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Abstract
Interpretable machine learning has become a very active area of research due to
the rising popularity of machine learning algorithms and their inherently challeng-
ing interpretability. Most work in this area has been focused on the interpretation
of single features in a model. However, for researchers and practitioners, it is often
equally important to quantify the importance or visualize the effect of feature groups.
To address this research gap, we provide a comprehensive overview of how exist-
ing model-agnostic techniques can be defined for feature groups to assess the grouped
feature importance, focusing onpermutation-based, refitting, andShapley-basedmeth-
ods. We also introduce an importance-based sequential procedure that identifies a
stable and well-performing combination of features in the grouped feature space. Fur-
thermore, we introduce the combined features effect plot, which is a technique to
visualize the effect of a group of features based on a sparse, interpretable linear com-
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bination of features. We used simulation studies and real data examples to analyze,
compare, and discuss these methods.

Keywords Grouped feature importance · Combined features effects · Dimension
reduction · Interpretable machine learning

1 Introduction

Machine learing (ML) algorithms are nowadays used in many diverse fields e.g. in
medicine (Shipp et al. 2002), criminology (Berk et al. 2009), and increasingly in
the social sciences (Stachl et al. 2020b; Yarkoni and Westfall 2017). Interpretable
models are paramount in many high-stakes settings, such as medical and juridical
applications (Lipton 2018). However, well-performing ML models often bear a lack
of interpretability. In the context of interpretable ML (IML) research, several model-
agnostic methods to produce explanations for single features have been developed
(Molnar 2019). Examples include the permutation feature importance (PFI; Fisher
et al. 2019), leave-one-covariate out (LOCO) importance (Lei et al. 2018), SHAP
values (Lundberg and Lee 2017), or partial dependence plots (PDP; Friedman 2001).

In many applications, it can be more informative to produce explanations for the
importance or effect of a group of features (which we refer to as grouped interpre-
tations) rather than for single features. It is important to note that the meaning of
grouped interpretations, in general, differs from single feature interpretations, and
resulting interpretations are usually not directly comparable (e.g., as Gregorutti et al.
(2015) shows for the permutation feature importance). Hence, our aim is not to chal-
lenge single feature interpretations as both single and grouped feature interpretation
methods measure different things and are useful on their own.

Grouped interpretations might be especially interesting for high-dimensional set-
tings with hundreds or thousands of features. In particular, when analyzing the
influence of these features visually (e.g., by plotting the marginal effect of a feature on
the target) on a single feature level, this might result in an information overload which
might not provide a comprehensive understanding of the learned effects (Molnar et al.
2020b). Furthermore, the runtime of some interpretation methods—such as Shapley
values—does not scale linearly in the number of features. Hence, calculating them
on a single feature level might not be computationally feasible for high-dimensional
settings, making grouped computations a feasible remedy (Lundberg and Lee 2017;
Covert et al. 2020; Molnar et al. 2020b).

From a use case perspective, the concept of grouped interpretations is particularly
useful when the feature grouping is available a priori based on the application context.
In that sense, features that either belong to the same semantic area (e.g., behaviors
in psychology or biomarkers in medicine) or are generated by the same mechanism
or device (e.g., fMRI, EEG, smartphones) can be grouped together to assess their
joint effect or importance. For example, in our application in Sect. 7, we use a real-
world use case from psychology that studies how the human behavior on smartphone
app usage is associated to different personality traits (Stachl et al. 2020a). Features
were extracted from longitudinal data collected from smartphones of 624 participants,
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Fig. 1 A possible process from group definition to grouped interpretations. First, the feature groups must
be defined. A model is then fitted, typically on the feature space where the information of the pre-defined
grouping might be used (e.g., if the fitting process is combined with a feature selection procedure) or
ignored. When the best model is found, model-agnostic grouped interpretation methods are applied on the
previously defined feature groups. A commonly used approach is to first obtain an overview of which groups
are most important for achieving a good model performance (grouped feature importance) to subsequently
analyze how the most important feature groups influence the model’s prediction (grouped feature effect)
(Color figure online)

and can be grouped into different behavioral classes (i.e., communication and social
activity, app-usage, music consumption, overall phone activity, mobility). Another
example is applications with sensor data (Chakraborty and Pal 2008), where multiple
features measured by a single sensor naturally belong together, and hence grouped
interpretations on sensor-level might be more informative.

There are also situations where the interpretation of single features might be mis-
leading and where grouped interpretations can provide a remedy. Examples include
datasets with time-lagged or categorical features (e.g., dummy or one-hot encoded cat-
egories) and the presence of feature interactions (Gregorutti et al. 2015). A concrete
example for dummy encoded categorical features is shown in Appendix A.

Even in situations where feature groups are not naturally given in advance, it still
might be beneficial to define groups in a data-driven manner and apply interpretation
methods on groups of features (for examples, see Sect. 1.2).

Hence, compared to single feature interpretation methods, the grouping structure
must be defined beforehand. A possible process—from group membership definition
to modeling up to post-hoc interpretations—is illustrated in Fig. 1. Since defining the
underlying group structure is a relevant step in this process, we discuss some applied
techniques on how to find groups of features in Sect. 1.2. However, in this paper, we
focus on the interpretation component once the groups are known (the green part in
Fig. 1).

Although the grouped feature perspective is relevant in many applications, most
IML research has focused onmethods that attempt to provide explanations on a single-
feature level.Model-agnostic methods for feature groups are rare and not well-studied.

1.1 Real data use cases with grouped features

In the following we summarize further exemplary predictive tasks with pre-specified
feature groupings. These tasks will also be used in Sect. 3.4 for further empirical
analysis. For more details on features and associated groups see Table 1.

Heat value of fossil fuels In this small scale regression task (n = 129), the objective
is to predict the heat value of fossil fuels from spectral data (Fuchs et al. 2015). In
addition to one scalar feature (humidity), the dataset contains two groups of curve
data, the first from the ultraviolet-visible spectrum (UVVIS) and the second from the
near infrared spectrum (NIR).
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Table 1 Real world datasets with grouped features and their pre-specified group memberships

Dataset Single features Group membership Description

Birthweight age1, age2, age3 Age Mother’s age represented by 3
orthogonal polynomials

lwt1, lwt2, lwt3 lwt Mother’s weight represented by 3
orthogonal polynomials

White, black Race Mother’s race (indicator
functions)

Smoke Smoke Smoking status (indicator
function)

ptl1, ptl2m ptl One, or two or more previous
premature labors

ht ht History of hypertension
(indicator function)

ui ui Presence of uterine irritability
(indicator function)

ftv1, ftv2, ftv3m ftv One, two, or three or more
physician visits during first
trimester

Colon x1, ..., x5 Gene1 Gene expression data for gene 1

.

.

.
.
.
.

.

.

.

x96, ..., x100 Gene20 Gene expression data for gene 20

Fuelsubset H20 H20 Humidity in percent

UVVIS1, ..., UVVIS134 UVVIS Data from the ultraviolet-visible
spectrum (134 wavelength
points)

NIR1, ..., NIR231 NIR Data from the near infrared
spectrum (231 wavelength
points)

Birthweight The birthweight dataset has data on 189 births at the Baystate Medical
Centre in Massachusetts during 1986 (Venables and Ripley 2002). The objective is
to predict the birth weight in kilograms from a set of 16 features, some of which are
grouped (e.g., dummy encoded categorical features).

Colon cancer The colon dataset contains gene expression data of 20 genes (5 basis
B-Splines each) for 62 samples from microarray experiments of colon tissue (Alon
et al. 1999). The task is to predict cancerous tissue from the resulting 100 predictors.

1.2 Grouping procedures

Following the definitions of He andYu (2010), we provide a brief overview of different
procedures to define feature groups in a knowledge-driven and data-driven manner. In
data-driven grouping, an algorithmic approach such as clustering or density estimation
is used to define groups of features. Knowledge-driven grouping, on the other hand,
uses domain knowledge to define the grouping structure of features. Throughout our
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paper, we mainly assume a user-defined grouping structure. However, all methods
introduced in this paper should also be compatible with an appropriate data-driven
method if the defined groups have a meaningful interpretation.

Data-driven grouping
Onemethod togroup features in adata-drivenmanner is to use clustering approaches

such as hierarchical clustering (Park et al. 2006; Toloşi and Lengauer 2011; Rapaport
et al. 2008) or fuzzy clustering (Jaeger et al. 2003). These approaches often work well
in highly correlated feature spaces, such as in genomics or medicine, where correlated
features are grouped together so that no relevant information is discarded (Toloşi
and Lengauer 2011). For instance, Jaeger et al. (2003) tackles a feature selection
problem for a high-dimensional and intercorrelated feature space when working with
microarray data. To simultaneously select informative and distinct genes, they first
apply fuzzy clustering to obtain groups of similar genes from microarray data. Next,
the informative representatives of each group are selected based on a suitable test
statistic. The disadvantage of data-driven grouping is that groups depend only on the
statistical similarity between features, which might not coincide with domain-specific
interpretations (Chakraborty and Pal 2008).

Knowledge-driven grouping
Knowledge-driven group formation has the advantage that the dimensionality

reduction might lead to better interpretability than the data-driven path. Gregorutti
et al. (2015) apply a knowledge-driven approach in the context of multiple functional
data analysis, where they then select groups for subsequent modeling based on their
group importance values. Chakraborty and Pal (2008) also select groups of features,
where data fromone sensor (e.g., to capture satellite images in different spectral bands)
represents a group. Hence, features are grouped based on their topical character (e.g.,
measurement device) rather than their shared statistical properties. Another use case
of knowledge-driven grouping is described in Lozano et al. (2009), who group time-
lagged features of the same time series for gene expression data. They use the given
grouping structure in a group feature selection procedure and apply group LASSO as
well as a boosting method.

1.3 Related work

A well-known model that handles groups of features is the group LASSO (Yuan and
Lin 2006), which extends the LASSO (Tibshirani 1996) for feature selection based on
groups. Moreover, other extensions—e.g., to obtain sparse groups of features (Fried-
man et al. 2010), to support classification tasks (Meier et al. 2008) or non-linear effects
(Gregorova et al. 2018)—also exist. However, group LASSO is a modeling technique
that focuses on selecting groups in the feature space rather than quantifying their
importance.

A large body of research already exists regarding the importance of individual fea-
tures (see, e.g., Fisher et al. 2019; Hooker and Mentch 2019; Scholbeck et al. 2020).
Hooker and Mentch (2019) distinguish between two loss-based feature importance
approaches, namely permutation methods and refitting methods. Permutation meth-
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ods measure the increase in expected loss (or error) after permuting a feature while the
model remains untouched. Refitting methods measure the increase in expected loss
after leaving out the feature of interest completely and hence require refitting themodel
(Lei et al. 2018). Since the model remains untouched in the former approach, interpre-
tations refer to a specific fitted model, while interpretations for refitting methods refer
to the underlying ML algorithm. Gregorutti et al. (2015) introduced a model-specific,
grouped PFI score for random forests and applied this approach to functional data
analysis. Valentin et al. (2020) introduced a model-agnostic grouped version of the
model reliance score (Fisher et al. 2019). However, they focus more on the application
and omit a detailed theoretical foundation. Recently, a general refitting framework to
measure the importance of (groups of) features was introduced by Williamson et al.
(2020). In their approach, the feature importance measurement is detached from the
model level and defined by an algorithm-agnostic version to measure the intrinsic
importance of features. The importance score is defined as the difference between the
performance of the full model and the performance based on all features except the
group of interest.

Permutation methods can be computed much faster than refitting methods. How-
ever, the PFI, for example, has issues when features are correlated and interact in the
model due to extrapolation in regions without any or just a few observations (Hooker
and Mentch 2019). Hence, interpretations in these regions might be misleading. To
avoid this problem, alternatives based on conditional distributions or refitting have
been suggested (e.g., Strobl et al. 2008; Nicodemus et al. 2010; Hooker and Mentch
2019; Watson and Wright 2019; Molnar et al. 2020a). Although the so-called condi-
tional PFI provides a solution to this problem, its interpretation is different and “must
be interpreted as the additional, unique contribution of a feature given all remaining
features we condition on were known” (Molnar et al. 2020a). This property compli-
cates the comparison with non-conditional interpretation methods. Therefore, we do
not consider any conditional variants in this paper.

A third class of importance measures is based on Shapley values (Shapley
1953), a theoretical concept of game theory. The SHAP (Lundberg and Lee 2017)
approach quantifies the contribution of each feature to the predicted outcome and is
a permutation-based method. It has the advantage that contributions of interactions
are distributed fairly between features. Besides being computationally more expen-
sive, SHAP itself is based on the model’s predicted outcome rather than the model’s
performance (e.g., measured by the model’s expected loss). Casalicchio et al. (2019)
extended the concept of Shapley values to fairly distribute the model’s performance
among features and called it Shapley Feature IMPortance (SFIMP).A similar approach
called SAGE has also been proposed by Covert et al. (2020), who showed the ben-
efits of the method on various simulation studies. One approach that uses Shapley
values to explain grouped features was introduced by de Mijolla et al. (2020). How-
ever, instead of directly computing Shapley importance on the original feature space,
they first apply a semantically-meaningful latent representation (e.g. by projecting
the original feature space into a lower dimensional latent variable space using disen-
tangled representations) and compute the Shapley importance on the resulting latent
variables. Williamson and Feng (2020) mention that their feature importance method
based on Shapley values can also be extended to groups of features. Additionally,
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Amoukou et al. (2021) investigated grouping approaches for Shapley values in the
case of encoded categorical features and subset selection of important features for
tree-based methods. The calculation of Shapley values on groups of features based
on performance values has only been applied with regard to feature subset selection
methods and not for interpretation purposes (Cohen et al. 2005; Tripathi et al. 2020).1

After identifying which groups of features are important, the user is often interested
in how they (especially the important groups) influence themodel’s prediction. Several
techniques to visualize single-feature effects exist. These include partial dependence
plots (PDP) (Friedman 2001), individual conditional expectation (ICE) curves (Gold-
stein et al. 2013), SHAP dependence plots (Lundberg et al. 2018), and accumulated
local effects (ALE) plots (Apley and Zhu 2019). However, in the case of high-
dimensional feature spaces, it is often not feasible to compute, visualize, and interpret
single-feature plots for all (important) features. If features are grouped, visualization
techniques become computationally more complex, and it may become even harder
to visualize the results in an easily interpretable way. In the case of low-dimensional
feature spaces, this might still be feasible, for example by using two-feature PDPs
or ALE plots. Recently, effect plots that visualize the combined effect of multiple
features have been introduced by Seedorff and Brown (2021) and Brenning (2021).
They use principal component analysis (PCA) to reduce the dimension of the feature
space and calculate marginal effect curves for the principal components. However, the
employed dimension reduction method does not include information about the target
variable and lacks sparsity (and hence, interpretability).

1.4 Contribution

Our contributions can be summarized as follows: We extend the permutation-based
and refitting-based grouped feature importance methods introduced by Valentin et al.
(2020) and Williamson et al. (2020) by comparing these methods to not only the full
model (i.e., taking into account all features), but also to a null model (i.e., ignoring
all features). Hence, we can quantify to what extent a group itself contributes to
the prediction of a model without the presence of other groups. Furthermore, we
introduce Shapley importance for feature groups and describe how these scores can
be decomposed into single-feature importance scores of the respective groups. Our
main contributions are: (1) We define a new algorithm to sequentially add groups
of features depending on their importance, thereby enabling identification of well-
performing combinations of groups. (2) We compare all grouped feature importance
methods with respect to the main challenges that arise when applying these methods
by creating small simulation examples. Subsequently, we provide recommendations
for using and interpreting the respective methods correctly. (3) We introduce a model-
agnostic method to visualize the joint effect of a group of features. To that end, we use
a suitable dimension reduction technique and the conceptual idea of PDPs to calculate
and plot the mean prediction of a sparse group of features with regard to their linear

1 Feature subset selectionmethods usually aim tofind sparse,well-performing feature combinations.Hence,
the intended purpose of employing these methods is not to produce interpretability, but rather to generate
a sufficient performance with fewer features.
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combination. This novel method finally enables the user to visualize effects for groups
of features. Finally, we showcase the usefulness of all these methods in real data
examples.

The structure of this paper is as follows: First, we provide some general notation
and definitions in Sect. 2. We formally define the grouped feature importance methods
and introduce the sequential grouped feature importance procedure in Sects. 3 and 4,
respectively. We compare these methods for different scenarios in Sect. 5. In Sect. 6,
we introduce the combined features effect plot (CFEP) to visualize the effects of
feature groups based on a supervised dimension reduction technique. Moreover, we
also show the suitability of this technique compared to its unsupervised counterpart in
a simulation study. Finally, in Sect. 7, all methods are applied to a real data example
before summarizing and offering an outlook for future research in Sect. 8.

2 Background and notation

Analogous to Casalicchio et al. (2019), we use the term feature importance to refer to
the influence of features on a model’s predictive performance, which we measure by
the expected loss when we perturb these features in a permutation approach or remove
these features in a refitting approach.

2.1 General notation

Consider a p-dimensional feature space X = (X1 ×· · ·×Xp) and a one-dimensional
target space Y . The corresponding random variables that are generated from these
spaces are denoted by X = (X1, . . . , X p) and Y . We denote a ML prediction function
that maps the p-dimensional feature space to a one-dimensional target space by f̂ :
X → R for regression tasks.2 ML algorithms try to learn this functional relationship
using n ∈ N i.i.d. observations drawn from the joint space X × Y with unknown
probability distribution P . The resulting dataset is denoted by D = {(x(i), y(i))}ni=1,

where the vector x(i) = (x (i)
1 , . . . , x (i)

p )ᵀ ∈ X is the i-th observation associated with

the target variable y(i) ∈ Y . The j-th feature is denoted by x j = (x (1)
j , . . . , x (n)

j )ᵀ,
for j = 1, . . . , p. The dataset D can also be written in matrix form:

⎛
⎜⎝
x (1)
1 . . . x (1)

p y(1)

...
. . .

...
...

x (n)
1 . . . x (n)

p y(n)

⎞
⎟⎠ = (

X,Y
)
, with X =

⎛
⎜⎝
x (1)
1 . . . x (1)

p
...

. . .
...

x (n)
1 . . . x (n)

p

⎞
⎟⎠ ,Y =

⎛
⎜⎝
y(1)

...

y(n)

⎞
⎟⎠ . (1)

The general error measure ρ( f̂ ,P) = E(L( f̂ (X),Y )) of a learned model f̂ is
measured by a loss function L on test data drawn independently from P and can be

2 The target space is defined by R
g in the case of scoring classifiers with g classes.
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estimated using unseen test data Dtest by

ρ̂( f̂ ,Dtest) = 1

|Dtest|
∑

(x,y)∈Dtest

L( f̂ (x), y). (2)

The application of an ML algorithm (or learner) I to a given dataset D results in a
fitted model I(D) = f̂D. The expected generalization error of a learner I takes into
account the variability introduced by sampling different datasets D of equal size n
from P and is defined by

GE(I,P, n) = E|D|=n(ρ(I(D),P)). (3)

In practice, resampling techniques such as cross-validation or bootstrapping on the
available dataset D are used to estimate Eq. (3). Resampling techniques usually split
the dataset D into k ∈ N training datasets Di

train, i = 1, . . . , k, of roughly the same
size ntrain < n. Eq. (3) can be estimated by

ĜE(I,D, ntrain) = 1

k

k∑
i=1

ρ̂( f̂Di
train

,Di
test). (4)

In the following, we often associate the set of numbers {1, . . . , p} in a one-to-one
manner with the features x1, . . . , xp by referring a number j ∈ {1, . . . , p} as feature
x j . We call G ⊂ {1, . . . , p} a group of features.

2.2 Permutation feature importance (PFI)

Fisher et al. (2019) proposed a model-agnostic version of the PFI measure used in
random forests (Breiman 2001). The PFI score of the j−th feature of a fitted model
f̂ is defined as the increase in expected loss after permuting feature X j :

PFI j ( f̂ ) = E(L( f̂ (X[ j]),Y )) − E(L( f̂ (X),Y )). (5)

Here, X[ j] = (X1, . . . , X j−1, X̃ j , X j+1, . . . , X p) is the p-dimensional random vari-
able vector of features, where X̃ j is an independent replication of X j following the
same distribution. The idea behind this method is to break the association between
the j−th feature and the target variable by permuting its feature values. If a feature
is not useful for predicting an outcome, changing its values by permutation will not
increase the expected loss.3 For an accurate estimation of Eq. (5), we would need to
calculate all possible permutation vectors over the index set {1, . . . , n} (see Casalic-
chio et al. (2019) for an in-depth discussion on this topic). However, Eq. (5) can be
approximated on a datasetD with n observations by Monte Carlo integration using m

3 Weconsider the case of loss functions that are to beminimized.Hence, the larger PFI j , themore substantial
the increase in expected loss and the more important the j−th feature.
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random permutations:

P̂FI j ( f̂ ,D)= 1
nm

n∑
i=1

m∑
k=1

(
L

(
f̂ ((x (i)

1 ,...,x
(τ

(i)
k )

j ,...,x (i)
p ),y(i))

)
−L

(
f̂ (x(i),y(i))

))
, (6)

where τk is a random permutation vector of the index set {1, . . . , n} for k = 1, . . . ,m
permutations.4

Equation (6) could also be embedded into a resampling technique, where the per-
mutation is always applied on the held-out test set of each resampling iteration (Fisher
et al. 2019). However, this leads to refits and is computationally more expensive. The
resulting resampling-based PFI of a learner I is estimated by

P̂FI
res
j (I,D, ntrain) = 1

k

k∑
i=1

P̂FI j ( f̂Di
train

,Di
test), (7)

where the permutation strategy is applied on the test sets Di
test.

3 Feature importance for groups

In our first minor contribution, we provide a general notation and formal definitions
for grouped permutation and refitting methods and explain them by answering the
following questions:

(a) To what extent does a group of features contribute to the model’s performance in
the presence of other groups?

(b) To what extent does a group itself increase the expected loss if it is added to a null
model like the mean prediction of the target for refitting methods?

(c) How can we fairly distribute the expected loss among all groups and all features
within a group?

The definitions of all grouped feature importance scores are based on loss functions.
They are defined in such a way that important groups will yield positive grouped
feature importance scores. The question of how to interpret the differing results of
these methods is addressed in Sect. 5.

3.1 Permutationmethods

Here, we extend the existing definition of PFI to groups of features and introduce the
GPFI (Grouped Permutation Feature Importance) and GOPFI (Group Only Permuta-
tion Feature Importance) scores. For ease of notation, we will only define these scores
for a fitted model f̂ (see Eq. 5).

4 An example for n = 3 would be τ1 = (1, 3, 2)ᵀ with τ
(i)
1 being the i−th entry of that vector.

123



Grouped feature importance and combined features effect...

3.1.1 Grouped permutation feature importance (GPFI)

For the definition ofGPFI—which is based on the definitions ofGregorutti et al. (2015)
and Valentin et al. (2020)—let G ⊂ {1, . . . , p} be a group of features. Let X̃G =
(X̃ j ) j∈G be a |G|-dimensional random vector of features, which is an independent
replication of XG = (X j ) j∈G following the same joint distribution. This random
vector is independent of both the target variable and the randomvector of the remaining
features, which we define by X−G := (X j ) j∈{1,...,p}\G . With slight abuse of notation
to index the feature groups included in G, we define the grouped permutation feature
importance of G as

GPFIG = E(L( f̂ (X̃G, X−G),Y )) − E(L( f̂ (X),Y )). (8)

Equation (8) extends Eq. (5) to groups of features so that the interpretation of GPFI
scores always refers to the importance when the feature values of the group defined
by G are permuted jointly (i.e., without destroying the dependencies of the features
within the group). Similar to Eq. (7), the grouped permutation feature importance can
be estimated by Monte Carlo integration:

ĜPFIG = 1

nm

n∑
i=1

m∑
k=1

(
L( f̂ (x

(τ
(i)
k )

G , x(i)
−G), y(i)) − L( f̂ (x(i), y(i)))

)
. (9)

The GPFI measures the contribution of one group to the model’s performance if all
other groups are present in the model (see (a) from Sect. 3).

3.1.2 Group only permutation feature importance (GOPFI)

To evaluate the extent to which a group itself contributes to a model’s performance
(see (b) from Sect. 3), one can also use a slightly different measure. As an alternative
to Eq. 9, we can compare the expected loss after permuting all features jointly with
the expected loss after permuting all features except the considered group. We define
this GOPFI for a group G ⊂ {1, ..., p} as

GOPFIG = E(L( f̂ (X̃),Y )) − E(L( f̂ (XG , X̃−G),Y )), (10)

which can be approximated by

ĜOPFIG = 1

nm

n∑
j=1

m∑
k=1

(
L( f̂ (x(τ

( j)
k ), y( j))) − L( f̂ (x( j)

G , x
(τ

( j)
k )

−G ), y( j))

)
. (11)

While the relevance of GOPFI as an importance measure might be limited, it is
technically useful for the grouped Shapley importance (see Eq. 14).
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3.2 Refittingmethods

Here, we introduce two refitting-based methods for groups of features. The first defi-
nition is similar to the one introduced in Williamson et al. (2020).

3.2.1 Leave-one-group-out importance (LOGO)

For a subset G ⊂ {1, . . . , p}, we define the reduced dataset D̃ := {(x(i)
−G , y(i))}ni=1.

Given a learner I, which generates models I(D) = f̂D and I(D̃) = f̂D̃, we define
the Leave-One-Group-Out Importance (LOGO) as

LOGO(G) = E(L( f̂D̃(X−G),Y )) − E(L( f̂D(X),Y )). (12)

The LOGO can be estimated by using a learner I on D̃ and should be embedded
in a resampling technique:

L̂OGO(G) = ĜE(I, D̃, ntrain) − ĜE(I,D, ntrain)

= 1

k

k∑
i=1

ρ̂( f̂D̃i
train

, D̃i
test) − 1

k

k∑
i=1

ρ̂( f̂Di
train

,Di
test).

Consequently, we compare the increase in expected loss compared to the full model’s
expected loss when leaving out a group of features and performing a refit (see (a) from
Sect. 3).

While GPFI can be calculated with a resampling-based strategy by using refits to
receive the algorithm-based instead of model-based GPFI, the meaning still varies
from LOGO. For the algorithm-based GPFI, we calculate for each fitted model the
importance score by permuting the regarded group and predictingwith the samemodel.
Then we average over all models from our resampling strategy and receive an impor-
tance score, which tells us how important a group of features is for some learner I
when we break the association between this group and all other groups and the target.
LOGO, on the other hand, leaves the group out and then performs the refit to calculate
the importance of the group, and hence, it addresses the question: Can we remove
this group from our dataset without reducing our model’s performance? This is not
answered by permutation-based methods.

3.2.2 Leave-one-group-in importance (LOGI)

While it may be too limiting to estimate the performance of a model based on one
feature only, it can be informative to determine the extent to which a group of fea-
tures (e.g., all measurements from a specific medical device) can reduce the expected
loss in contrast to a null model (see (b) from Sect. 3). The Leave-One-Group-In
(LOGI) method could be particularly helpful in settings where information on addi-
tional groups ofmeasureswill induce significant costs (e.g., adding functional imaging
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data for a diagnosis) and/or limited resources are available (e.g., in order to be cost-
covering, only one group of measures can be acquired). The LOGI method can also
be useful for theory development in the natural and social sciences (e.g., which group
of behaviors is most predictive by itself).

Let Inull be a null algorithm, which results in a null model f̂null that only guesses
the mean (or majority class for classification) of the target variable for any dataset.
We additionally define a learner I, which generates a model I(D̊) = f̂D̊ for a dataset

D̊ := {(x(i)
G , y(i))}ni=1, which only contains features defined by G ⊂ {1, . . . , p}. We

define the LOGI of a group G as

LOGI (G) = E(L( f̂null,Y )) − E(L( f̂ D̊(XG),Y )). (13)

The LOGI can be estimated by using a learner I on D̊ = {(x(i)
G , y(i))}ni=1 and should

be embedded in a resampling technique:

L̂OGI (G) = ĜE(Inull,D, ntrain) − ĜE(I, D̊, ntrain)

= 1

k

k∑
i=1

ρ̂( f̂null,Di
test) − 1

k

k∑
i=1

ρ̂( f̂D̊i
train

, D̊i
test).

3.3 Grouped Shapley importance (GSI)

The importance measures defined above either exclude (or permute) individual groups
of features from the total set of features or consider only the importance of groups
by omitting (or permuting) all other features. The grouped importance scores are
usually not affected if interactions within the groups are present. However, they can
be affected if features from different groups interact, since permuting a group of
features jointly destroys any interactions with other features outside the considered
group. Therefore, we define the grouped Shapley importance (GSI) based on Shapley
values (Shapley 1953). GSI scores account for feature interactions, as they measure
the average contribution of a given group to all possible combinations of groups and
fairly distribute the importance value caused by interactions among all groups (see (c)
from Sect. 3).

We assume a set of distinct groups G = {G1, . . . ,Gl}, with Gi ⊂ {1, . . . , p}, for
i = 1, . . . , l. In our grouped feature context, the value function v : P(G) −→ R

assigns a “payout” to each possible group or combination of groups included in G.
With slight abuse of notation, we define the value function for a subset S ⊂ G as

v(S) := v
(∪Gi∈SGi

)
.

We define the value function for a group G ∈ G calculated by a refitting or a permu-
tation method by

vrefit(G) = LOGI (G) or vperm(G) = GOPF I (G), (14)
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respectively. The marginal contribution of a group G ∈ G, with S ⊂ G is

�G(S) = v(S ∪ G) − v(S).

The GSI of the feature group G is then defined as

φ(G) =
∑

S⊂G\G

(|G| − 1 − |S|)! · |S|!
|G|! �G(S), (15)

which is a weighted average of marginal contributions to all possible combinations of
groups.

The GSI cannot always be calculated in a time-efficient way, because the number of
coalitions S ⊂ G\G can become large very quickly. In practice, the Shapley value is
often approximated (Casalicchio et al. 2019; Covert et al. 2020) by drawing M ≤ |G|!
different coalitions S ⊂ G\G and averaging the marginal, weighted contributions:

φ̂M (G) = 1

M

M∑
m=1

(|G| − 1 − |Sm |)! · |Sm |! · �G(Sm), (16)

with Sm ⊂ G\G, for all m = 1, . . . , M .
The GSI can in general not be exactly decomposed into the sum of the Shapley

importances for single features of the regarded group. In Appendix B, we show that
the remainder term R = φ(G)−∑

i∈G φ(xi ) depends only on higher-order interaction
effects between features of the regarded group and features of other groups. Hence,
if one is interested in which features contributed most within a group, the Shapley
importances for single features can be calculated, which provide a fair distribution
of feature interactions within the group but not necessarily of feature interactions
across groups. However, the remainder term can be used as a quantification of learned
higher-order interaction effects between features of different groups.

While the GSI can be calculated with permutation- as well as refitting-based
approaches, we will only apply the permutation-based approach in the upcoming
simulation studies and the real-world example.

3.4 Real world use cases

For each dataset from Sect. 1.1, we fitted a random forest and summarized the three
most important groups according to different grouped feature importance methods.
For the importance scores of LOGI and LOGO, we used a 10-fold cross-validation
(Table 2).

For the birthweight task, the feature lwt (mother’s weight) was the most important
group to predict the birthweight for all grouped feature importance methods except for
LOGI.While all methods except LOGI also agree on the second most important group
ui (presence of uterine irritability), feature groups differ for the third rank. However,
this may also be due to statistical variability, as the importance values become very
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Table 2 Best 3 groups for each grouped feature importance score

Dataset GPFI GOPFI GSI LOGI LOGO

Birthweight lwt (0.067) lwt (0.056) lwt (0.062) ui (0.041) lwt (0.036)

ui (0.056) ui (0.047) ui (0.046) Race (0.017) ui (0.029)

Smoke (0.009) Race (0.045) ptl (0.019) ptl (0.015) Race (0.005)

Colon Gene14 (0.143) Gene14 (0.174) Gene14 (0.125) Gene14 (0.128) Gene14 (0.131)

Gene10 (0.007) Gene16 (0.087) Gene16 (0.042) Gene20 (0.045) Gene17 (0.036)

Gene7 (0.001) Gene12 (0.057) Gene13 (0.019) Gene13 (0.028) Gene18 (0.033)

Fuelsubset NIR (30.51) NIR (42.20) NIR (36.21) NIR (27.35) NIR (8.34)

UVVIS (2.85) UVVIS (14.38) UVVIS (7.99) UVVIS (15.74) H2O (0.14)

H2O (0.01) H2O (1.26) H2O (0.24) H2O (−12.17) UVVIS (−2.14)

For the classification task (colon) the scores were calculated as differences in classification accuracy. For
the other two regression tasks the scores result from differences in MSE

small. It is interesting that lwt, despite being the most important group for all other
scores, is not very important in terms of LOGI. Thus, lwt is less important as a stand-
alone group, but appears important if the other feature groups are included in the
model.

In the colon task, the feature group gene14 is by far the most important group to
predict cancerous tissue for all grouped feature important methods. However, there
are variations in the second and third most important groups.

For the fuelsubset task, the permutation-based grouped importancemethods (GPFI,
GOPFI and GSI) show the same importance ranking for the three most important
feature groups. However, for the refitting-based grouped importance methods (LOGI
and LOGO), we can observe interesting differences. The features from the UVVIS
group are important as a stand-alone group as can be seen by their positive LOGI
score. However, the negative LOGO score of the UVVIS group indicates that the
algorithm seems to perform better with only the NIR and H2O groups.

GPFI, GOPFI and GSI provide importance scores for feature groups of a given
trained model without the necessity to refit the model. In contrast, LOGI and LOGO
provide grouped importance scores based on the underlying algorithm and should
always be considered together.

4 Sequential grouped feature importance

In general, feature groups do not necessarily have to be distinct or independent of
each other. When groups partly contain the same or highly correlated features, we
may obtain high grouped feature importance scores for similar groups. This can lead
to misleading conclusions regarding the importance of groups. Quantifying the impor-
tance of different combinations of groups is especially relevant in applications where
extra costs are associated with using additional features from other data sources. In
this case, one might be interested in the sparest, yet most important combination of
groups or in understanding the interplay of different combinations of groups. Hence,
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in practical settings, it is often important to decide which additional group of features
to make available (e.g., buy or implement) for modeling and how groups should be
prioritized under economic considerations.

Gregorutti et al. (2015) introduced a method called grouped variable selection,
which is an adaptation of the recursive feature elimination algorithm from Guyon
et al. (2002) and uses permutation-based grouped feature importance scores for the
selection of feature groups. In Algorithm 1, we introduce a sequential procedure that
is based on the idea of stability selection (Meinshausen and Bühlmann 2010). The
procedure primarily aims at understanding the interplay of different combinations of
groups by analyzing how the importance scores change after including other groups
in a sequential manner. The feature groups must be pre-specified by the user. We
prefer a refitting-based over a permutation-based grouped feature importance score
when the secondary goal is to find well-performing combinations of groups. Here,
the fundamental idea is to start with an empty set of features and to sequentially add
the next best group in terms of LOGI until no further substantial improvement can be
achieved. Our sequential procedure is based on a greedy forward search and creates an
implicit ranking by showing the order in which feature groups are added to the model.
To account for the variability introduced by the model, we propose to use repeated
subsampling or bootstrap with sufficient repetitions (e.g., 100 repetitions).

To better understand Algorithm 1, we will demonstrate it with a small example
with four groups G = {G1,G2,G3,G4} here. As a reminder, each group is a subset of
{1, . . . , p}, and we want to find a subset B ⊂ {1, . . . , p}, which consists of the union
of groups in G. The subset B is found by our sequential grouped feature importance
procedure. To account for variability, the whole dataset is split into two sets (training
and test set) repeatedly so that the train-test splits are different in each repetition of
the resampling strategy (bootstrap or subsampling). For each training set, Algorithm
1 starts with an empty set B = ∅ (line 2, Algorithm 1). In line 5 of Algorithm 1, the
candidate set B ⊂ P(G) is defined as all subsets of the power set with cardinality 1.
These are all individual groups B = {{G1}, {G2}, {G3}, {G4}}. The LOGI score of
each single group is then calculated. In our example, let G1 have the highest LOGI
score, which also exceeds the threshold δ. The desired combination B is preliminarily
defined asG1 (line 8), and for the comparison in the next step, the LOGI score ofG1 is
defined as L0 (line 9). Then, a new candidate set B is defined (line 11), which consists
of all subsets of the power set ofG of size i (at this step, we have i = 2), where B = G1
is also a subset of B. Hence, B := {{G1,G2}, {G1,G3}, {G1,G4}}. The LOGI score
of elements of B is calculated as the LOGI score of the union of all subsets. Now, let
L̂OGI (G1 ∪ G3) have the highest score. This score is compared to the LOGI score
of the previous iteration L0 (line 13). Let the difference exceed the threshold δ for our
example. In line 14 and 15, the desired combination B is now defined as G1 ∪ G3
and the LOGI score is again defined as L1. Algorithm 1 now jumps to line 10 again
with i = 3. The candidate set is now B = {{G1,G3,G2}, {G1,G3,G4}} (line 11).
The LOGI scores are now calculated again for each element of B. Let no LOGI score
exceed L0 by the threshold δ (line 13). Algorithm 1 now ends for this dataset split and
returns B = G1 ∪ G3 as the best combination. This procedure is repeated for each
train-test split in each repetition.
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Algorithm 1: Sequential Grouped Feature Importance
input : Set of groups G = {G1, ...,Gk }.

Improvement threshold δ > 0.
Number of repetitions for the data splitting.

output: For every data split: a combination B ⊂ {1, ..., p} and the order in which feature groups
were added.

1 for Every outer data split do
2 Let B = ∅ for i = 1, ..., k do
3 if i = 1 then

4 Define candidate set B̃ :=
{
G̃ ∈ P(G)

∣∣|G̃| = 1
}

5 Find best single group G∗ = argmax
G̃∈B

(
L̂OGI (G̃)

)

6 if L̂OGI (G∗) > δ then
7 B = G∗
8 Li−1 = L̂OGI (B)

9

10 if i > 1 and B 	= ∅ then

11 Define candidate set B̃ :=
{
G̃ ∈ P(G)

∣∣|G̃| = i and B ⊂ G̃
}

12 Find best combination G∗ = argmax
G̃∈B

(
L̂OGI

(⋃
G′∈G̃ G′))

13 if L̂OGI
(⋃

G′∈G∗ G′) − Li−1 > δ then
14 B = ⋃

G′∈G∗ G′
15 Li−1 = L̂OGI (B)

16 else
17 break for loop

18

Since the order in which feature groups are added is also known, alluvial charts
(Allaire et al. 2017) can be created for visualization purposes (see Figs. 2 and 10). In
these charts, we included the number of times feature groups were added as well as
the performance on the test datasets. These charts show how frequently a group was
selected given that another group was already included and thereby highlight robust
combinations of groups.
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5 Comparison of grouped feature importancemethods

After introducing the methodological background of the different loss-based grouped
feature importance measures in Sect. 3, we will now compare them in different sim-
ulation settings. We analyze the impact on all methods for settings where (1) groups
are dependent, (2) correlations within groups vary, and (3) group sizes differ.

5.1 Dependencies between groups and sparsity

In this section, we compare refitting- and permutation-based grouped feature impor-
tance methods and show how different dependencies between groups can influence
the importance scores. We demonstrate the benefits of the sequential grouped feature
importance procedure and conclude with a recommendation of when to use refitting
or permutation-based methods depending on the use-case.

We simulate a data matrix X with n = 1000 instances and 3 groups G1,G2,G3,
with each of them containing 10 normally distributed features. Features are simulated
in such a way that features within each group are highly correlated. However, features
in G3 are independent of features in G1 and G2, while features in G1 and G2 are also
highly correlated with each other. To generate normally distributed features with such
correlation patterns, we follow the approach of Toloşi and Lengauer (2011) and use
prototype vectors in the followingway: (1)We draw n instances of the prototype vector
U ∼ N (0, 1). (2) We generate features in G1 by adding a normally distributed error
term ε ∼ N (0, 0.5) to 10% of the instances of the prototype vector U. (3) Features in
G2 are generated by copying features of G1 and adding a small normally distributed
error term ε ∼ N (0, 0.01) to the copied features. It follows that features withinG1 and
G2 as well as features between the two groups are highly correlated. (4) We generate
a new prototype vector V, which is independent ofU. (5) We generate features for G3
in the same way as done for G1 in step (2) but with the prototype vector V.

The target vector Y is generated by Y = 2U + 1V + ε, with ε ∼ N (0, 0.1). We
fitted a support vector machine with a radial basis function kernel5, as an example of
a black-box algorithm.

The results in Table 3 show that there can be major differences depending on how
the grouped feature importance is calculated. Permutationmethods (GOPFI&GPFI&
GSI) reflect the importance of the groups based on a model trained on a fixed dataset.
In contrast, refitting methods (LOGI & LOGO) retrain the model on a reduced dataset
and can therefore learn new relationships. Looking at the results from the permutation
methods, we can see that the groups G1 and G2 are approximately equally important
while both being more important than G3. However, the results from the refitting
methods can reveal some interesting relationships between the groups. The refitting
methods highlight thatG1 andG2 are more or less interchangeable if we only consider
a performance-based interpretation (which might not coincide with a domain-specific

5 Epsilon regression, ε = 0.1,C = 1 with heuristically chosen kernel width according to (Caputo et al.
2002) (here: σ = 0.079).
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Table 3 Results of different feature importance calculations of the simulation

Group GOPFI GPFI GSI LOGI LOGO

G1 6.04 (± 0.37) 2.64 (± 0.07) 4.12 (± 0.45) 3.93 (± 0.75) −0.01 (± 0.02)

G2 5.90 (± 0.35) 2.57 (± 0.09) 4.01 (± 0.47) 3.93 (± 0.76) −0.00 (± 0.02)

G3 1.76 (± 0.39) 1.75 (± 0.05) 1.54 (± 0.39) 0.58 (± 1.01) 1.01 (± 0.22)

GSI scores were calculated without approximation, with vperm as value function (see Eq. 14). All results
were averaged by a 10-fold cross-validation scheme, with standard deviations reported in parentheses

G1, MSE = 1.204, n = 46

G2, MSE = 1.219, n = 54

G1.G3, MSE = 0.206, n = 46

G2.G3, MSE = 0.206, n = 54

G1.G2.G3, MSE = 0.196, n = 15

Fig. 2 Sequential grouped feature importance for the simulation in Sect. 5.1. 100 times repeated subsam-
pling. Improvement threshold δ = 0.001. Vertical bars show one step of the sequential procedure (left to
right). Height of the vertical bars represent the number of subsampling iterations that a combination of
groups was chosen. MSE scores show predictive performance. Streams represent the addition of a group

perspective)6. Hence, the two groups do not complement each other. This is reflected
by the near-zero LOGO scores, which indicate that leaving each group out of the full
model does not considerably change the model’s expected loss.

Figure 2 illustrates the results of the sequential procedure introduced in Algorithm
1. We see that across 100 subsampling iterations, G1 was chosen 46 times as the most
important first group, andG2 was chosen 54 timeswith similar predictive performance
for both groups, while G3 was never chosen as the first most important group. Hence,
similar to LOGI, we can see that if only one group can be chosen, it would either
be G1 or G2 with approximately the same probability. In the second step, the group
G3 was added in all cases to either G1 or G2 (depending on which group had been
chosen in the first step). This step resulted in an on-average drop in the MSE score
from 1.2 to 0.2. In only a few cases (15 out of 100), the final addition of either G1 or
G2 to a full model in step 3 exceeded the very low chosen threshold of δ = 0.001.
This rather unlikely improvement is represented by the proportionally narrower band
that connects the second and the third step (dark gray bars) in the chart in Fig. 2. This
reveals that these two groups are—from a performance or loss perspective—rather
interchangeable and do not benefit from one another.

6 It is possible that adding a group of features to themodel might not lead to a better model performance, but
the group may still be relevant due to the domain-specific context. However, this depends on the regarded
use case. All our interpretations here are purely statistical.
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The choice between using permutation-based or refitting-based grouped feature
importance methods might depend on the number of groups and correlation strength
between the different groups. If feature groups are distinct and features between the
groups are almost uncorrelated, we might prefer permutation over refitting methods
due to lower computation time. In cases where groups are correlated with each other
(e.g., because some features belong to multiple groups), refitting methods might be
preferable, as they are not misleading in correlated settings. Since the number of
groups is usually smaller than the number of features in a dataset, refitting methods
for groups of features could become a viable choice. Furthermore, with the sequential
grouped feature importance procedure, it is possible to find sparse andwell performing
combinations of groups in an interpretable manner. Thus, this approach helps to better
understandwhich groups of featureswere important (e.g., as theyweremore frequently
selected) given that certain groups were already selected.

5.2 Varying correlations within groups

Inmany use cases, it is quite common to group similar (and therefore, often correlated)
features together, while groups of features may be almost independent of each other.
However, compared to Sect. 5.1, correlations of features within groups might differ.
We created a data matrix X with n = 1000 instances and 4 groups G1, G2, G3,
and G4, with each of these groups containing 10 normally distributed features. Using
fivefold cross-validation, we fitted a random forest with 2000 trees and a support
vector regression with a radial basis function kernel.7 The univariate target vector Y
is defined as follows:

Z j = 3X2
G j ,3 − 4XG j ,5 − 6XG j ,7 + 5XG j ,9 · d j , j ∈ {1, 2, 3}

Y =
3∑
j=1

Z j + ε

with

d j =
{
1, if mean(XG j ,8) > 0

0, otherwise

and ε
i id∼ N (0, 1). The i−th feature of the j-th group is denoted byXG j ,i . We repeated

the simulation 500 times.
It follows that G1, G2, and G3 have the same influence on the target variable, while

G4 has no influence on Y. We generate the feature space X—similar to the approach
in Sect. 5.1—as follows: (1) For each feature group j , we generate a prototype vector
U j ∼ N (0, 1)with n instances. (2)Wegenerate the features of a groupG j by altering a
proportionαwith 0 ≤ α ≤ 1of the n instances ofU j .We alter these instances by taking

7 We used a cost parameter of C = 1 and estimate the kernel width based on the heuristic introduced by
Caputo et al. (2002)
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aweighted average between the respective values ofU j (20%) and a standard normally
distributed random variableWi (80%). For the results shown in Fig. 3, we set α to 0.1
for all features within the same group. Hence, correlations within groups are the same
(around 90%) for all groups, while groups themselves are independent of each other.
The plots show that all methods correctly attribute the same importance to the first
three groups, while the fourth group is not important for predictingY. The lower plots
in Fig. 3, on the other hand, correlations within groups vary across groups. The altering
proportion parameter α is set to 0.1 for features of G1 and G4, to 0.3 for features of
G2, and to 0.6 for features of G3. Hence, features in G1 and G4 are highly correlated
within the respective group, while features within G2 and G3 show a medium and
small correlation, respectively. While G4 is still recognized to be unimportant, the
relative importance of groups 1 to 3 drops with decreasing within-group correlation.
This artifact seems—at least, in this simulation setting—to be even more severe for
the random forest compared to the support vector machine. For example, G3 is on
average less than half as important as G1 for permutation-based methods. Thus, none
of themethods reflect the true importance of the different groups of the underlying data
generating process.A possible reason for this artifact is that the regardedmodel learned
effects different from those given by the underlying true relationship. Especially for
the random forest, this has already been studied extensively in the presence of different
correlation patterns in the feature space (Strobl et al. 2008; Nicodemus et al. 2010).
Additionally, Hooker and Mentch (2019) showed that permutation-based methods are
more sensitive in this case than refitting methods, which is also visible for both models
in Fig. 3. Since the model is learned on the original feature space and group structures
are not considered in the modelling process, we can also observe this effect when
applying grouped feature importance methods. This is due to the fact that we can only
quantifywhichgroups are important for themodel or algorithmperformance but not for
the underlying data generating process, which is usually unknown. Another approach
to quantify feature importance when using random forests is to extract the information
on how often a feature has been used as a splitting variable for the different trees. The
feature chosen for the first split has the most influence within each tree. Hence, we
calculated for each repetition the percentage of how often a feature is chosen as the
first splitting feature. The distribution over all repetitions is displayed in Fig. 4. Each
of the features of G1 is on average chosen more often as the first splitting feature
than all features of the other groups, no matter if it has an influence on the target or
not. The influential features of G3 (which has the lowest within-group correlation) are
rarely chosen as the first splitting feature. This observation confirms the results of the
grouped importance methods in Fig. 3, since all of them rank G3 as least important
from the influential feature groups.

Note that while GPFI and LOGO are calculated with reference to the full model’s
performance—which on average leads to higher absolute values than the two counter-
methods based on the null model’s performance—GOPFI and LOGImight lead to less
robust results, as the newly learned effects as well as the approximation of the per-
mutation effect underlie a higher uncertainty. This effect might increase when relative
values instead of absolute values are considered due to smaller absolute importance
scores of GOPFI and LOGI. However, the methods are only comparable on a relative
scale. This effect is also visible in the boxplots of Fig. 3. Furthermore, LOGI can also
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Fig. 3 Upper (lower) plots: Grouped relative importance scores in the case of equally sized (varying sizes
of)within-group correlations for random forest (left) and SVM (right). Relative importance is calculated by
dividing each of the absolute group importance scores by the importance score of G2. Hence, the relative
importance of G1 is 1. Boxplots illustrate the variation between different repetitions

take negative values in the case of G4, as the feature group does not affect the target
in the underlying data generating process, and hence it might be counterproductive to
only include G4 compared to the null model.

5.3 Varying sizes of groups

Another factor to consider when calculating grouped rather than individual feature
importance scores is that differinggroup sizesmight influence the rankingof the scores.
Groups with more features might often have higher grouped importance scores and

123



Grouped feature importance and combined features effect...

Fig. 4 Percentage of how often each feature is chosen as the first splitting feature within the trained random
forests. Results have been averaged over the cross-validation folds for each repetition. Boxplots show the
distribution over all 500 repetitions

might contain more noise features than smaller groups. Therefore, Gregorutti et al.
(2015) argue that in case one must decide between two groups that have an equal
importance score, one would prefer the group with fewer features. Following from
that, they normalize the grouped feature importance scores regarding the group size
with the factor |G|−1. This is also used in the default definition of the grouped model
reliance score in Valentin et al. (2020). However, the usefulness of normalization
highly depends on the question the user would like to answer. This is illustrated in a
simulation example in Fig. 5. We created a data matrixXwith n = 2000 instances and
2 groups, with G1 containing {x1, . . . x6} and G2 containing {x7, x8} i.i.d. uniformly
distributed features on the interval [0, 1]. The univariate target variable Y is defined
as follows:

Y = 2X1 + 2X3 + 2X7 + ε, with ε
i id∼ N (0, 1).

We used 1000 observations for fitting a random forest with 2000 trees and 1000
observations for prediction and calculating the GSI as defined in Sect. 3.3 with a
permutation-based value function. This was repeated 500 times. Figure 5 shows that
G1 is about twice as important as G2. As shown in Sect. 3.3 and Appendix B, we
can compare the GSI with the Shapley importance on feature level. In case there are
no higher-order interaction terms between groups modeled by the random forest, the
single feature importance scores will approximately sum up to the grouped importance
score, as shown in this example. This provides a more detailed view of how many and
which features are important within each group. In this case, there are two equally
important features in G1 and one equally important feature in G2. If we use the
normalization constant in this example, we would divide the grouped importance
score of G1 (which is on average approximately 1.1) by 6 and the one of G2 (which
is on average approximately 0.55) by 2. Consequently, G2 with a normalized score of
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Fig. 5 Shapley importance on group (left) and on feature level (right). Boxplots show the variation between
the 500 repetitions of the experiment

approximately 0.27 would be regarded as more important than G1 with a normalized
score of approximately 0.18. It follows that if we must decide between two groups, we
would choose G2 when we follow the approach of Gregorutti et al. (2015). However,
since G1 contains two features with the same importance as the one important feature
of G2, and hence G1 contains more information from a statistical perspective, the user
might prefer G1. Furthermore, breaking down the GSI to the single-feature Shapley
importance scores puts the user in the position of defining sparser groups by excluding
non-influential features.

Finally, Table 4 presents a summary of the key takeaways regarding all discussed
grouped feature importance methods.

6 Feature effects for groups

Feature effect methods quantify or visualize the influence of features on the model’s
prediction. For a linear regression model, we can easily summarize the feature effect
in one number, thus making interpretation very simple: If we change feature x1 by
one unit, our prediction will change by the corresponding coefficient estimate β̂1
(positively or negatively depending on the sign of the coefficient). For more complex
non-linear models like generalized additive models, such a simplified summary of the
feature effect is not adequate, as the magnitude and sign of the effect might change
over the feature’s value range. Hence, it is more common to visualize the marginal
effect of the feature of interest on the predicted outcome. Since ML models are often
complex non-linear models, different visualization techniques for the feature effect
have been introduced in recent years. Common methods are PDP, ICE curves or
ALE (Friedman 2001; Goldstein et al. 2013; Apley and Zhu 2019), which show how
changes in the feature values affect the predictions of the model. However, these are
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Table 4 Overview of pros and cons of the grouped feature importance methods

Criteria GOPFI & GPFI GSI LOGI & LOGO

Time efficient Yes (in comparison to
alternatives)

Depends on number
of groups

Depends on number
of groups

Dependencies between
groups (Sect. 5.1)

No full picture No full picture More insights than
permutation-based
if regarded together

Identify well performing
combinations of
groups (Sect. 5.1)

Not in general Not in general Only LOGI wihin
Algorithm 1

Correlations within
groups but
independence between
groups (Sect. 5.2)

Depends on learned
effects of the model,
less problematic if
within group
correlations do not
differ strongly
between groups

Depends on learned
effects of the model,
less problematic if
within group
correlations do not
differ strongly
between groups

More robust than
permutation-based
methods but still
dependent on
learned effects

Drilldown of grouped
importance score on
feature level (Sect. 5.3)

No Yes (approximately
depending on the
influence of
higher-order
interactions)

No

While GOPFI is less relevant on its own, LOGI can provide insightful interpretations, e.g., if feature
groups are correlated with each other or when used within the sequential procedure introduced in Sect. 4.
The sequential procedure is the only method that can identify well performing and sparse combination of
groups. Note that GSI is only evaluated w.r.t. a permutation-based calculation

usually only defined for a maximum of two features. For larger groups of features,
this becomes more challenging, since it is difficult to visualize the influence of several
features simultaneously. The approach described in this section aims to create effect
plots for a predefined group of features that have an interpretation similar to that
of the single-feature PDP. To achieve this, we transform the high-dimensional space
of the feature group into a low-dimensional space by using a supervised dimension
reduction method, which is discussed in Sect. 6.1. We want to find a few underlying
factors that are attributed to a sparse and interpretable combination of features that
explain the effect of the regarded group on the model’s expected loss. We provide a
detailed description of this method in Sect. 6.3 and introduce the resulting combined
features effect plot (CFEP). In Sect. 6.4, we illustrate the advantages of applying a
supervised rather than an unsupervised dimension reduction method and compare our
method to the main competitor, which is the totalvis effect plot introduced in Seedorff
and Brown (2021).

6.1 Choice of dimension reductionmethod

The most prominent dimension reduction technique is arguably PCA (Jolliffe 1986).
PCA is restricted to explaining most of the variance of the feature space, and the iden-
tified projections are not related to the target variable (for more details see Appendix
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C.1). Becausewewant to visualize themean prediction of combined features as a result
of the dimension reduction process, we prefer supervised procedures that maximize
dependencies between the projected dataXV—withV being a projectionV ∈ R

p×p—
and the target vector Y (as we show in Sect. 6.4). Many methods for supervised PCA
have been established. For example, see Bair et al. (2006), who used a subset of
features that were selected based on their linear correlation with the target variable.
Another very popular method that maximizes the covariance between features and the
target variable is partial least squares (PLS) (Wold et al. 1984). The main difference
between these methods and the supervised PCA (SPCA) introduced by Barshan et al.
(2011) is that the SPCA is based on a more general measure of dependence, called
the Hilbert-Schmidt Independence Criterion (HSIC). This independence measure is
constructed to be zero, if and only if any bounded continuous function between the
feature and target space is uncorrelated. In practice, an empirical version of the HSIC
criterion is calculated with kernel matrices. It follows that while this SPCA tech-
nique can cover a variety of linear and non-linear dependencies between X and Y by
choosing an appropriate kernel, the other suggested methods are only able to model
linear dependencies between the features and the target variable. The approach that is
probably best suited for our application of finding interpretable sets of features in a
high-dimensional dataset is the method called sparse SPCA, described in Sharifzadeh
et al. (2017). Similar to the SPCA method from Barshan et al. (2011), sparse SPCA
not only uses the HSIC criterion to maximize the dependency between projected data
XV and the target Y, but also incorporates an L1 penalty of the projection V for
sparsity. The sparse SPCA problem can be solved with a penalized matrix decompo-
sition (Witten et al. 2009). More theoretical details on the sparse SPCA, including the
HSIC criterion and how it can be calculated empirically, and the choice of kernels and
hyperparameters can be found in Appendix C.

6.2 Totalvis effect plot

Seedorff and Brown (2021) recently introduced a method that aims to plot the com-
bined effect of multiple features by using PCA. Their approach can be described as
follows: First, they apply PCA on the regarded feature space to receive the principal
components matrix after rotation. For the principal component of interest, they create
an equidistant grid. Second, for each grid value, they replace all values of the selected
principal component with this grid value and transform the matrix back to the original
feature space. Third, The ML model is applied on these feature values and a mean
prediction for the grid point of the regarded principal component is calculated. Steps
2 and 3 are repeated for all grid points.

Hence, with this method, combined effect plots for up to p principal components
can be created. Thus, Seedorff and Brown (2021) do not focus on explaining groups of
features explicitly. Furthermore, they use PCA for unsupervised dimension reduction,
and thus, projections might not be related to the target. Due to using PCA and not
sparse PCA, the results might be difficult to interpret, as many or all features might
have an influence on the principal component. Lastly, with the back-transformation
from the principal component matrix to the original feature space, all feature values
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change and might not be meaningful anymore. For example, in the case of integer
features, the back-transformation might lead to real feature values. We illustrate the
drawbacks of the method compared to the CFEP in Sect. 6.4.

6.3 Combined features effect plot (CFEP)

The CFEP picks up the idea of PDPs (Friedman 2001) and extends it to groups of
features. The partial dependence function is defined as

f PD
S (xS) = EXC [ f̂ (xS, XC )] (17)

with S ⊂ {1, . . . , p} and C = {1, . . . , p}\S. Since the joint distribution of XC is
usually unknown, the Monte Carlo method is used to estimate f PD

S (xS):

f̂ PD
S (xS) = 1

n

n∑
i=1

f̂ (xS, x
(i)
C ) (18)

Hence, we marginalize over all features in C and with that we obtain the average
marginal effect for the feature subset in S. The PDP usually visualizes this average

marginal effect for |S| ≤ 2 by plotting
(
x(k)
S , f̂ PD

S (x(k)
S )

)
for some pre-specified grid

points k = {1, . . . ,m}.8 However, this is usually only possible for |S| ≤ 2 and thus
not directly applicable to visualize the combined effect of feature groups. To obtain a
visualization in the case of |S| > 2, we need to reduce the dimensions and therefore
define the CFEP of a certain group of features G as follows:

(1) We first apply a suitable (preferably supervised) dimension reductionmethod (e.g.,
here we use the sparse SPCA, however, the CFEP follows a modular approach
and hence the dimension reduction method is exchangeable) on features in G ⊂
{1, . . . , p} to obtain a low dimensional representation of the feature group G.
We denote these principle component functions—which are ordered according to
relevance9 and which possibly depend on a reduced set of features10 S j ⊆ G with
j ∈ {1, . . . , |G|}—by g j : XS j −→ R.

(2) For visualization purposes, we choose from all possible g j with j ∈ {1, . . . , |G|}
a principle component function

g : XS −→ R (19)

(with S being its reduced set of features) which serves as a proxy for the feature
group G. We usually only consider the first few principle components.

8 For example, by using an equidistant grid or a random sample of values of xS .
9 The relevance is defined by the objective that is optimized by the dimension reduction method. For sparse
SPCA this is the HSIC criterion (see also Appendix C) and for PCA it is the explained variance.
10 If a dimension reduction method which results in a sparse solution (e.g., sparse SPCA) is applied, then
S j is only a subset of G and might differ for different principal components.
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(3) We calculate the average marginal effect f̂ PD
S (xS) of the feature set S exactly as

in Eq. (18).

(4) We visualize the CFEP by plotting
(
g(x(i)

S ), f̂ PD
S (x(i)

S )
)
for each observation in

the dataset.

Hence, the CFEP visualizes the average marginal effect of features in S against the
combinations of features received by the dimension reduction method (e.g., a linear
combination of a principal component in the case of sparse SPCA) and thus shows
how different values of g(xS) affect the predictions of a given model. For a feature
group, several principle components g j and hence several CFEPs may be of interest.

The CFEP is defined in Algorithm 2, but we will demonstrate the procedure of
constructing a CFEP with the illustrative example in Fig. 6. In this example, we have
two predefined groups of features, where the first group contains x1, x2, and x3, and the
second group contains features x4 and x5. The sparse SPCA on the first group yields
a first principal component (g1) with the loadings 0.3 for x1, 0.6 for x2 and 0.5 for x3
(step 1 to 3 of Algorithm 2). It follows that S = {1, 2, 3} and that the low dimensional
representation of interest is g1. For the construction of a CFEP for g1, mean predictions
for the principal component are calculated for each observation. To calculate the mean
prediction of the first observation (shown in red), we replace the values of features
with non-zero loadings of g1 of each instance in the dataset by the feature values of the
first observation (step 6 in Algorithm 2). A prediction vector ŷ(1)

rep is then calculated
with the previously trained model (step 7 in Algorithm 2). The value on the y-axis
for the red point in the graph below corresponds to the mean over all predictions for
the first observation: ¯̂y(1)

rep = (0.8 + 0.2 + 0.7 + 0.6 + 0.4 + 0.3)/6 = 0.5. The value
on the x-axis is the linear projection of the first observation for the regarded principal
component (step 8 and 9 in Algorithm 2). Hence, it is calculated by the weighted sum
of feature values x (i)

1 to x (i)
3 , where the weights are defined by the loadings of the

respective principal component that we receive with sparse SPCA.
In contrast to PDP or totalvis effect plots, CFEP produces a point cloud instead of

a curve. The CFEP is, mathematically speaking, not a function, since points on the
x-axis correspond to linear projections of features within a group. A point z on the
x-axis can have multiple combinations of features, which lead to z and have different
mean predictions on the y-axis. However, we now have the possibility to interpret the
shape of the point cloud and can draw conclusions about the behavior of the mean
prediction of the model regarding a linear combination of features of interest.

6.4 Experiments on supervised versus unsupervised dimension reduction

Asdiscussed in Sect. 6.1, PCAmight be themost popular dimension reductionmethod.
However, since PCA is unsupervised, it does not account for the dependency between
the feature space and the target variable. To evaluate the degree to which this drawback
influences CFEP, we examine two regression problems on simulated data. The first is
defined by a single underlying factor depending on a sparse set of features, which can
be represented by a single principal component. The linear combination of this feature
set is also linearly correlated with the target variable. The second regression problem
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Group 1 Group 2
x1 x2 x3 x4 x5

1 -1 2 2.5 3
-2 1.5 3 -2 -1
2.3 4 -1 6 2
-6.5 8 0 5 1
0.5 1 2 4 2
4 -2 2 3 3

→
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1 x

(1)
2 x

(1)
3 x4 x5
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→
predict
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Fig. 6 Explanation of estimating and visualizing CFEP; the x-coordinate reflects the linear combination

of features with non-zero loadings for g1, and the y-coordinate reflects the mean predictions ¯̂y(i)
rep for

each observation i . The substitution of values for each observation is only done for features with non-zero
loadings

contains two underlying factors that depend on two sparse sets of features. While the
linear combination of the first feature set is also linearly correlated with the target,
the second factor has a quadratic effect on Y. In both cases, we compare the usage of
sparse supervised and unsupervised PCA (sparse SPCA and sparse PCA) as dimension
reduction methods within CFEP and compare them to the totalvis effect plot. Here, we
investigate if the respective dimension reduction method does correctly identify the
sparse set of features for each group. Additionally, we determine how accurately we
can predict the true underlying relationship between the linear combination of these
features and the target variable. Since we simulated the data, we know the number of
underlying factors (principal components).

6.4.1 One factor

In this example, we created a data matrixXwith 500 instances of 50 standard normally
distributed features with decreasing correlations. Therefore, all features are generated
as done in Sect. 5.2. The altering proportion α is set to 0.2 for the first 10 features, to
0.4 for the next 10 features, and to 1 for the last 10 features. Thus, while the first 10
features are highly correlated with each other, the last 10 features are approximately

123



Q. Au et al.

Algorithm 2: Combined Features Effect Plot

input : Dataset D = {(x(i), y(i))}ni=1,
group G ⊂ {1, ..., p},
model f̂ trained on D.

output: Combined Features Effect Plot

1 Perform sparse SPCA on D̊ := {(x(i)
G , y(i))}ni=1;

2 Choose a principle component function of interest g;
3 Let S ⊆ G be the sparse set of features of g;
4 for i ∈ {1, ..., n} do
5 get feature values x(i)

S ;

6 create D(i)
rep by replacing feature values from S of every observation with x(i)

S ;

7 predict vector ŷ(i)
rep by applying f̂ on D(i)

rep row-wise;

8 calculate the mean prediction ¯̂y(i)
rep of ŷ(i)

rep ;

9 save g(x(i)
S ) as x-coordinate and ¯̂y(i)

rep as y-coordinate of observation i for the CFEP (see
Eq. (19));

The CFEP can be used as a descriptive method to better understand the effect of a group of features on the
target variable. The dimension reduction method in step 1 is exchangeable.

uncorrelated with each other. The sparse subgroup defined by the variable Z is a linear
combination of 5 features from X and has itself a linear effect on the target variable
Y:

Z = X5 − 2X8 − 4X25 + 8X47 + 4X49

Y = Z + ε, with ε
i id∼ N (0, 1).

Hence, according to our notation, GZ is defined by GZ = {5, 8, 25, 47, 49}, and thus,
XGZ is the related subset of all features. We drew 100 samples and fitted a random
forest with 2000 trees with each sample drawing. We used the 10-fold cross-validated
results to perform sparse SPCA. For each dimension reduction method, we estimate
Ẑ by summing up the (sparse) loading vector (estimated by the dimension reduction
method) multiplied by the feature matrixX. Therefore,XGẐ

is defined by the received

sparse feature set. The mean prediction ¯̂Yrep for the CFEP is calculated as described
in Sect. 6.3.

The impact of choosing a supervised over an unsupervised sparse PCA approach
is shown in Fig. 7, which also shows the average linear trend and 95% confidence
bands of CFEP for the simulation results. To evaluate how well the estimated mean
prediction ¯̂Yrep approximates the underlying trend, we assume that we know thatZ has
a linear influence on the target. Thus, we fit a linear model on each simulation result.
To compare the received regression lines, we evaluate each of them on a predefined
grid and average over all 100 samples (represented by the red line). The confidence
bands are then calculated by taking the standard deviation over all estimated regression
lines on grid level and calculating the 2.5% and 97.5% quantiles using the standard
normal approximation. The associated calculation steps for each of the 100 samples
can be summarized as follows:
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Fig. 7 Average linear trend and confidence bands of CFEP over all samples using sparse SPCA (left) and
sparse PCA (middle) compared to estimated totalvis effect curves over all 100 samples for the first principal
component (black) and the average linear trend (red) (right) (Color figure online)

(1) Estimate a linear model f̂ (XGẐ
) ∼ Z.

(2) Define an equidistant grid of length 50 within the range of Z.
(3) Apply the linear model estimated in 1) on the grid defined in 2).
(4) Repeat steps 1 to 3 for f̂ (XGZ) by using the true underlying features of Z to

calculate the combined features dependencies that we call the ground truth.

The left plot in Fig. 7 shows a similar linear trend of the estimated CFEP compared
to the average ground truth (represented by the blue line), while the red line in the right
plot varies around 0. By using sparse SPCA, the underlying feature set XGẐ

is better

approximated than with sparse PCA, which is reflected in the MSE between Z and Ẑ
of 0.7 for sparse SPCA and 1.9 for sparse PCA. Figure 8 provides an explanation for
those differences. While sparse SPCA (on average) more strongly weights features
that have a large influence on the target, impactful loading weights for sparse PCA are
solely distributed over highly correlated features in X that explain the most variance
in the feature space. Thus, including the relationship between the target and X in the
dimension reduction method may have a huge influence on correctly approximating
the underlying factor and, hence, also on the CFEP.

Similar to using sparse PCA as a dimension reduction method within CFEP, on
average, the totalvis effect curves based on PCA do not show a clear positive linear
trend (see Fig. 7). For almost half of the samples, we even receive a negative instead
of a positive trend for the underlying factor. The interpretation is opposite to the actual
effect and, hence, is misleading.

6.4.2 Two factors

In real-world data settings are often more complex by containing non-linear relation-
ships and the target variable is described by more than one underlying factor. Hence,
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Fig. 8 Distribution of feature loadings in sparse SPCA (top) and sparse PCA (bottom) over all samples.
Rhombuses denote the mean values, with the blue rhombuses indicating the features that have an influence
on the target in the underlying model formula (Color figure online)

we now examine a more complex simulation setting to assess if we can observe the
same behavior that we observed for the simple case. To that end, we simulated a data
matrix X with 500 instances for two feature sets, each containing 20 standard nor-
mally distributed features. The data for each feature set is generated as described in
Sect. 5.2 but with an altering proportion of 0.15 and 0.35 for the features in the first
set and 0.55 and 0.85 in the second set. Hence, within each set, the first ten features
show a higher correlation among each other than the last ten features. Additionally,
all features of the first set are on average more highly correlated than all features of
the second set. Features between the two sets are uncorrelated. The first factor Z1 is a
linear combination of four features from the first set and Z2 of two features from the
second set. Z1 has a linear and Z2 a quadratic effect on Y.

Z1 = 3X3 − 2X8 − 4X13 + 8X18

Z2 = 2X25 + 4X35

Y = Z1 + Z2
2 + ε, with ε

i id∼ N (0, 1).

Again, we drew 100 samples and fitted a random forest with 2000 trees with each
sample drawing. The approach is almost the same as described for one factor, with
the difference being that we use the first two principal components (as we want to find
two sparse feature sets instead of one).

In Fig. 9, the average linear and quadratic trend of the underlying CFEPs of Z1
and Z2 are depicted for both dimension reduction methods. While the average linear
regression line of sparse SPCA matches the average ground truth almost perfectly
for Z1, the associated line of sparse PCA shows only a slightly positive trend and
differs substantially from the ground truth. Regarding Z2, a similar propensity can be
observed for the quadratic shape. Again, this behavior results from sparse SPCA (on
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Fig. 9 Top (Z1): Average linear trend and confidence bands of CFEP over all samples using sparse SPCA
(left) and sparse PCA (middle) compared to estimated totalvis effect curves over all 100 samples for first
principal component (black) and the average linear trend (red) (right). Bottom (Z2): Same structure as for
Z1, but showing the quadratic trend of Z2 (Color figure online)

average) more strongly weighting features that have a large effect on the target, while
the unsupervised version focuses on features that explain the most variance in X.

The estimated linear trend of the totalvis effect curves for the first principal com-
ponent is negative instead of positive. Thus, for most of the samples and on average,
these results are completely misleading (see Fig. 9). The quadratic shape of the second
component is (on average and for almost all samples) steeper than the average ground
truth. Additionally, the deviation is higher here than for CFEP with sparse SPCA.

7 Real data example: smartphone sensor data

Smartphones and other consumer electronics have increasingly been used to collect
data for research (Miller 2012; Raento et al. 2009). The emerging popularity of these
devices for data collection is grounded in their connectivity, the number of built-in
sensors, and their widespread use. Moreover, smartphones enable users to perform
a wide variety of activities (e.g., communication, shopping, dating, banking, naviga-
tion, listening to music) and thus provide an ideal means to study human behavior
in naturalistic contexts, over extended periods of time, and at fine granularity (Harari
et al. 2015, 2016, 2017). In this regard, smartphone data has been used to investigate
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individual differences in personality traits (Stachl et al. 2017; Harari et al. 2019), in
human emotion and well-being (Servia-Rodríguez et al. 2017; Rachuri et al. 2010;
Saeb et al. 2016; Thomée 2018; Onnela and Rauch 2016; Kolenik and Gams 2021),
and in daytime and nighttime activity patterns (Schoedel et al. 2020).

We use a dataset on human behavior, collected with smartphones, to illustrate
methods for group-based feature importance. The PhoneStudy dataset was consoli-
dated from three separate datasets (Stachl et al. 2017; Schuwerk et al. 2019; Schoedel
et al. 2018). It consists of 1821 features on smartphone-sensed behavior and 35 target
variables on self-reported Big Five personality trait dimensions (domains) and subdi-
mensions (facets). The dataset has been published online and is openly available.11

The Big Five personality trait taxonomy is the most widely used conceptualization
of stable individual differences in human patterns of thoughts, feelings, and behavior
(Goldberg 1990). In their original study, Stachl et al. (2020a) used the behavioral vari-
ables to predict self-reported Big Five personality trait scores (five dimensions and
30 subdimensions) and used grouped feature importance measures to explore which
classes of behaviors were most predictive for each personality trait dimension. The
groups in this study were created based on theoretical considerations from past work.

The personality prediction task is challenging because (1) the dataset containsmany
variables on similar behaviors, (2) these variables are often correlated, and (3) effects
with the targets are interactive, very small, and partially non-linear. Many variables
in the dataset can be manually grouped into classes of behavior (e.g., communication
and social activity, app-usage, music consumption, overall phone activity, mobility).

We use this dataset to illustrate the idea of grouped feature importancewith regard to
the prediction of personality trait scores for the dimension of conscientiousness (Table
5). Conscientiousness is a personality trait dimension that globally describes people’s
propensity to be reliable, dutiful, orderly, ambitious, and cautious (Jackson et al. 2010).
We chose this personality trait because it has high practical relevance due to its ability
to predict important life outcomes and behaviors (Ozer and Benet-Martínez 2006).
Here, we (1) fit a random forest model to predict the personality dimension of con-
scientiousness, (2) compute the introduced methods for grouped feature importance
(GOPFI, GPFI, GSI, LOGI, LOGO), (3) use the proposed sequential grouped feature
importance procedure to investigate which groups are most important in combination,
and (4) visualize the effect of different groups with CFEPs. Once the importance of
individual groups has been quantified, CFEPs can be helpful to further explore the
variables in these groups with regard to the criterion variable of interest (i.e., consci-
entiousness) to generate new hypotheses for future research.

In Fig. 10, we show a sequential procedure for our personality prediction example.
The figure shows that the groups overall phone usage and app usage lead to the best
model performance if used alone and, in many cases, lead to even better performances
if combined. The results also suggests that if only one group can be selected, the initial
selection of the feature group app usage more often leads to the smallest expected loss
(mean MSE = 0.519). For a practical application, this would indicate that if only one
type of feature may be collected from smartphones to predict the personality trait
conscientiousness, features on app usage should be used. If two groups of data can

11 https://osf.io/kqjhr/.
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Table 5 Grouped feature importance values for predicting the personality trait conscientiousness based on
MSE

Group GOPFI GPFI GSI LOGI LOGO

Mobility
(Mo)

−0.002
(±
0.011)

−0.002
(±
0.001)

0.000 (±
0.003)

−0.011
(±
0.075)

0.000 (±
0.006)

Music
(Mu)

−0.001
(±
0.011)

0.002 (±
0.002)

0.001 (±
0.006)

−0.019
(±
0.074)

0.001 (±
0.012)

Communication
and
social
(C)

0.000 (±
0.008)

0.001 (±
0.003)

0.004 (±
0.006)

0.008 (±
0.070)

0.001 (±
0.010)

Overall
phone
usage
(O)

0.007 (±
0.011)

0.009 (±
0.003)

0.012 (±
0.008)

0.032 (±
0.080)

0.009 (±
0.014)

App
usage
(A)

0.032 (±
0.009)

0.028 (±
0.005)

0.031 (±
0.012)

0.041 (±
0.069)

0.011 (±
0.019)

All values were calculated using a resampling method (10-times cross-validation)

be collected, overall phone usage should also be added (mean MSE = 0.513). Finally,
the plot indicates that in some cases (n = 9), the additional consideration of music
listening behaviors in the model could lead to additional, small improvements of the
expected loss (mean MSE= 0.508). If a feature group is not added, this means that it
did not make a significant contribution in this iteration of the data split. Interestingly,
the feature group music alone shows very low (or even negative) grouped feature
importance scores. This would mean that music features are only predictive in the
presence of other features.

To additionally explore meaningful and predictive directions in the feature space
of the app usage group, we use CFEPs for the visualization. Subplot (a) in Fig. 11
shows that combinations of higher values in features on weather app usage on average
lead to higher mean values in the personality trait conscientiousness. The increased
frequency in weather app usage could signify the propensity of conscientious people
to be prepared for future eventualities (e.g., bad weather; Jackson et al. 2010). Subplot
(b) shows an interesting non-monotonic relationship between the number of different
apps used each day and themean value in conscientiousness. Subplot (c) shows that the
combinations of higher values in overall phone activities lead to lower mean values in
conscientiousness. Finally, plot (d) shows a similar, negative effect pattern with regard
to music listening behaviors.

8 Conclusion

We introduced various techniques to analyze the importance and effect of user-defined
feature groups on predictions of ML models. We provided formal definitions and dis-
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A, MSE = 0.519, n = 82

O, MSE = 0.526, n = 18

A.O, MSE = 0.513, n = 73

A.O.Mu, MSE = 0.508, n = 9

Fig. 10 Sequential grouped feature importance procedure for smartphone sensor data predicting con-
scientiousness. 100 times repeated subsampling. Inner resampling strategy: 10-fold cross-validation.
Improvement threshold δ = 0.01. Abbreviations: app-usage (A), communication & social (C), music
(Mu), overall phone activity (O), mobility (Mo). Vertical bars show one step in the greedy forward search
algorithm.Height of the vertical bars represent the number of subsampling iterations inwhich a combination
of groups was chosen (for example, out of 100 subsampling iterations the group app-usage (A) was chosen
82 times as the best first group. Streams indicate the proportion of iterations that additionally benefited from
a consequent step. Only streams containing at least 5 iterations and better mean performance at the end are
displayed

tinction criteria for grouped feature importance methods and distinguished between
permutation- and refitting-based methods. For both approaches, we defined two cal-
culation strategies that either start with a null model or with the full model. Based on
these two definitions, we introduced Shapley importance scores for groups, which we
defined for permutation as well as refitting methods. Moreover, we introduced as our
first main contribution a sequential grouped feature importance procedure to find good
and stable combinations of feature groups. To contrast the newly proposed methods
with existing ones, we compared them for different scenarios. The key recommenda-
tions for the user can be summarized for four scenarios: (1) If high correlations between
groups are present, refitting methods should be preferred over permutation methods,
since they often deliver more meaningful results in these scenarios. Moreover, if the
number of groups is reasonably small, refitting methods become computationally fea-
sible. (2) If a sparse set of feature groups is of interest (e.g., due to data availability),
the introduced sequential procedure can be useful. It provides insights regarding the
most important groups: which sparse group combinations are stable in the sense that
they are frequently selected and achieve a good performance. These criteria can be
critically informative in situations where feature groups must be obtained from differ-
ent data sources that are associated with further costs. (3) If the correlation strengths
of features within groups are very diverse, all of the introduced methods might fail
to reflect the true underlying importance of the feature groups. The size of this effect
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x1 = daily_mean_num_unique_Weather_weekend
x2 = daily_mean_num_Weather
x3 = daily_mean_num_unique_Weather_week
x4 = daily_mean_num_unique_Weather
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x1 = daily_mean_num_unique_apps
x2 = daily_mean_num_unique_apps_week
x3 = daily_mean_num_unique_apps_weekend
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Fig. 11 CFEPs for the prediction of the personality trait conscientiousness. g1 describes the first principal
component of the respective group, and g2 describes the second.More details about the features can be found
in Appendix D and on the supplemental website https://compstat-lmu.shinyapps.io/Personality_Prediction/
for Stachl et al. (2020a)

depends heavily on how well the fitted model captures the true underlying relation-
ship between features. Especially when using random forests, we showed that all of
the methods lead to misleading results. (4) Groups with many features might tend to
have a higher grouped importance score than groups with fewer features. Normalizing
the grouped importance score leads to an average score per feature. However, this
might result in choosing groups where grouped scores are smaller than those of other
groups and, hence, contain less (performance-based) information than others. When
using GSI, users can extract additional feature-level information to gain more insights
into the group scores. Specifically, we showed that single feature Shapley importance
scores add up to GSI when no higher-order interactions between groups are present.
As third main contribution we proposed the CFEP, which is another global interpre-
tation method that allows visualizations of the combined effect of multiple features
on the prediction of an ML model. By applying a sparse SPCA, we received more
meaningful and interpretable results for the final CFEPs compared to its unsupervised
counterpart. We also demonstrated the suitability of the method in our real data exam-
ple from computational psychology. Although, we only considered a numeric feature
space here, all methods are in general also applicable to mixed feature spaces. How-
ever, in the presence of categorical features, a suitable dimension reduction method
for CFEP must be chosen.

Here, we have focused on knowledge-driven feature groupings. However, the intro-
duced methods could also be applied to data-driven groups (e.g., via shared variance).
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Notably, their interpretation is only meaningful if groups can be described by some
underlying factor. This might be a good application for interpretable latent variables
to find causal relationships between feature groups and predictions of ML models.
Additionally, with regard to highly correlated feature groups that cannot be grouped
naturally, a data-driven approach might be more suitable.

It is our goal that this article not only provides a helpful reference for researchers in
selecting appropriate interpretation methods when features can be grouped, but also
that it inspires future research in this area.
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Appendix AMotivational example for grouped importancemethods

In some settings, permuting single features individually might not be meaningful,
for example, when categorical features are dummy-encoded. Table 6 shows for two
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Table 6 We draw 1000 samples of two independent categorical random variables X1, X2 ∈ {1, 2, 3, 4}
where the categories 1 and 2 occur four times more frequently than 3 and 4

Method X1 X2,2, X2,3, X2,4 X2,2 X2,3 X2,4

Individually permuted 2.63 – 2.45 1.00 1.71

Group-wise permuted 2.63 2.65 –

Consider the target y = 5 · 1X1 	=1 + 5 · 1X2 	=1 + ε with ε ∼ N (0, 1). Both categorical features have the
same influence on the target. We explicitly dummy encode X2 using X2 = 1 as the reference category to
obtain 3 binary features X2,k = 1X2=k , k ∈ {2, 3, 4}. We fit a linear model using the categorical feature X1
and the binary features X2,2, X2,3, X2,4. Here, we want to illustrate why it makes more sense to permute
the 3 binary features jointly rather than individually, since they naturally belong together. As expected,
permuting the binary features X2,2, X2,3, X2,4 jointly as a group yields a comparable importance to X1.
However, permuting each binary feature individually gives different importance scores making it unclear
how important X2 is compared to X1

equally important categorical features that if one feature is dummy-encoded (here: X2),
then all resulting binary features must be permuted as a group to obtain a comparable
importance score to X1. Hence, settings like in Table 6 or as described in Sects. 1 or
1.2 point out the need of grouped importance methods.

Appendix B Shapley importance

B.1 Properties of the grouped Shapley importance

For single features12 xi ∈ {1, . . . , p}, which are divided into l groups, we define the
marginal contribution for xi as

�{xi }(S) = v(S ∪ {xi }) − v(S),

for S ⊂ {1, . . . , p}\{xi }. The Shapley importance for single features φ(xi ) can also
be defined analogously to (15). One interesting question is, does the GSI for a group
G ⊂ {1, . . . , p} decompose into the sum of Shapley importances of features in G? In
the following, we want to analyze the remainder

R = φ(G) −
∑
i∈G

φ(xi ). (B1)

Similar to the functional ANOVA decomposition (Hooker 2004), we assume, that
the value function for a coalition S ⊂ {1, . . . , p} can be broken down into main and
interaction effects

v(S) = v0 +
∑
xi∈S

v(xi ) +
∑
i 	= j

εi j +
∑

i 	= j 	=k

εi jk + · · · , (B2)

12 Remember the one-to-one association of the numbers 1, . . . , p and the features x1, . . . , xp
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where εi ...m is the effect of the interaction between the features xi , . . . , xm ∈ S. A
needed requirement to apply this decomposition is that each of the functional terms has
zero means, hence they need to be centralized. The considered intercept shift is stored
in v0. To receive a unique decomposition, the orthogonality between the functional
terms needs to be fulfilled which is not the case in the presence of correlated features.
Hooker (2007) therefore suggests the generalized functional ANOVA which replaces
the orthogonality property with a hierarchical orthogonality condition and which is a
weighted version of the standard functional ANOVA (Hooker 2004). However, we do
not try to estimate or calculate the decomposed function terms, we only use the (valid)
assumption that a function can be decomposed as in Eq. (B2) to show how GSI relates
to Shapley importance for individual features. Hence, we are not directly interested in
a unique solution of the decomposition.

With the assumption in Eq. (B2), it follows that the Shapley importance of a single
feature x1 (without loss of generality) can be written as

φ(x1) = v(x1) + 1

2

⎛
⎝

p∑
i 	=1

ε1i

⎞
⎠ + 1

3

⎛
⎝

p∑
i 	= j 	=1

ε1i j

⎞
⎠ + · · · + 1

p
ε1...p. (B3)

The value function of the feature x1 contributes to the Shapley importance with the
weight 1 and all possible interaction effects with feature x1 contribute with the recipro-
cal length of the interaction effect. We proved this assertion in Appendix B.2. Similar
to (B3), the GSI of a group G1 (w.l.o.g.) can be written as

φ(G1) = v(G1) + 1

2

⎛
⎝

k∑
i 	=1

εG1Gi

⎞
⎠ + 1

3

⎛
⎝

k∑
i 	= j 	=1

εG1GiG j

⎞
⎠ + · · · + 1

k
εG1...Gk ,(B4)

where εG1...Gk is the (non-computable) interaction effect between features of groups
G1, …, Gk , where each group provides at least one feature. By using Eq. (B2) on
v(G1), we get:

v(G1) =
∑
i∈G1

v(xi ) +
∑

i 	= j∈G1

εi j +
∑

i 	= j 	=k∈G1

εi jk + · · · (B5)

Looking back at Eq. (B1), a lot of terms cancel out by using Eqs. (B3) and (B5).
The term v(G1), meaning all main effects v(xi ), i ∈ G1, and all interaction effects
εi,...,k, 1 ≤ k ≤ |G1| between features within G1, cancels out entirely.13 Furthermore,
at least all two-way interaction effects between groups εG1Gi , i = 2, . . . , k cancel
out. A combination of higher-order interaction terms between features of G1 and
{1, . . . , p}\G1 remain.14 This means that the remainder R is (usually) not equal to
zero in case the applied algorithm learned a higher-order interaction between features

13 Note, v(G1) cancels out, meaning that these interaction terms cannot be computed directly but are
assumed to affect the “payout” of the value function.
14 They mostly only partly cancel out, depending on the number of features within the groupsG1, . . . ,Gk .
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of the regarded group and other groups. The higher the remainder, the larger the higher-
order interaction effect. Thus, the remainder can be used as a quantification of learned
higher-order interaction effects between features of different groups.

B.2 Proof of Properties

Assume, that the value function for a coalition S ⊂ {x1, . . . , xp} can be broken down
into main and interaction effects:

v(S) =
∑
xi∈S

v(xi ) +
∑
i1 	=i2

εi1i2 +
∑

i1 	=i2 	=i3

εi1i2i3 + · · · ,

the Shapley importance of a single feature x1 can be written as

φ(x1) = v(x1) + 1

2

⎛
⎝

p∑
i 	=1

ε1i

⎞
⎠ + 1

3

⎛
⎝

p∑
i 	= j 	=1

ε1i j

⎞
⎠ + · · · + 1

p
ε1...p.

Proof Let N = {x2, . . . , xp}. The general formula for the Shapley importance is given
by:

φp(x1) =
∑

S⊂N\{x1}

(p − 1 − |S|)! · |S|!
p! (v(S ∪ {x1}) − v(S)) (B6)

With assumption (B2) the term v(S ∪ {x1}) − v(S) will reduce to:

v(S ∪ {x1}) − v(S) = v(x1) +
p∑

i1 	=1

ε1i1 + · · · +
p∑

i1 	=···	=i|S| 	=1

ε1i1...i|S| (B7)

It is the sum of v(x1) and all interactions with feature x1 of sizes 2, . . . , |S| + 1. All
other terms without feature x1 cancel out.

Equation (B6) consists ofmany summands of the form (B7). The term v(x1) appears
once for every subset S ⊂ N\{x1}. There are

(p−1
|S|

)
different subsets of size |S|. Only

looking at the summands with the term v(x1), Eq. (B6) reduces to

p−1∑
|S|=0

(p − 1 − |S|)! · |S|!
p!

(
p − 1

|S|
)

v(x1) = v(x1). (B8)

For the interaction terms, we first start counting the interaction term ε12 of size 2, as
an example. For |S| = 0, there are zero terms of ε12. For |S| = 1, the term ε12 only
appears once, when S = {x2}. For |S| = 2, the term ε12 appears p − 2 times, once
for each subset S = {x2, x j }, for 3 ≤ j ≤ p. For |S| = 3, we have

(p−2
2

)
times the

term ε12, again, once for each subset S = {x2, x j , xk}, for 3 ≤ j 	= k ≤ p. This
pattern goes on until there are

(p−2
p−2

)
terms of ε12 for |S| = p − 1. Now, we look at
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the interaction terms ε1i1...ik−1 of size k. Following the pattern, which we just derived,
there are zero terms of ε1i1...ik−1 for |S| ≤ k − 2 and

( p−k
|S|−k+1

)
terms of ε1i1...ik−1 for

k ≤ |S| ≤ p − 1. If we only look at the interaction terms ε1i1...ik−1 of size k and
following the Eq. (B6), we get

p−1∑
|S|=k−1

(p − 1 − |S|)! · |S|!
p!

(
p − k

|S| − k + 1

)
ε1i1...ik−1 = 1

k
ε1i1...ik−1 ,

which was left to show the assertion. �

Appendix CMore details on dimension reduction techniques

C.1 Principal component analysis

PCA only considers the data matrix X and does not take the target vector Y into
account. This procedure is thus unsupervised.

Given a centering Matrix

H = I − n−1eeT , (C9)

where e is an n-dimensional vector of all ones. The centered matrix isXC = HX. The
sample covariance matrix of X can be written as:

SX := 1

n
Xᵀ
CXC = 1

n
XᵀHHX (C10)

The goal is to maximize the total variance of projected data, which is equivalent
to maximizing trace of the sample covariance matrix. Equation (C10) can also be
written as SX = 1

n

∑n
i=1 x

(i)
C x(i)ᵀ

C , where x(i)
C corresponds to the i−th row of XC . By

projecting each data point by some unknown vectors v j , j = 1, . . . , p, we get the
projected variance for each j = 1, . . . , p, which is:

1

n

n∑
i=1

vᵀ
j x

(i)
C x(i)ᵀ

C v j = vᵀ
j

(
1

n

n∑
i=1

x(i)
C x(i)ᵀ

C

)
v j = vᵀ

j SXv j .

LetV ∈ R
p×p be the full projectionmatrix. Theprojected total variance is tr(VᵀSXV),

and by ignoring constant terms, PCA finds a solution to the problem

argmax
V

tr(VᵀSXV) = argmax
V

tr(VᵀXᵀHHXV) (C11)

with an Eigen decomposition of the covariance matrix SX. The resulting Eigen vectors
thus maximize the variation of projected data.
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C.2 Measuring statistical dependence with Hilbert Schmidt norms

In Gretton et al. (2005) a more generalized measure of dependence between variables
X and Y was introduced:

Two random variables X and Y are independent if and only if any bounded contin-
uous function of them are uncorrelated.

In more detail, this means that any pairs (X ,Y ), (X ,Y 2), (X2,Y ), (cos(X),

log(Y )), ... have to be uncorrelated. The resulting independence measure is called
the Hilbert-Schmidt Independence Criterion (HSIC). For the analysis of this indepen-
dence measure, it is necessary to analyze functions on random variables. Therefore
theory of Hilbert spaces and concepts of functional analysis are necessary for a thor-
ough analysis, but they are not part of this paper. For an extensive discussion of
Hilbert spaces, especially reproducing kernel hilbert spaces (RKHS) we refer to Hein
and Bousquet (2004).

Let F be a separable RKHS containing all bounded continuous functions from X
to R. The associated kernel shall be denoted by K ∈ R

n×n , with Ki j = k(xi , x j ).
Concurrently, let G be a separable RKHS with bounded continuous functions from Y
to R and associated kernel L ∈ R

n×n , with Li j = l(yi , y j ).
We are particularly interested in the cross variance between f and g:

Cov( f (x), g(y)) = Ex,y[ f (x)g(y)] − Ex [ f (x)]Ey[g(y)] (C12)

A function, which maps one element from one hilbert space to another hilbert space
is called operator. A theorem (see e.g. Fukumizu et al. 2004) states, that there exists
a unique operator CX ,Y : G −→ F with

〈 f ,Cx,y(g)〉F = Cov( f (x), g(y)). (C13)

TheHilbert-Schmidt Independence Criterion (HSIC) is defined as the squaredHilbert-
Schmidt norm of the cross-covariance operator C:

HSIC(PX ,Y ,F ,G) = ‖Cx,y‖2HS (C14)

‖Cx,y‖2HS = 0 if and only if the random variables X and Y are independent. For
a detailed discussion and derivation of the HSIC independence measure, we refer to
Gretton et al. (2005). The HSIC measure was used for feature selection in Song et al.
(2007) or for supervised principal components in Barshan et al. (2011).

C.2.1 Empirical HSIC

For a dataset D = {(x(i), y(i))}ni=1 the empirical HSIC is:

HSIC(D, F,G) = (n − 1)−2tr(KHLH) = (n − 1)−2tr(HKHL), (C15)

where H is the centering matrix from (C9). A high level of dependency between two
kernels yields a high HSIC value.
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C.3 Supervised sparse principal components

In the process of finding interpretable latent variables, which also incorporate depen-
dencies to a target variable, the Sparse Supervised Principal Components (SPCA),
which was introduced in Sharifzadeh et al. (2017), is a suitable method for our appli-
cation.

For sparseSPCAthekernelmatrix K ist defined as K = XVV ᵀXᵀ with a constraint
for unit length and an L1 penalty for sparsity. By ignoring constant terms, we get the
optimization problem:

argmax
V

tr(HKHL) = argmax
V

tr(HXVVᵀXᵀHL) (C16)

= argmax
V

tr(VᵀXᵀHLHXV) (C17)

s.t . VᵀV = I, |V| ≤ c. (C18)

Note, that without the sparsity constraint, (C17) reduces to (C11), when choosing
L = I. Already explained in Barshan et al. (2011), PCA is a special form of their
Supervised PCA, where setting L = I is a kernel, which only captures similarity
between a point and itself. Maximizing dependency betweenK and the identiy matrix
corresponds to retaining maximal diversity between observations.

Now, an arbitrary L can be decomposed as L = ��ᵀ, since L, as a kernel matrix,
is positive definite and symmetric. Defining � := �ᵀHX ∈ R

n×p, the objective
function (C17) can be rewritten as:

argmax
V

tr(Vᵀ�ᵀ�V) s.t .VᵀV = I, |V| ≤ c. (C19)

Using the singular value decomposition (SVD), the matrix� with rank(�) = m ≤
n can be written as a product of matrices:

� = U�Vᵀ s.t . UᵀU = In,VVᵀ = Ip,� = I (λ1, . . . , λm, 0, . . . , 0), (C20)

whereU ∈ R
n×n andV ∈ R

p×p are orthogonal matrices, and� ∈ R
n×p is a diagonal

matrix, with descending diagonal entries λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. It is easy to see
that the columns ofV are Eigen vectors of the matrix �ᵀ�, since the following Eigen
value decomposition holds:

�ᵀ� = V�UᵀU�Vᵀ = V(�2)Vᵀ. (C21)

The sparse SPCA problem (C19) now becomes a matrix decomposition problem
of the matrix �, when adding an L1 penalty on the matrix V, since the columns of V,
being Eigen vectors of �ᵀ�, maximize tr(Vᵀ�ᵀ�V).

With an L1 penalty onV, this problem is a penalizedmatrix decomposition problem
(PMD, Witten et al. (2009)).
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Recalling our original problem of finding interpretable latent variables that also
depend on a target variable, the rank m matrix decomposition of � may not be desir-
able. It can be shown (e.g. Eckart and Young 1936) that the best low rank (r ≤ m)
approximation of � is calculated by the first r singular values of � and the first r
singular vectors of U and V. With ui being the i−th column of U and vi being the
i−th column of V, the best low rank approximation can thus be written as:

r∑
i=1

λiuiv
ᵀ
i = argmin

�̂

‖� − �̂‖2F , (C22)

subject to the squared Frobenius-norm (A ∈ R
m×n : ‖A‖2F = ∑n

i=1
∑m

j=1 |ai j |2). The
following equality was demonstrated in Witten et al. (2009):

1

2
‖� − U�Vᵀ‖2F = 1

2
‖�‖2F −

r∑
i=1

uᵀ
i �viλi + 1

2

r∑
i=1

λ2i . (C23)

The minimization problem (C22) thus becomes a maximization problem, by ignor-
ing the constant terms. Sharifzadeh et al. (2017) added additional L2 constraints on
ui and vi , an L1 constaint on vi for sparsity and an orthogonality constraint for ui :

argmax
uivi

uᵀ
i �vi s.t .‖ui‖2 ≤ 1, ‖vi‖2 ≤ 1, ‖vi‖1 ≤ c,ui ⊥ u1, . . . ,ui−1 (C24)

The L2 constraints do not force unit length to avoid non convex optimization prob-
lems. Witten et al. (2009) discuss how to solve many penalized matrix decomposition
problems of this kind. Without the orthogonality constraint, they call this particular
problem PMD(., L1). The solution to this problem is discussed in detail in Sharifzadeh
et al. (2017). A software implementation is available with the R-package PMAbyWit-
ten and Tibshirani (2020), which we will use for our demonstrations. Problem (C24)
does not yield orthogonal sparse vectors vi , Witten et al. (2009) state that these vectors
are unlikely to be very correlated, since the vectors vi are associated with orthogonal
vectors ui , i = 1, . . . , r .

C.3.1 Choice of the Kernel

For sparse SPCA the kernel K has been predefined as. The choice of the kernel L,
however, has a decisive impact on how the dependencies are modeled. Song et al.
(2012) discuss the kernel choice for different situations. For binary classification, one
may simply choose

l(yi , y j ) = yi y j , where yi , y j ∈ {±1}, (C25)

or a weighted version, giving different weights on positive and negative labels. For
multiclass classification a possible kernel is

l(yi , y j ) = cyδyi ,y j , where cy > 0. (C26)
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For regression one can also use a linear kernel l(yi , y j ) = yi , y j , but then only simple
linear correlations between features and the target variable can be detected. A more
universal choice is the radial basis function (RBF) kernel:

l(yi , y j ) = exp

(
−‖yi − y j‖2

2σ 2

)
. (C27)

The choice of the bandwidth 2σ 2 is extremely important. For example, if 2σ 2 → 0,
the matrix L becomes the identity matrix. Or if 2σ 2 → ∞, all entries of L are 1. In
both cases, all relevant information of the dependency between features and the target
variable is lost. Besides the bandwidth 2σ , the kernel matrix L depends only on the
pairwise distances ‖yi − y j‖2. A reasonable, and heuristically well performing (Pfister
et al. 2017) choice is 2σ 2 = median

(‖yi − y j‖2 : i > j
)
. However, it might also be

possible and advantageous to use other kernels that are selected to be particularly
efficient in detecting certain kinds of dependencies.

C.3.2 Choice of c

Witten et al. (2009) explained how PMD can be used to impute missing data. Themain
idea is simply to exclude missing entries from the maximization problem (C24) and
impute missing values by the low rank approximation matrix U�Vᵀ. This procedure
can also be used for finding optimal values for c by a cross-validation approach.
The test data consists of leaving out some entries of the matrix � (not entire rows
or columns, but individual elements of the matrix), yielding a matrix with missing
entries �̃. For candidate values ci , i = 1, . . . , k, calculate the PMD(., L1) and record
the mean squared error over the missing elements of �̃ and the estimate U�Vᵀ. The
true values of the missing values of �̃ are available in the original data�. The optimal
value c∗ corresponds to the best candidate value c j , whichminimizes themean squared
error.

However, such a cross-validation approach for the search for c is not always neces-
sary. If the method is used as a descriptive method to better understand the underlying
structure of the data, a small value of c can be chosen to achieve a desired sparsity.

Appendix D Feature description for smartphone sensor data

See Table 7.
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Table 7 Description of features used for CFEPs in Sect. 7

Feature Description

daily_mean_num_unique_Weather_weekend Mean number of different weather apps used each day
on weekends

daily_mean_num_Weather Mean number of weather apps used each day

daily_mean_num_unique_Weather_week Mean number of different weather apps used each day
on weekdays

daily_mean_num_unique_Weather Mean number of different weather apps used each day

daily_mean_num_unique_apps Mean number of different apps used each day

daily_mean_num_unique_apps_week Mean number of different apps used each day on
weekdays

daily_mean_num_unique_apps_weekend Mean number of different apps used each day on
weekends

daily_mean_sum_events_night Number of all events during the night averaged for each
day

daily_mean_dur_all Duration of all events averaged for each day

daily_sd_sum_intereventall Sd of the sum of all inter-event time intervals for each
day

daily_mean_num_uniq_song Mean number of different songs listened to each day

daily_mean_num_song Mean number of songs listened to each day

daily_mean_duration_music Mean duration of music apps used each day
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Toloşi L, Lengauer T (2011) Classification with correlated features: unreliability of feature ranking and

solutions. Bioinformatics 27(14):1986–1994
Tripathi S, Hemachandra N, Trivedi P (2020) Interpretable feature subset selection: a Shapley value based

approach. In: Proceedings of 2020 IEEE international conference on big data, special session on
explainable artificial intelligence in safety critical systems

Valentin S, HarkotteM, Popov T (2020) Interpreting neural decodingmodels using groupedmodel reliance.
PLOS Comput Biol 16(1):e1007148

Venables B, Ripley B (2002) Modern applied statistics with S
Watson DS, Wright MN (2019) Testing conditional independence in supervised learning algorithms.

arXiv:1901.09917
Williamson BD, Gilbert PB, Simon NR, et al (2020) A unified approach for inference on algorithm-agnostic

variable importance. arXiv:2004.03683
Williamson B, Feng J (2020) Efficient nonparametric statistical inference on population feature importance

using Shapley values. In: International conference on machine learning, PMLR, pp 10282–10291
Witten D, Tibshirani R (2020) PMA: penalized multivariate analysis. R Package Vers 1(2):1
Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse

principal components and canonical correlation analysis. Biostatistics 10(3):515–534
Wold S, Albano C, Dunn WJ et al (1984) Multivariate data analysis in chemistry. Springer, Dordrecht, pp

17–95
Yarkoni T, Westfall J (2017) Choosing prediction over explanation in psychology: lessons from machine

learning. Perspect Psychol Sci 12(6):1100–1122
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc

Ser B (Stat Methodol) 68(1):49–67

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1901.09917
http://arxiv.org/abs/2004.03683

	Grouped feature importance and combined features effect plot
	Abstract
	1 Introduction
	1.1 Real data use cases with grouped features
	1.2 Grouping procedures
	1.3 Related work
	1.4 Contribution

	2 Background and notation
	2.1 General notation
	2.2 Permutation feature importance (PFI)

	3 Feature importance for groups
	3.1 Permutation methods
	3.1.1 Grouped permutation feature importance (GPFI)
	3.1.2 Group only permutation feature importance (GOPFI)

	3.2 Refitting methods
	3.2.1 Leave-one-group-out importance (LOGO)
	3.2.2 Leave-one-group-in importance (LOGI)

	3.3 Grouped Shapley importance (GSI)
	3.4 Real world use cases

	4 Sequential grouped feature importance
	5 Comparison of grouped feature importance methods
	5.1 Dependencies between groups and sparsity
	5.2 Varying correlations within groups
	5.3 Varying sizes of groups

	6 Feature effects for groups
	6.1 Choice of dimension reduction method
	6.2 Totalvis effect plot
	6.3 Combined features effect plot (CFEP)
	6.4 Experiments on supervised versus unsupervised dimension reduction
	6.4.1 One factor
	6.4.2 Two factors


	7 Real data example: smartphone sensor data
	8 Conclusion
	Appendix A Motivational example for grouped importance methods
	Appendix B Shapley importance
	B.1 Properties of the grouped Shapley importance
	B.2 Proof of Properties

	Appendix C More details on dimension reduction techniques
	C.1 Principal component analysis
	C.2 Measuring statistical dependence with Hilbert Schmidt norms
	C.2.1 Empirical HSIC

	C.3 Supervised sparse principal components
	C.3.1 Choice of the Kernel
	C.3.2 Choice of c


	Appendix D Feature description for smartphone sensor data
	References


