGrad (Smilkov et al. 2017). SmoothGrad aims to mitigate this by aver-
aging the gradient from random samples within a ball around the sample to
investigate.

Integrated Gradients (Sundararajan et al. 2017) Integrated gradients do the aver-
aging (to be precise: integration) along a path between two points in the input
space.

Integrated Hessians (Janizek et al. 2020). A technically similar approach but
with a different goal is Integrated Hessians (Janizek et al. 2020). They intend not
to grasp and visualize the sensitivity of the model for one feature (as a derived
feature), but their information units are interactions of features, i.e., how much
the change of one feature changes the influence of the other on the output. This is
done by having a look at the Hessian matrix, which is obtained by two subsequent
Integrated Gradients calculations.

Accessibility The accessibility, level of detail, or level of complexity describes how
much intellectual effort the explainee has to bring up in order to understand the
simulatable parts of the explanation. Thus, the perception of complexity heavily
depends on the end-user, which is mirrored in the human-grounded complexity /
interpretability metric discussed later in Sect. 5.3. In general, one can differentiate
between representations that are considered simpler and such that are more expres-
sive but complex. Because accessibility is a precondition to simulating the parts, it is
not the same as the transparency level. For example, very large, transparent decision
trees or very high-dimensional (general) linear models may be perceived as globally
complex by the end-user. However, when looking at the simulatable parts of the
explanator, like small groups of features or nodes, they are easy to grasp.

Examples Accessibility can indirectly be assessed by the complexity and expressivity
of the explanation (see Sect. 5.3). To give some examples: Simple presentations are,
e.g., linear models, general additive models, decision trees and Boolean decision
rules, Bayesian models, or clusters of examples (cf. Sect. 5.1); generally, more
complex are, e.g., first-order or fuzzy logical decision rules.

Privacy awareness Sensible information like names may be contained in parts of
the explanation, even though they are not necessary for understanding the actual
decision. In such cases, an important point is privacy awareness (Calegari et al.
2020): Is sensible information removed if unnecessary or properly anonymized if
needed?

5.2.3 Interactivity
The interaction of the user with the explanator may either be static, so the explainee
is once presented with an explanation, or interactive, meaning an iterative process

accepting user feedback as explanation input. Interactivity is characterized by the
interaction task and the explanation process.
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Interaction task The user can either inspect explanations or correct them. Inspecting
takes place through exploration of different parts of one explanation or through
consideration of various alternatives and complementing explanations, such as
implemented in the iNNvestigate toolbox (Alber et al. 2019). Besides, the user can
be empowered within the human-Al partnership to provide corrective feedback to
the system via an explanation interface, in order to adapt the explanator and thus the
explanandum.

Examples State-of-the-art systems

e enable the user to perform corrections on labels and to act upon wrong
explanations through interactive machine learning (intML), such as
implemented in the approach CAIPI (Teso and Kersting 2019),

e they allow for re-weighting of features for explanatory debugging, like
the system EluciDebug (Kulesza et al. 2010),

e adaption of features as provided by Crayons (Fails and Olsen Jr 2003),
and

e correcting generated verbal explanations through user-defined con-
straints, such as implemented in the medical-decision support system
LearnWith-ME (Schmid and Finzel 2020).

Explanation process As mentioned above, explanation usually takes place in an iter-
ative fashion. Sequential analysis allows the user to query further information in
an iterative manner and to understand the model and its decisions over time, in
accordance with the users’ capabilities and the given context (El-Assady et al. 2019;
Finzel et al. 2021Db).

Examples

Multi-modal explanations (Hendricks et al. 2018). The explanation process
includes combining different methods to create multi-modal explanations and
involving the user through dialogue. It can be realized in a phrase-critic model
as presented by Hendricks et al. (2018), or with the help of an explanatory dialogue
such as proposed by Finzel et al. (2021b).

5.2.4 Mathematical constraints

Mathematical constraints encode some formal properties of the explanator that were
found to be helpful for explanation receival. Constraints mentioned in the literature
are:

Linearity Considering a concrete proxy model as explanator output, linearity is often a
desirable form of simplicity (Kim et al. 2018a; Carvalho et al. 2019; Molnar 2020).

Monotonicity Similar to linearity, one here considers a concrete proxy model as the
output of the explanator. The dependency of that model’s output on one input feature
may be monotonous. Monotonicity is desirable for the sake of simplicity.

Satisfiability This is the case if the explanator outputs readily allow the application of
formal methods like solvers.
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Number of iterations While some XAI methods require a one-shot inference of the
explanandum model (e.g., gradient-based methods), others require several iterations
of queries to the explanandum. Since these might be costly or even restricted in some
use cases, a limited number of iterations needed by the explanator may be desirable
in some cases. Such restrictions may arise from non-gameability (Langer et al. 2021)
constraints on the explanandum model, i.e., the number of queries is restricted in
order to guard against systematic optimization of outputs by users (e.g., searching
for adversaries).

Size constraints Many explanator types, respectively surrogate model types, allow for
architectural constraints, like size or disentanglement, that correlate with reduced
complexity. See also the respective complexity/interpretability metrics in Sect. 5.3.

Examples For linear models, sparsity can reduce complexity (Gleicher 2016),
and for decision trees, depth and width can be constrained. One common
way to achieve sparsity is to add regularization terms to the training of linear
explanators and interpretable models.

5.3 Metrics

By now, there is a considerable amount of metrics being suggested to assess the quality
of XAl methods with respect to different goals. This section details the types of metrics
considered in the literature. Following the original suggestion by Doshi-Velez and Kim
(2017), we categorize metrics by their level of human involvement required to measure
them:

e functionally-grounded metrics,
e human-grounded metrics, and
e application-grounded metrics.

An overview is given in Fig. 6. For a selection of approaches to measure the below-
described metrics, we refer the reader to Li et al. (2020). They provide a good starting
point with an in-depth analysis of metrics measurement for visual feature attribution
methods.

5.3.1 Functionally-grounded metrics

Metrics are considered functionally-grounded if they do not require any human feed-
back but instead measure the formal properties of the explanator. This applies to the
following metrics:

Faithfulness (Li et al. 2020), fidelity (Carvalho et al. 2019), soundness (Yao 2005),
or causality (Calegari et al. 2020), measures how accurately the behavior of the
explanator conforms with that of the actual object of explanation. If a full surrogate
model is used, this is the accuracy of the surrogate model outputs with respect to
the explanandum outputs. And the fidelity of inherently interpretable models also
serving as explanators is naturally 100%. Note that fidelity is more often used if
the explanator consists of a complete surrogate model (e.g., a linear proxy like
LIME (Ribeiro et al. 2016)) and faithfulness in more general contexts (Burkart
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Fig.6 Overview of the XAl metrics detailed in Sect. 5.3. Find a visualization of the complete taxonomy in
Fig. 7

and Huber 2021). Other works use the terms interchangeably like Du et al. (2019);
Carvalho et al. (2019), which we adopt here. More simplification usually comes
along with less faithfulness since corner cases are not captured anymore, also called
the fidelity-interpretability trade-off.

Localization accuracy with respect to some ground truth (cf. Li et al. 2020 for visual
feature importance maps) means how well an explanation correctly localizes certain
points of interest. These points of interest must be given by a ground truth that
is preferably provided by mathematical properties, such as certainty, bias, feature
importance, and outliers (cf. Carvalho et al. 2019). In which way such points are
highlighted for the explainee depends on the explanation type. For example, they
could be highlighted in a feature importance heatmap (Li et al. 2020) or expressed
by the aggregated relevance within regions of interest (Rieger et al. 2020). Note
that localization capability is closely related to faithfulness but refers to specific
properties of interest.

Completeness, or coverage, measures how large the validity range of an explanation
is, so in which subset of the input space high fidelity can be expected. It can be seen
as a generalization of fidelity to the distribution of fidelity. Note that coverage can
also be calculated for parts of an explanation, such as single rules of a rule set, as
considered by Burkart and Huber (2021).

Overlap is considered by Burkart and Huber (2021) for rule-based explanations. It
measures the number of data samples that satisfy more than one rule of the rule set,
i.e., measures the size of areas where the validity ranges of different rules overlap.
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This can be seen as a measure of redundancy in the rule set and may sometimes
correlate with perceived complexity (Burkart and Huber 2021).

Accuracy of the surrogate model ignores the prediction quality of the original model
and only measures the prediction quality of the surrogate model for the original task
(using the standard accuracy metric). This only applies to post-hoc explanations.

Architectural complexity can be measured using metrics specific to the explanator type.
The goal is to approximate the subjective, human-grounded complexity that a human
perceives using purely architectural properties like size measures. Such architectural
metrics can be, e.g., the number of used input features for feature importance, the
number of changed features for counterfactual examples (also called sparsity (Verma
et al. 2020)), the sparsity of linear models (Gleicher 2016), the width or depth of
decision trees (Burkart and Huber 2021), or, in case of rules, the number of defined
rules and the number of unique used predicates (Burkart and Huber 2021).

Algorithmic complexity and scalability measure the information-theoretic complexity
of the algorithm used to derive the explanator. This includes the time to convergence
(to an acceptable solution) and is especially interesting for complex approximation
schemes like rule extraction.

Stability or robustness (Calegari et al. 2020) measures the change of explanator (output)
given a change in the input samples. This is an analogon to (adversarial) robustness
of deep neural networks and a stable algorithm is usually also better comprehensible
and desirable.

Consistency measures the change of the explanator (output) given a change in the model
to explain. The idea behind consistency is that functionally equivalent models should
produce the same explanation. This assumption is important for model-agnostic
approaches, while for model-specific ones, a dependency on the model architecture
may even be desirable. (e.g., for architecture visualization).

Sensitivity measures whether local explanations change if the model output changes
strongly. A big change in the model output usually comes along with a change in
the discrimination strategy of the model between the differing samples (Li et al.
2020). Such changes should be reflected in the explanations. Note that this may be
in conflict with stability goals for regions in which the explanandum model behaves
chaotically.

Expressiveness or the level of detail refers to the level of detail of the formal language
used by the explanator. It is interested in approximating the expected information
density perceived by the user. It is closely related to the level of abstraction of
the presentation. Several functionally-grounded proxies were suggested to obtain
comparable measures for expressivity:

o the depth or amount of added information, also measured as the mean number
of used information units per explanation;

e number of relations that can be expressed; and

o the expressiveness category of used rules, namely mere conjunction, boolean
logic, first-order logic, or fuzzy rules (cf. (Yao 2005)).
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5.3.2 Human-grounded metrics

Other than functionally-grounded metrics, human-grounded metrics require to involve
a human directly on proxy tasks for their measurement. Human involvement can be
measured through observation of a person’s reactions but also through direct human
feedback. Often, proxy tasks are considered instead of the final application to avoid a
need for expensive experts or application runtime (think of medical domains). The goal
of an explanation always is that the receiver of the explanation can build a mental model
of (aspects of) the object of explanation (Kulesza et al. 2013). Human-grounded met-
rics aim to measure some fundamental psychological properties of the XAI methods,
namely quality of the mental model. The following are counted as such in literature:

Interpretability or comprehensibility, or complexity measures how accurately the
mental model approximates the explanator model. This measure mostly relies on
subjective user feedback on whether they “could make sense” of the presented infor-
mation. It depends on background knowledge, biases, and cognition of the subject
and can reveal the use of vocabulary inappropriate to the user (Gilpin et al. 2018).

Effectiveness measures how accurately the mental model approximates the object of
explanation. In other words, one is interested in how well a human can simulate
the (aspects of interest of the) object after being presented with the explanations.
Proxies for effectiveness can be fidelity and accessibility (Molnar 2020, Sec. 2.4).
This may serve as a proxy for interpretability.

(Time) efficiency measures how time efficient an explanation is, i.e., how long it takes
a user to build up a viable mental model. This is especially of interest in appli-
cations with a limited time frame for user reaction, like product recommendation
systems (Nunes and Jannach 2017) or automated driving applications (Kim et al.
2018Db).

Degree of understanding measures in interactive contexts the current status of under-
standing. It helps to estimate the remaining time or measures needed to reach the
desired extent of the explainee’s mental model.

Information amount measures the total subjective amount of information conveyed by
one explanation. Even though this may be measured on an information-theoretic
basis, it usually is subjective and thus requires human feedback. Functionally-
grounded related metrics are the (architectural) complexity of the object of
explanation, together with fidelity and coverage. For example, more complex mod-
els have a tendency to contain more information, and thus require more complex
explanations if they are to be approximated widely and accurately.

5.3.3 Application-grounded metrics

Other than human-grounded metrics, application-grounded ones work on human
feedback for the final application. The following metrics are considered application-
grounded:

Satisfaction measures the direct content of the explainee with the system. It implicitly
measures the benefit of explanations for the explanation system user.
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Persuasiveness assesses the capability of the explanations to nudge an explainee into a
certain direction. This is foremostly considered in recommendation systems (Nunes
and Jannach 2017) but has high importance when it comes to analysis tasks, where
false positives and false negatives of the human-Al system are undesirable. In this
context, a high persuasiveness may indicate a miscalibration of indicativeness.

Improvement of human judgment (Mueller et al. 2021) measures whether the expla-
nation system user develops an appropriate level of trust in the decisions of the
explained model. Correct decisions should be trusted more than wrong decisions,
e.g. because explanations of wrong decisions are illogical.

Improvement of human-Al system performance considers the end-to-end task to be
achieved by all of the following: explanandum, explainee, and explanator. This
can, e.g., be the diagnosis quality of doctors assisted by a recommendation system
(Mueller et al. 2021; Schmid and Finzel 2020).

Automation capability gives an estimate of how much of the manual work conducted
by the human in the human-Al system can be automatized. Especially for local
explanation techniques, automation may be an important factor for feasibility if the
number of samples a human needs to scan can be drastically reduced (Finzel et al.
2021a).

Novelty estimates the subjective degree of novelty of information provided to the
explainee (Langer et al. 2021). This is closely related to efficiency and satisfaction:
Especially in exploratory use cases, high novelty can drastically increase efficiency
(no repetitive work for the explainee) and keep satisfaction high (decrease the pos-
sibility of boredom for the explainee) (Table 6).

6 Discussion and conclusion

The abundance of existing literature on structuring the field and methods of XAl has by
now reached an overwhelming level for beginners and practitioners. To help in finding
good starting points for a deeper dive, we here presented a rich and structured survey
of surveys on XAI topics. This showed an increasing breadth of application fields
and method types investigated in order to provide explainable yet accurate learned
models. Especially, the exponentially increasing number of both XAI methods and
method surveys suggests an increasing interest in XAl and unrestrained growth of
the research field in the upcoming years. As some persisting trends, we found the
application domains of medicine and recommendation systems, as well as (visual)
explanations for visual models. Some upcoming or re-awakening trends seem to be
the field of natural language processing, and rule-based explanation methods.

With the ever-growing amount of methods for achieving explainability and
interpretability, XAI method surveys developed many approaches for method cat-
egorization. Early foundational concepts have been extended and sub-structured to
increasingly detailed collections of aspects for differentiating X Al methods. This paper
systematically united aspects scattered over existing literature into an overarching tax-
onomy structure. Starting from the definition of the problem of XAI, we found the
following three main parts of an explanation procedure suitable for a top-level tax-
onomy structure: the task, the explainer, and evaluation metrics. This paper in detail
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defines and sub-structures each of these parts. The applicability of those taxonomy
aspects for differentiating methods is evidenced practically: Numerous example meth-
ods from the most relevant as well as the most recent research literature are discussed
and categorized according to the taxonomy aspects. An overview of the examples is
given in the end, concentrating on the seven classification criteria that are most signif-
icant in the literature. These concretely are the task, the form of interpretability (e.g.,
inherently interpretable), whether the method is model-agnostic or model-specific,
whether it generates global or local explanations, what the object of explanation 1is,
in what form explanations are presented, and the type of explanation.

As highlighted in the course of the paper, the creation of an explanation system
should be tailored tightly to the use-case: This holds for all of development, appli-
cation, and evaluation of XAI the system. Concretely, the different stakeholders and
their contexts should be taken into account (Langer et al. 2021; Gleicher 2016). Our
proposed taxonomy may serve as a profound basis to analyze stakeholder needs and
formulate concrete, use-case-specific requirements upon the explanation system. The
provided survey of surveys then provides the entry point when looking for XAI meth-
ods fulfilling the derived requirements.

Altogether, our proposed unified taxonomy and our survey allow (a) beginners to
gain an easy and targeted overview and entry point to the field of XAI; (b) practi-
tioners to formulate sufficient requirements for their explanation use-case and to find
accordingly suitable XAl methods; and lastly (c) researchers to properly position their
research efforts on XAI methods and identify potential gaps. We hope this work fosters
research and fruitful application of XAI.

Finally, it must be mentioned that our survey is and will not be or stay complete:
Despite our aim for a broad representation of the XAl field, the used structured litera-
ture search is naturally biased by the current interests in specific sub-fields of Al and
the search terms. On the other hand, we hope this ensures relevance to a large part of
the research community. Furthermore, we concentrated on a broadly applicable tax-
onomy for XAI methods, whilst sub-fields of XAI may prefer or come up with more
detailed differentiation aspects or a different taxonomy structure.

We are looking forward to seeing future updates of the state of research captured
in this work and practical guides for choosing the right XAI method according to a
use-case definition.
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