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Abstract
Graph pooling methods provide mechanisms for structure reduction that are intended
to ease the diffusion of context between nodes further in the graph, and that typically
leverage community discoverymechanismsor node and edgepruningheuristics. In this
paper, we introduce a novel pooling technique which borrows from classical results in
graph theory that is non-parametric and generalizes well to graphs of different nature
and connectivity patterns. Our pooling method, named KPlexPool, builds on the
concepts of graph covers and k-plexes, i.e. pseudo-cliques where each node can miss
up to k links. The experimental evaluation on benchmarks on molecular and social
graph classification shows that KPlexPool achieves state of the art performances
against both parametric and non-parametric pooling methods in the literature, despite
generating pooled graphs based solely on topological information.
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1 Introduction

GraphNeuralNetworks (GNNs) allow for the adaptive processing of topology-varying
structures representing complex data which comprises atomic information entities (the
nodes) and their relationships (the edges).

The processing of graphs byneural networks typically leverages onmessage passing
between neighboring nodes (Bacciu et al. 2020) to collect and exchange information
on the context of nodes. Such process is made effective and efficient, also on cyclic
structures, by feedforward neural layers with node-level weight-sharing, an approach
popularized under the termgraph convolutions (Kipf andWelling 2017), but previously
known as contextual structure processing (Micheli 2009; Bacciu et al. 2018).

Graph pooling methods provide mechanisms for structure reduction that are
intended to ease the diffusion of such a context between nodes farther in the graph.
These methods developed from the original concept in image processing, realizing
structure reduction layers that are interleaved between graph convolutions to provide
a multi-resolution view of the input graph. This is intended to extract coarser and
more abstract representations of the graph as we go deeper in the network, boosting
information spreading among nodes. In this respect, graph pooling can help to contain
model complexity, by reducing the number of convolutional layers needed to achieve
full coverage of the graph, and counteract oversmoothing issues (i.e. nodes converging
to very similar embeddings) by introducing structural diversity among convolutional
layers (Li et al. 2018).

The definition of a robust, general and efficient subsampling mechanism that can
scale to topology-varying graphs ismade difficult by the irregular nature of the data and
by the lack of a reference ordering of nodes between samples. Graph pooling methods
in the literature are addressing the problem from a community discovery perspective,
more or less explicitly, by considering node connectivity patterns (Simonovsky and
Komodakis 2017; Ma et al. 2019; Wang et al. 2020; Defferrard et al. 2016) or by
aggregating the nodes based on their similarity in the neural embedding space (Ying
et al. 2018; Lee et al. 2019; Bianchi et al. 2020).

Our work hinges on an explicit (and novel) link between pooling operators and two
consolidated graph theoretical concepts in community discovery, namely, k-plexes and
graph covers. The former ones provide a flexible formalization for a community of
nodes as a densely interconnected and cohesive subgraph, which relaxes the definition
of a clique by allowing nodes to miss up to k links each. The latter ones relate to a
soft-partition of nodes whose union covers all nodes on the original graph. We argue
that both concepts are necessary to realize an effective and general graph pooling
mechanism as they permit to summarize the overall community structure by taking a
small butmeaningful set of highly connected components, represented by the k-plexes.

We introduce KPlexPool, a novel pooling method using only topological graph
features, which is not parameterized nor its outcomes depend on the specific predic-
tive task. Hence, its structure reduction can be precomputed once and reused across
multiple learningmodel configurations.We showhowKPlexPool, despite being non-
adaptive, provides a flexible and robust definition for node communities which can
generalize well to graphs of different nature and topology, from molecular structures
to social networks.
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2202 D. Bacciu et al.

We remark that KPlexPool is not just a straightforward application of k-plexes to
deep learning for graphs. Rather, our pooling mechanism is the result of the careful
design and integration of different community discovery and graph simplification
mechanisms specifically crafted to obtain a hierarchical structure coarsening algorithm
well suited to promote effective context diffusion in neural message passing. This
goal is quite challenging as, for instance, a previous attempt by Luzhnica et al. (2019)
clearly shows that the straightforward application of clique discovery does not yield
an effective graph pooling method. We hope that our work can further stimulate the
community interests in graph theory and algorithms,which have been excellent sources
of inspiration for the machine learning community, such as the Weisfeiler-Lehman
graph kernel (Shervashidze et al. 2011; Kriege et al. 2020; Vishwanathan et al. 2010)
to name one of these achievements. The main original contributions of this paper are
summarized below.

– We propose KPlexPool, the first pooling mechanism based on the concepts of
k-plex communities and graph covers (Sect. 2.3).

– We define a scalable algorithm to compute a hierarchy of k-plex cover decompo-
sitions that optimizes context propagation and promote diversity in convolutional
layers (Sect. 2.4).

– We propose a post-processing cover heuristic for sparsifying pooled graphs in
scale-free structures (Sect. 2.6).

– We provide a thorough and reproducible empirical assessment on 9 graph
classification benchmarks, where KPlexPool is shown to be state-of-the-art
(Sect. 4).

We remark that while the notion of clique-covering has been studied since the 70s,
we are not aware of any formal definition or algorithm for k-plex covering in literature.
Hence, our contribution is novel in: i) the use of k-plex communities to define pooling
mechanisms in neural processing systems; ii) the definition of the notion of k-plex
cover; iii) the definition of an efficient algorithm to implement the concepts above.

2 K-plex cover graph pooling

In this section we present KPlexPool, a novel method for graph coarsening that uses
k-plexes as a pooling block. In Sects. 2.1, 2.2 we introduce some useful definitions
from graph theory and deep learning that will be used throughout this paper. In Sect.
2.3, we begin by defining how k-plexes can be used to coarsen connected communities
in the graph and how edges can be determined in the pooled structure. In Sect. 2.4 we
describe the algorithms to efficiently compute the k-plex covers. Finally, in Sect. 2.6
we introduce a useful heuristic for sparsifying scale-free structures.

2.1 Preliminaries on graph theory

Given an undirected graphG, let V = V (G) be its node set and E = E(G) be its edge
set, where v(G) = |V | = n and e(G) = |E | = m are, respectively, the number of
nodes and edges in G. Given an edge e = {u, v}, nodes u and v are said to be adjacent
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Fig. 1 (left) A clique, (center) a 2-plex, and (right) a 3-plex

or neighboring each other. The neighborhood N (v) of v is the set of nodes adjacent to
it, and the degree d(v) of v is defined as the number of its neighbors, i.e. |N (v)|. An
attributed graph is a tuple (G, φ, ψ) where φ : V → RhV and ψ : V ×V → RhE are
functions that assign a vector of features to each node and to each edge, respectively of
size hV and hE . If e /∈ E , then ψ(e) = 0. An attributed graph can be also represented
in matrix notation (A,X) by taking an arbitrary (usually predefined) ordering of its
nodes V = {v1, . . . , vn} and by having X ∈ Rn×hV as its node-feature matrix, whose
rows are defined as xi = φ(vi ). The termA ∈ Rn×n×hE denotes its adjacency matrix,
where Ai j = A j i = ψ({vi , v j }).

A k-plex is a subset of nodes S ⊆ V such that each node in S has at least |S| − k
adjacent nodes in S: for all v ∈ S, we have |N (v) ∩ S| ≥ |S| − k. This definition
is quite flexible as for k = 1 we get the classical clique and for larger values of k
we obtain a relaxed and broader family of (possibly larger) subgraphs of G. Some
examples are shown in Fig. 1. A k-plex cover of G is a family of subsets S of V such
that each set S ∈ S is a k-plex and their union is

⋃
S∈S S = V .

2.2 Preliminaries on graph neural networks

Graph Neural Networks are a specialized kind of neural network that adaptively learns
fixed-size representations of a set of graphs in a given distribution. GNNs are typically
defined in terms of graph convolutions, both in the spectral (Bruna et al. 2014; Def-
ferrard et al. 2016; Kipf and Welling 2017) and in the spatial domain ( Hamilton et al.
2017; Monti et al. 2017; Xu et al. 2018; Veličkovićet al. 2018; Xu et al. 2019; Morris
et al. 2019). Specral GNNs perform graph convolution using the graph Fourier trans-
form, or by approximating it with a (truncated) Chebyshev expansion (Hammond et al.
2011). Spatial GNNs, instead, perform graph convolution by applying a learned filter
to the features of each node and its local neighborhood. Most GNNs can be described
as instances of the so-called Message-Passing Neural Network model (Gilmer et al.
2017), which takes inspiration from the classical message-passing paradigm and from
the very first learning approaches to graph-structured data (Micheli 2009; Scarselli
et al. 2005, 2009; Gori et al. 2005). Battaglia et al. (2018) further abstract this model
by proposing a more general form, GraphNet, where also edge- and graph-level
attributes can be parametrized.

GNNs often leverage on pooling techniques to obtain a coarsened representation of
the graphs in input. As in Convolutional Neural Networks (Fukushima 1980; LeCun
et al. 1989), pooling serves both as dimensionality reduction and to reduce the distance
between objects in the input, thus increasing the receptive field of parametric functions
applied on its output. Graph pooling is typically performed using classical clustering
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2204 D. Bacciu et al.

algorithms such as Graclus (Dhillon et al. 2007; Bruna et al. 2014; Defferrard et al.
2016; Simonovsky and Komodakis 2017; Ma et al. 2019; Wang et al. 2020), or adap-
tively, as in Ying et al. (2018); Cangea et al. (2018); Gao and Ji (2019); Lee et al.
(2019). A more in-depth comparison will be discussed in Sect. 3. Pooling is also used
to obtain a final, global representation of the whole graph in input. This technique,
which is usually denoted as global pooling, is usually performed by using standard
aggregation functions such as sum, max or mean (Xu et al. 2019), or by exploiting
techniques from the field of (multi-)set representation learning, such as GlobalAt-
tentionPool (Li et al. 2016), Set2Set (Vinyals et al. 2016), and SortPool (Zhang
et al. 2018).

2.3 Graph pooling with k-plexes

KPlexPool computes a k-plex coverS = {
S1, . . . , Sc

}
of the input graph (G, φ, ψ),

for a given k, and returns a coarsened graph (G ′, φ′, ψ ′), such that

V ′ = V (G ′) = {
v′
1, . . . , v′

c

}
, (2.1)

E ′ = E(G ′) = {{
v′
i , v′

j

} ∣
∣ E

(
G[Si , S j ]

) �= ∅}
, (2.2)

where E
(
G[Si , S j ]

) = E(G) ∩ (Si × S j ). Node v′
i represents the coarsened version

of Si , and edge {v′
i , v′

j

}
exists iff there is at least one edge in G linking a node of Si

with a node of S j . The feature functions φ′ : V ′ → RhV and ψ ′ : V ′ × V ′ → RhE

aggregate, respectively, features belonging to the same k-plex Si and features of edges
linking two different Si and S j . In other words, they are defined in such a way to
provide a suitable relabeling for nodes and edges in the coarsened graph:

φ′(v′
i ) = β

({
φ(v)

∣
∣ v ∈ Si

})
, (2.3)

ψ ′({v′
i , v′

j

}) = γ
({

ψ(e)
∣
∣ e ∈ E

(
G[Si , S j ]

)})
, (2.4)

where β and γ are arbitrary aggregation functions defined over multisets of feature
vectors. Typical aggregators for node attributes are element-wise max or sum (Xu
et al. 2019). For edge weights, our choice is the sum reduction: if the input graph has
∀e. ψ(e) = 1, then the weight of an edge in the coarsened graph is the number of
edges crossing the two linked k-plexes. Figure 2 shows an example of a graph and the
hierarchical reduction produced by the application of a series of three sum-pooling.

Differently from other partitioning-based graph coarsening methods (Dhillon et al.
2007; Ng et al. 2002), in our approach a node may belong to multiple k-plexes. This
is also a key difference between CliquePool (Luzhnica et al. 2019) and KPlexPool
with k = 1 (i.e., performing a clique cover), where the former model forces a partition
between nodes potentially destroying structural relationships in the communities.

FromEq. 2.2 and by the fact that every edge forms a clique, it follows that whenever
two k-plexes share a node, their respective aggregated nodes in the coarsened graph are
adjacent. For this reason, not only G ′ can be denser than G, but KPlexPoolmay also
produce G ′ such that e(G ′) > e(G) on some pathological cases (e.g., star graphs). For
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Fig. 2 Two examples sum-pooling on the same graph, where φ(v) = 1 and ψ(e) = 1. In the first example
(top), the hierarchy is formed by clique pooling (i.e., k-plex pooling with k = 1). In the second example
(bottom), the first layer of the hierarchy is obtained using 2-plex pooling. Numbers in roman and italic fonts
represent edge and node attributes, respectively

this reason, our KPlexPool algorithm incorporates a graph sparsification method,
whose details are discussed in Sect. 2.6.

To provide a compact (vectorial) definition of our operator, we can represent the
k-plex cover as a matrix S ∈ {0, 1}n×c of hard-assignments, i.e., Si j = �vi ∈ S j �. If
we use sum for both aggregation functions, it is easy to see that Eqs. 2.3, 2.4 can be
rewritten in matrix form as

X′ = STX and A′ = STAS, (2.5)

whereX′ ∈ Rc×hV andA′ ∈ Rc×c×hE are, respectively, the node feature and adjacency
matrix of G ′.
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Algorithm 1 KPlexCover
input A graph G, an integer k ≥ 1, and two priority functions f and g.
output A k-plex cover S of G.
1: S ← ∅
2: U ← V (G)

3: while U �= ∅ do
4: v ← argmaxu∈U f (u)

5: S ← FindKPlex(G, k, g, v)
6: S ← S ∪ {

S
}; U ← U \ S

7: Suitably update priority f .

Algorithm 2 FindKPlex

input A graph G, an integer k ≥ 1, a priority function g, and a pivot node v.
output A k-plex S, s.t. v ∈ S.
1: S ← {v}; C ← N (v)

2: while C �= ∅ do
3: u ← argmaxw∈C g(w)

4: S ← S ∪ {u}; C ← C \ {u}
5: for w ∈ S do
6: if |S \ N (w)| = k then C ← C ∩ N (w)

7: for w ∈ C do
8: if |S \ N (w)| = k then C ← C \ {w}
9: for w ∈ N (u) do
10: if |S \ N (w)| < k then C ← C ∪ {w}
11: Suitably update priority g.

2.4 K-plex cover algorithm

We propose an algorithm, whose pseudocode is shown in Algorithms 1, 2, that finds
a cover containing large k-plexes that have small intersection. The rationale for this
choice is driven by the sought-after effect on graph poolingmechanisms in graph neural
networks. On one hand, we seek to condense into a single community-node those
neighboring nodes which are likely to share the same context and, hence, very similar
embeddings. On the other hand, we would like the pooled graph to preserve diversity
for nodes belonging to different communities, i.e. avoiding trivial aggregations which
would induce heavy connectivity between the communities. Our algorithm is inspired
to the clique covering framework in Conte et al. (2016, 2020), and leverages on
heuristics that specifies the order on which nodes are considered for k-plex inclusion.
Algorithm 1 receives in input this order by means of two priority functions f , g on V
that are defined to provide large k-plexeswith small pair-wise intersections. In practice,
we fixed f , g to prioritise nodes with lower degree (for f ) and more neighbors in the
k-plex (for g). A deeper discussion on priority functions is provided in Table 1.

Algorithm 1 uses Algorithm 2 as a subroutine, where the latter, starting from an
uncovered node v (i.e., a node that is not included in the current cover), retrieves a
k-plex S ⊆ V containing v. We discuss more in details both Algorithms 1 and 1 in the
following. Algorithm 1 begins by iterating over the available nodes in the candidate
set U , which is initialized with the whole set of nodes of the input graph. At each
iteration, it selects the next candidate v by extracting the node in U with highest
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Table 1 Proposed priority functions for f and g, where πn represents a random permutation of the first n
natural numbers

Priority Value Update cost

f Random πn(v) –

Max-degree d(v) –

Max-uncovered
∣
∣N (v) \ ⋃

S∈S S
∣
∣ O(d(v))

g Max-in-k-plex |N (v) ∩ S| O(d(v))

Max-candidates |N (v) ∩ C | O(d(v))

Note that every f is also a valid g, but not the other way round. The third column shows the computational
cost of updating a priority for every iteration of the while loop in Algorithm 2

priority f (v). The node v will be then used as a starting node for retrieving the next
k-plex S ⊆ V , using Algorithm 2. The elements of S will then be removed from the set
U of candidates, and S will be included in the output cover S. Note that the nodes in
the k-plexes are removed fromU but not from the graph, hence successive executions
of Algorithm 2 may contain previously removed nodes. The algorithm stops when
eventually all the nodes are removed fromU , and then returns the cover S. Algorithm
2, instead, constructs a k-plex S starting from a given node v, which is the only element
available at startup. It initializes a candidate set C of nodes that could be part of the
k-plex, this time relying on N (v). Again, Algorithm 2 iterates over the nodes in C
following the ordering defined by the priority g, and adds them to S. The main loop
has the following invariants:

∀u ∈ S : |S \ N (u)| ≤ k , (2.6)

∀u ∈ S : |S \ N (u)| = k �⇒ C \ N (u) = ∅ , (2.7)

where Eq. 2.6 states that every node u in S needs to have at least |S|−k adjacent nodes
in S and Eq. 2.7 states that, when u has exactly |S|− k adjacent nodes in S, we cannot
have nodes in C that are not adjacent to u (as it would break Eq. 2.6 if selected). As a
result, any node from C can be added to S.

Both invariants are satisfied at the first iteration as all the candidates in C = N (v)

are adjacent to v, which is the only element in S. At each iteration, Algorithm 2
preserves Eq. 2.6 by selecting a node u from C according to priority g. It needs to
preserve Eq. 2.7 as S changes because of the addition of u. The first two for loops
remove the nodes from C that no longer can be added to S. The third loop adds to C
the nodes adjacent to u which can be added to S. After that, g is updated.

The above invariants guarantee that any S retrieved by Algorithm 2 is a k-plex. As
Algorithm 1 terminates only when all the nodes have been covered by at least one
k-plex in the current solution S, we obtain that S is a k-plex cover, hence proving the
correctness of Algorithm 1.
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2.5 Priority functions

To effectively summarize the graph for pooling purposes, we need to cover all the
nodes with as few k-plexes as possible: we thus want these k-plexes to be large and
with small overlaps. Following the experimented heuristics in Conte et al. (2016,
2020), we adapt the best performing priorities to the case of k-plexes. Specifically,
the priorities f and g define how the nodes will be extracted during the execution of
Algorithms 1, 2, guiding the covering process.

Table 1 provides a selection of priority functions along with their computational
cost. They span from random baseline policies to orders induced by the topology of the
pooled graph and intended to yield pooled graph with interesting structural properties.
Random and max-degree priorities should be quite self-explanatory; max-uncovered
returns the number of neighbors that are not yet covered by a k-plex in S. Every f
priority is also a valid strategy for g. Concerning the latter, we can also consider

i max-in-k-plex, that assigns to every candidate node the number of its neighbors
within the current k-plex S; and

ii max-candidates, that assigns to every candidate node the number of its neighbors
within the current candidate set C .

For the experimental assessment in Sect. 4, we implement the cover priority f as the
concatenation ofmin-degree andmax-uncovered. Here the term concatenation denotes
the fact that nodes are ordered following a lexicographic ordering defined first onmin-
degreewith ties broken onmax-uncovered (note thatmin-degree is discrete valued and
many nodes are likely to have the same priority). The k-plex priority g is obtained as
the concatenation ofmax-in-k-plex,max-candidates andmin-uncovered, following the
lexicographic ordering approach described for f . Both of the concatenated priorities,
respectively for f and g, will be referred to as default in the following. Note that
min- priorities can be trivially obtained by the respective max- definition. The choice
of these combinations of policies is driven by the observation that they are able to
generate large k-plexes while maintaining small intersections between them which,
again, is a key property wewould like to induce in our poolingmechanism. Figures 3, 4
show two useful statistics obtained executing Algorithm 1 with various combinations
of the proposed priority functions. Specifically:

– the average number of clusters in a cover (Fig. 3), which we aim to minimize,
since a high number of clusters can be a signal of large intersections and/or small
k-plexes;

– the average number of occurrences of nodes in a cover (Fig. 4), which again we
want to minimize, since a node has more than one occurrence if it belongs to
multiple k-plexes and, thus, lies in an intersection between them.

2.6 Cover post-processing

On certain kinds of graphs, like star graphs or scale-free networks, few hub nodes
have a degree that greatly exceeds the average on the graph: Algorithm 1 may include
them in many distinct (and all pairwise adjacent) k-plexes, generating dense artifacts
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Fig. 3 Average number of k-plexes obtained executing Algorithm 1 on 100 graphs of DD and COLLAB
using different combination of k, f (one per column) and g (depicted with different line colors). The
number of clusters |S| is expressed with respect to the number of nodes |V | in the original graph (Color
figure online)

Fig. 4 Average number of occurrence of a node in the k-plexes of a cover obtained executing Algorithm 1
on 100 graphs of DD and COLLAB using different combination of k, f (one per column) and g (depicted
with different line colors). The number of occurrences are expressed as

∑
S∈S |S|/|V | ≥ 1 (Color figure

online)

that do not well represent the graph. To overcome this problem, we discuss a cover
post-processingmechanism, referred to as hub promotion, that sparsifies the coarsened
graph by changing the cover assignments, removing hub nodes from the sets of the
cover and assigning each to a dedicated singleton set. Specifically, for a given cover
S of a graph G, and a threshold value p ∈ [0, 100], we proceed as follows.

1. Compute the covering index s(v) = ∣
∣
{
S ∈ S ∣

∣ v ∈ S
}∣
∣ for every v ∈ V .

2. Compute sp as the p-th percentile of the above values and find the subset of hub
nodes Hp ⊆ V such that s(v) > sp for all v ∈ Hp.

3. Generate a modified cover Sp = {
S \ Hp

∣
∣ S ∈ S} ∪ {{v} ∣

∣ v ∈ Hp
}
. Note that,

as a limit case, S100 = S.
4. Coarsen G applying Eqs. 2.1, 2.2, 2.3, 2.4 with the resulting cover Sp.
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The effect of this method is assessed on social network datasets in Sect. 4. The
results of a detailed ablation study, including both molecular and social graphs, is
reported in Sect. 4.1.

2.7 Computational cost

It can be easily shown that Algorithm 2 takes O(m) time, since we can efficiently
store and update g with standard data structures: Indeed, as each node v is added to S
orC and removed fromC at most once, and each update costs O(d(v)), the amortized
cost is O(

∑
v∈V (G) d(v)) = O(m) time. The time cost of Algorithm 1 is bounded by

O(mn): each time FindKPlex is called at least one new node (v) is covered, thus the
while loop will be executed O(n) times. Each time, updating S,U , and f , and calling
Algorithm 2, all O(m) time, meaning Algorithm 1 always terminates within O(mn)

time. The cost of the post-processing is also dominated by the cost of Algorithm 1.
KPlexPool performs � pooling steps. In each step, it finds a cover via Algorithm 1,

taking O(nm) time, then performs feature aggregating in the clusters by multiplying
two matrices of sizes at most n×n (the cover has at most n k-plexes). The best known
cost for such multiplication is O(nω), where ω < 2.373 (Le Gall 2014), giving a total
cost of O((nm + nω)�) time.

3 Related works

Models in literature can be partitioned in two general classes, based on whether
they tackle the structure reduction problem using a topological or an adaptive
approach (Bacciu et al. 2020). The former exploits solely structural and community
information conveyed by the sample topology. The latter generates the graph reduc-
tion using the information on the node embeddings, leveraging adaptive parameters
that are trained together with graph convolution parameters. Several topological pool-
ing algorithms are based on a clustering of the adjacency matrix. METIS (Karypis
and Kumar 1998) and Graclus (Dhillon et al. 2007) are multi-level clustering algo-
rithms that partition the graph by a sequence of coarsening and refinement phases.
Louvain (Blondel et al. 2008), ECG (Poulin and Théberge 2019), and Leiden (Traag
et al. 2019), start with singleton clusters an then greedilymerge the ones that maximize
the overall modularity.NMFPool (Bacciu andDi Sotto 2019) performs a probabilistic
clustering of the nodes by non-negative factorization of the adjacency matrix. Other
approaches leverage node neighborhoods and local communities, such as Gama et al.
(2019). ECC (Simonovsky and Komodakis 2017) considers a point cloud represen-
tation of the graph to group nearby nodes in Euclidean space. EigenPool (Ma et al.
2019) and HaarPool (Wang et al. 2020; Li et al. 2020) define novel aggregation
techniques on the top of existing clustering algorithms (such as METIS). Clique-
Pool (Luzhnica et al. 2019), instead, aggregates the attribute vectors of the nodes
within the same clique. Adaptive pooling is, again, largely based on clustering but,
differently from topological approaches, this is performed on the neural embeddings
obtained from the graph convolutional layers. These methods rely on a parameterized
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clustering of the neural activations which entails that they need to preserve differ-
entiability. DiffPool (Ying et al. 2018) has pioneered the approach by introducing
a hierarchical clustering that soft-assigns each node to a fixed number of clusters c,
generating S ∈ Rn×c with another GNN. This process does not yield to an actual
reduction of the adjacency matrix, as this would infringe differentiability, resulting
in highly parameterized models of considerable complexity. MinCutPool ( Bianchi
et al. 2020) further improve this technique by optimizing a relaxed version of the
normalized-cut objective. StructPool (Yuan and Ji 2019), instead, computes the
soft-clustering associations through a Conditional Random Field (CRF). gPool (Gao
and Ji 2019; Cangea et al. 2018), also known as TopKPool (Fey and Lenssen 2019),
addresses this shortcoming by learning a single vector p ∈ Rhin , used to compute
projection scores that serve to retain the top �kn� ranked nodes. SAGPool (Lee et al.
2019; Knyazev et al. 2019) later extended TopKPool to compute the score vector by
means of aGNN.GSAPool (Zhang et al. 2020) further extends thismodel by a convex
combination of two projection vectors: one learned by a GNN, and another by a classi-
cal neural network (with no topology information). The authors of ASAPool (Ranjan
et al. 2020) showed the limitations of using a standardGCN (Kipf andWelling 2017) to
compute the projection scores, and defined another convolution for graphs (LEConv)
for that specific purpose. EdgePool (Diehl 2019; Diehl et al. 2019) reduces the graph
by edge contraction, based on a score computed by a neural model that takes the edge
incident nodes as input.

KPlexPool falls into the family of topological pooling but proposes a radically
different approach to adjacency clustering models, which is based on well-grounded
concepts from graph algorithmics. CliquePool is the most closely related model, but
it considers amuchmore restricted and lessflexible formof community thanours.Also,
CliquePool is limited to simple graph partitions, whereas our approach can leverage
the flexibility of assignments of graph covers. The effect of the greater generality
and flexibility of KPlexPool is evident by its excellent empirical performances on a
variety of graph topologies (Sect. 4). When compared to adaptive pooling methods,
KPlexPool has certainly the disadvantage of relying on graph reductions that are not
driven by the predictive task. Nonetheless, the experimental assessment shows that
KPlexPool can achieve state of the art performances on both molecular and social
graphs, also outperforming adaptive approaches where pooling is learned to optimize
the predictive task.

4 Experimental analysis

We tested KPlexPool against related methods from literature on four molecular
graph datasets, namely DD (Dobson and Doig 2003), NCI-1 (Wale et al. 2008),
ENZYMES (Schomburg et al. 2004), and PROTEINS (Borgwardt et al. 2005), and
five social network datasets, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY, and REDDIT-MULTI-5K (Yanardag and Vishwanathan 2015). All datasets
have been retrieved from the TU-Dortmund collection (Morris et al. 2020).

For fairness, each pooling method has been tested by plugging it into the same
standardized architecture (Baseline), comprising � convolutional blocks, followed
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Table 2 Hyper-parameter (HP) space used in the grid-search

Model HP Values

All GNN GCN, GraphSAGE

� 2, 3

η 1, 0.5, 0.2, 0.1 (×10−3)

h 64, 128

KPlexPool k 1, 2, 4, 8

Top-, SAG-, Diff-, MinCutPool r 1/4, 1/2, 3/4

GNN is the convolution type, � the number of layers, η the learning rate, h the hidden size, r the reduction
factor, and k the k-plex value

by two dense layers, the latter interleaved by dropout with probability 0.3. Every
convolutional block is formed by two GNN layers (either GCN (Kipf and Welling
2017) or GraphSAGE ( Hamilton et al. 2017)) with Jumping Knowledge (Xu et al.
2018) followed by a dense layer. After every convolutional block we have a global
sum-pooling, and the concatenation of their resulting vector is batch-normalized and
fed to the final dense block. Every layer, GNN or dense, has h units and a ReLU
activation function (Goodfellow et al. 2016). For every other model, a pooling layer
is placed after the first � − 1 convolutional blocks and its output feed to the next
block. Allmodels have been implemented using PyTorch-Geometric (Fey andLenssen
2019), which also provided implementations forGraclus,DiffPool,MinCutPool,
TopKPool, and SAGPool. Leiden has instead been computed using the cuGraph
library (RAPIDS Development 2018). We re-implemented CliquePool using the
NetworkX library (Hagberg et al. 2008), which provided an implementation of the
Bron and Kerbosch (1973) algorithm and its optimizations (Tomita et al. 2006; Cazals
and Karande 2008).

Our experimental approach followed the standardized reproducible setting in Errica
et al. (2020). Specifically, for model assessment, we used a stratified 10-fold cross-
validation and for model selection an inner stratified shuffle split, generating a
validation set of the same size of the outer fold and leaving the remaining exam-
ples as training set. We performed a grid search for each fold, using the parameter
space listed in Table 2. For each parameter combination, we trained each model with
early-stopping after 20 epochs, monitored on the validation set. We selected the one
that obtained the highest accuracy on the validation set evaluated it on the outer fold.
We tested different configurations of KPlexPool depending on the domain. Since
graphs become denser after each pooling layer, on biological datasets we tested the
effect of a progressive reduction factor rk ∈ (0, 1], so that pooling at layer � has
k(�) = �rkk(�−1)�. Here we also used the concatenation of sum and max as aggrega-
tion functiononnon-parametric poolingmethods, i.e.Leiden,Graclus,CliquePool
and KPlexPool. This could not be applied to selection-based methods (TopKPool,
SAGPool), nor to the soft-clustering in DiffPool and MinCutPool.

For the sake of conciseness, in the following, we summarize the empirical results
that assess the effect of the post-processing technique described in Sect. 2.6. Section
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Table 3 Test classification accuracy on chemical benchmarks (mean± std)

DD ENZYMES NCI-1 PROTEINS

Baseline 74.79 ± 3.08 43.00 ± 10.82 78.08 ± 2.38 71.61 ± 5.35

Leiden 74.96 ± 2.70 46.00 ± 5.97 77.69 ± 2.11 74.04 ± 4.29

Graclus 77.42 ± 3.45 42.67 ± 7.82 78.06 ± 2.39 74.12 ± 3.36

CliquePool 74.88 ± 4.35 42.17 ± 7.07 78.83 ± 1.82 73.86 ± 3.58

TopKPool 73.35 ± 4.29 39.17 ± 9.79 74.09 ± 7.29 74.12 ± 4.05

SAGPool 74.75 ± 3.10 37.67 ± 10.23 78.01 ± 1.68 73.31 ± 4.54

DiffPool OOR 46.00 ± 9.17 76.76 ± 2.37 75.02 ± 4.14

MinCutPool OOR 40.67 ± 8.67 74.82 ± 5.12 75.12 ± 2.97

KPlexPool 77.76 ± 2.92 39.67 ± 7.52 79.17 ± 1.73 75.11 ± 2.80

– with rk = 0.5 75.98 ± 3.28 43.33 ± 6.58 78.08 ± 1.97 75.92 ± 3.88

Bold highlights the best performing model. OOR stands for out of resources, and rk is the incremental
reduction factor for k

4.1 further provides an ablation study showing how k, the progressive reduction factor
rk , and the hub promotion threshold contribute to the result.

All models were trained on a NVIDIA® V100 GPU with 16GB of dedicated mem-
ory, while the coverings were pre-computed on CPU, a Intel® Xeon® Gold 6140M
with 1.23TB of RAM. KPlexPool has been implemented both in sparse coordinate
form,which is slower but space efficient, and inmatrix form,which is space-inefficient
but apt to GPU parallelization. In the experiments, we used the latter except for DD,
REDDIT-B and REDDIT-5K, as they contain larger graphs. For the same reason,
DiffPool could not be trained on these datasets, since it required too much memory
unless using only six samples per batch, thus requiring longer training times (more
than two weeks per experiment). For the experiments in which DiffPool hits the out-
of-resource limit, we report results from Errica et al. (2020), which have been obtained
under similar, although not fully equivalent, conditions. The coarsened graphs’ topolo-
gies for non-parametric methods were pre-computed once at the beginning of every
experiment, while their node features were aggregated at every training step.

Tables 3, 4 show the mean accuracy and standard deviation on test data (outer fold).
On chemical datasets, KPlexPool yields competitive results on all datasets, with
higher performances than other related methods on all benchmarks but ENZYMES.
The application of the incremental reduction rk to the k value provides sensible benefits
only on ENZYMES, while on other tasks effects are superficial at most.

On social benchmarks, KPlexPool performs better than parametric pooling mod-
els on all datasets, when considering the same experimental conditions. DiffPool
is out-of-resources on REDDIT data, but KPlexPool is still competitive also with
respect to DiffPool results from Errica et al. (2020). On REDDIT-5K, only the topo-
logical pooling of Graclus yields to higher accuracy. Applying hub-promotion (Sect.
2.6) increases KPlexPool performance on IMDB-M and REDDIT-B, as shown in
Table 4. Its community-seeking bias seems certainly very adequate for the processing
of social graphs, where adaptive pooling methods do not seem capable of leveraging
their parameters to produce more informative graph reductions. Perhaps surprisingly,
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Table 4 Test classification accuracy on social network benchmarks (mean± std)

COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K

Baseline 74.44 ± 2.55 69.20 ± 6.92 47.20 ± 4.27 84.85 ± 6.70 51.71 ± 3.12

Leiden 72.88 ± 1.88 69.30 ± 4.08 47.53 ± 4.45 81.05 ± 4.46 51.73 ± 3.31

Graclus 72.80 ± 1.10 68.70 ± 4.45 47.20 ± 2.93 86.85 ± 2.84 53.77 ± 1.29

CliquePool 75.90 ± 2.08 70.00 ± 3.71 47.87 ± 3.34 85.45 ± 3.52 54.43 ± 2.19

TopKPool 73.30 ± 2.96 68.20 ± 7.81 46.93 ± 3.03 78.60 ± 4.30 50.33 ± 2.84

SAGPool 73.40 ± 2.47 65.40 ± 6.28 46.33 ± 3.68 80.15 ± 7.49 49.79 ± 2.63

DiffPool 70.92 ± 2.95 68.80 ± 8.04 47.07 ± 1.73 OOR OOR

MinCutPool 73.16 ± 1.95 70.60 ± 3.93 44.60 ± 4.08 OOR OOR

KPlexPool 76.20 ± 2.08 72.00 ± 4.78 46.60 ± 4.08 86.45 ± 3.50 50.65 ± 3.41

– with p = 95 75.98 ± 2.31 69.40 ± 4.88 48.73 ± 4.33 87.90 ± 3.67 51.37 ± 2.77

Bold highlights the best performingmodel. OOR stands for out of resources, and p is the percentile threshold
value used for hub-promotion

Table 5 Average rank of every model (the lower the better) computed using both KPlexPool’s plain (i.e.,
with rk = 1 and p = 100), best and worst results on chemical, social, and all datasets for which all results
were available (i.e., all except DD, REDDIT-B, and REDDIT-5K)

Plain Best Worst

Ch. Soc. All Ch. Soc. All Ch. Soc. All

Baseline 5.00 3.67 4.33 5.33 4.00 4.67 5.00 3.67 4.33

Leiden 4.33 4.33 4.33 4.33 4.67 4.50 4.33 4.33 4.33

Graclus 4.00 6.00 5.00 4.33 6.33 5.33 4.00 6.00 5.00

CliquePool 4.67 2.00 3.33 5.00 2.33 3.67 4.33 1.67 3.00

TopKPool 7.00 6.33 6.67 7.00 6.67 6.83 7.00 6.33 6.67

SAGPool 7.33 7.00 7.17 7.33 7.00 7.17 7.33 7.00 7.17

DiffPool 3.67 6.67 5.17 3.67 7.00 5.33 3.67 6.67 5.17

MinCutPool 5.00 5.67 5.33 5.67 5.67 5.67 5.00 5.33 5.17

KPlexPool 3.33 3.00 3.17 1.67 1.00 1.33 3.67 3.67 3.67

Bold highlights the best ranking models

KPlexPool achieves excellent performances also onmolecular data, where wewould
have expected adaptive models to have an edge, confirming our initial intuition about
the flexibility and generality of k-plex cover communities. These results can be well
appreciated in Table 5, where we report the average rank of each model separately
on chemical, social, and the union of all datasets, with respect to the results shown
in Tables 3, 4. For KPlexPool, we report the average rank considering a plain con-
figuration (i.e. no incremental reduction nor hub-promotion) as well as for the best
and worst performing configurations. These results highlight how the performances
of KPlexPool are remarkably stable with respect to the choice of its configuration
options (cover post-processing methods).
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Table 6 Test classification accuracy (expressed as mean± std) obtained on ENZYMES, NCI-1, and PRO-
TEINS with different combinations of k and rk , usingKPlexPoolwith � = 3, h = 64, and GNN = GCN
fixed

Dataset k rk = 1 rk = 1/2 rk = 1/4 rk = 1/8

ENZYMES 1 37.83 ± 6.58 – – –

2 39.83 ± 7.13 42.17 ± 8.98 – –

4 37.83 ± 6.83 34.33 ± 7.75 35.33 ± 5.72 –

8 36.67 ± 9.94 38.00 ± 7.45 37.67 ± 5.44 36.67 ± 8.47

NCI-1 1 77.88 ± 1.58 – – –

2 76.98 ± 1.78 77.11 ± 1.61 – –

4 76.28 ± 2.25 77.23 ± 2.50 77.30 ± 2.11 –

8 76.69 ± 2.11 76.48 ± 2.72 77.25 ± 2.49 77.59 ± 2.71

PROTEINS 1 74.93 ± 3.56 – – –

2 75.38 ± 3.22 74.84 ± 4.13 – –

4 75.11 ± 4.28 75.29 ± 3.48 74.30 ± 3.78 –

8 72.87 ± 4.67 74.39 ± 4.27 73.58 ± 3.26 74.20 ± 5.31

A “–” implies the experiment is equivalent to the closest on its left, as the smaller rk value reduced k in the
same manner

4.1 Ablation studies and practical considerations

For completeness, we performed ablation studies aimed at analyzing the every com-
ponent of KPlexPool contributes to the overall performance. Table 6 compares the
results obtained on ENZYMES, NCI-1, and PROTEINS using KPlexPool with dif-
ferent combinations of k and rk . We used the experimental approach described in
Sect. 4, but restricted the hyper-parameter space (Table 2) by fixing � = 3, h = 64,
and GNN = CGN. As anticipated in Sect. 4, KPlexPool appears to yield a better
accuracy by aggregating 2- to 4-plexes instead of simple cliques, and the best values
(highlighted in bold) are obtained for k = 2 on two out of the three datasets.

Applying a reduction factor seem to be more effective with larger k values: This
could be caused by the fact that a large k generates a cover containing few, large, sets;
hence, pooling layers beyond the first one will work on a smaller and denser coarsened
graph, with denser inner communities, that is better summarized by cliques or k-plexes
with small k values.

Table 7 compares instead the results obtained onCOLLAB, IMDB-B, and IMDB-M
using the same approach as above, but varying k and p (Sect. 2.6), and fixing � = 2.

Considering the generation process of the networks (see Yanardag and Vish-
wanathan 2015), we note that COLLAB is obtained by connecting authors that
co-authored a paper, while IMDB-B and IMDB-M by connecting actors/actresses
that co-starred in a movie. Furthermore, IMDB-M includes more movies than IMDB-
B. We can thus imagine that IMDB-M undergoes a more prominent presence of hubs
compared to IMDB-B due to the “rich gets richer” phenomenon (i.e., if we increase
the number of movies considered, more famous actors have a greater probability of
being featured in these movies and thus receiving more connection).
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Table 7 Test classification accuracy (expressed asmean± std) obtained onCOLLAB, IMDB-B and IMDB-
M with different combinations of k and p, using KPlexPool with � = 2, h = 64, and GNN = GCN
fixed

Dataset k p = 100 p = 95 p = 90 p = 85 p = 80

COLLAB 1 76.16 ± 1.96 76.28 ± 1.10 74.82 ± 2.17 74.80 ± 1.85 75.24 ± 1.47

2 75.70 ± 1.97 75.58 ± 1.87 75.22 ± 2.51 74.08 ± 2.23 75.22 ± 2.28

4 75.32 ± 1.84 75.30 ± 1.89 75.50 ± 1.62 75.32 ± 2.29 74.68 ± 1.98

8 74.32 ± 1.84 73.50 ± 1.71 73.54 ± 1.96 74.42 ± 1.71 74.32 ± 2.06

IMDB-B 1 67.50 ± 7.00 71.20 ± 3.94 72.60 ± 4.00 70.80 ± 4.87 71.90 ± 3.75

2 68.60 ± 6.36 71.50 ± 4.01 70.80 ± 3.54 69.40 ± 7.13 70.70 ± 3.07

4 70.70 ± 4.24 70.70 ± 3.77 66.90 ± 8.98 70.70 ± 5.04 68.60 ± 7.03

8 68.50 ± 5.10 70.10 ± 5.07 67.70 ± 7.16 64.40 ± 8.90 68.30 ± 5.50

IMDB-M 1 48.07 ± 3.81 47.60 ± 4.01 46.80 ± 3.46 47.80 ± 2.35 47.93 ± 1.78

2 48.40 ± 3.49 46.93 ± 4.01 47.20 ± 3.21 47.53 ± 2.92 48.00 ± 3.11

4 46.73 ± 3.73 47.67 ± 3.77 47.93 ± 2.64 47.93 ± 2.74 48.27 ± 4.19

8 47.07 ± 2.72 47.60 ± 2.43 46.53 ± 2.32 48.07 ± 2.37 47.47 ± 3.28

This is reflected on the data in Table 7:we can observe how the best value for IMDB-
M is obtainedwhen p = 80 (i.e., the top 20%of nodes is considered a hub)whereas the
best value of IMDB-B is obtained for p = 90 (i.e., the top 10% is considered a hub).
More in general, we can observe that Table 7 motivates the usage of the hub promotion
parameter p, as in all three datasets considered we obtain benefits by setting it as a
non-trivial value (we recall that p = 100 corresponds to not using hub promotion).

As for varying the k values, we do not observe any significant trend. This is perhaps
unsurprising, considering that these datasets are obtained by turning the co-authors of
a paper (resp., co-stars of a movie) into a clique, thus k = 1 may be general enough for
our requirements in some cases, although we observe that the best results are found on
different lines for different values of p, and in particular the best value of IMDB-M is
found for k = 4.

For an optimal choice of parameters, the ideal strategy would be to find the most
effective values of k from the hyper-parameter tuning process. However, we observe
that the choice k = 2 seems to have good overall performance, being often the best
result or close to it: if it is required to use the approach on the fly, as a rule of thumb
we suggest trying low values of k.

5 Conclusions

We have introduced KPlexPool, a novel graph pooling methodology leveraging k-
plexes and graph covers. Starting from consolidated graph-theoretic concepts and
recent results on scalable community detection (Conte et al. 2018), we have built a
flexible graph reduction approach thatworks effectively across structureswith different
topological properties. We have provided a general formulation that can account for
different node inspection schedules and that can, in principle, be tailored based on
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prior or domain knowledge. Nevertheless, in the paper, we discussed the effectiveness
of the approach for a fixed node ordering heuristic and cover post-processing strategy,
showing the effectiveness of the method even in the plainest configuration.

The resulting KPlexPool algorithm has state-of-the-art performances in 7 out of
9 graph classification benchmarks. KPlexPool is shown to be the best performing
method, on average,when confrontedwith related poolingmechanisms from literature.
It does so through a fully topological approach that does not leverage task information
for community building. None of the relatedmodels, including the adaptive ones, seem
to have the same ability to cope effectively with structures of radically different nature
(molecules and social networks). Apart from predictive performance,KPlexPool has
a very practical advantage in terms of computational cost, when compared to adaptive
models such asDiffPool. For instance, its graph reduction can be pre-computed once
for the whole dataset and re-used throughout the whole model selection and validation
phase, as it does not depend on adaptive node embedding. This aspect is clear from
the empirical results, in which DiffPool is shown to fail to complete training within
the 2 weeks limit (or to exceed the available GPU memory) on datasets comprising
larger graphs. Conversely, as the proposed k-plex cover algorithm ismostly sequential,
computing KPlexPool on the fly during the training loop will produce an overhead
due to GPU-CPU synchronizations. To overcome this limitation, we need to design
a parallel alternative for our algorithm that could also run on GPU. We left this as a
future work.
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Cangea C, Veličković P, Jovanović N, Kipf T, Liò P (2018) Towards sparse hierarchical graph classifiers.
arXiv:1811.01287

Cazals F, Karande C (2008) A note on the problem of reporting maximal cliques. Theor Comput Sci
407(1):564–568. https://doi.org/10.1016/j.tcs.2008.05.010

Conte A, Grossi R, Marino A (2016) Clique covering of large real-world networks. In: Proceedings of the
31st annual ACM symposium on applied computing, association for computing machinery, Pisa, Italy,
SAC ’16, pp 1134–1139, https://doi.org/10.1145/2851613.2851816

Conte A, DeMatteis T, De Sensi D, Grossi R, Marino A, Versari L (2018) D2K: scalable community detec-
tion in massive networks via small-diameter k-plexes. In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery and data mining, association for computing machin-
ery, London, United Kingdom, KDD ’18, pp 1272–1281, https://doi.org/10.1145/3219819.3220093

Conte A, Grossi R, Marino A (2020) Large-scale clique cover of real-world networks. Inform Comput 270:
https://doi.org/10.1016/j.ic.2019.104464

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast
localized spectral filtering. In: Proceedings of the 30th international conference on neural information
processing systems, Curran Associates Inc., Red Hook, NY, USA, NIPS’16, pp 3844–3852

Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors a multilevel approach. IEEE
Trans Pattern Anal Mach Intel 29(11):1944–1957. https://doi.org/10.1109/TPAMI.2007.1115

Diehl F (2019) Edge contraction pooling for graph neural networks. arXiv:1905.10990
Diehl F, Brunner T, Le MT, Knoll A (2019) Towards graph pooling by edge contraction. In: ICML 2019

workshop on learning and reasoning with graph-structured data
Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-enzymes without alignments. J

Mol Biol 330(4):771–783. https://doi.org/10.1016/s0022-2836(03)00628-4
Errica F, Podda M, Bacciu D, Micheli A (2020) A fair comparison of graph neural networks for graph

classification. In: International conference on learning representations
Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch geometric. In: ICLR workshop

on representation learning on graphs and manifolds
Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pat-

tern recognition unaffected by shift in position. Biol Cybern 36(4):193–202. https://doi.org/10.1007/
BF00344251

Gama F, Marques AG, Leus G, Ribeiro A (2019) Convolutional neural network architectures for signals
supported on graphs. IEEE Trans Signal Process 67(4):1034–1049. https://doi.org/10.1109/TSP.2018.
2887403

Gao H, Ji S (2019) Graph U-Nets. In: International Conference onMachine Learning, pp 2083–2092, ISSN:
1938-7228 Section: Machine Learning

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for Quantum
chemistry. In: Proceedings of the 34th international conference onmachine learning, vol 70, JMLR.org,
Sydney, NSW, Australia, ICML’17, pp 1263–1272

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains. In: Proceedings of

the 2005 IEEE international joint conference on neural networks, vol 2, pp 729–734. https://doi.org/
10.1109/IJCNN.2005.1555942, ISSN: 2161-4407

123

http://arxiv.org/abs/1806.01261
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1145/362342.362367
http://arxiv.org/abs/1811.01287
https://doi.org/10.1016/j.tcs.2008.05.010
https://doi.org/10.1145/2851613.2851816
https://doi.org/10.1145/3219819.3220093
https://doi.org/10.1016/j.ic.2019.104464
https://doi.org/10.1109/TPAMI.2007.1115
http://arxiv.org/abs/1905.10990
https://doi.org/10.1016/s0022-2836(03)00628-4
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1109/TSP.2018.2887403
https://doi.org/10.1109/TSP.2018.2887403
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942


K-plex cover pooling for graph neural networks 2219

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using
networkx. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in Science
Conference, Pasadena, CA USA, pp 11–15

HamiltonWL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings
of the 31st international conference on neural information processing systems, Curran Associates Inc.,
Long Beach, California, USA, NIPS’17, pp 1025–1035

Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl
Comput Harmonic Anal 30(2):129–150. https://doi.org/10.1016/j.acha.2010.04.005

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J Sci Comput 20(1):359–392. https://doi.org/10.1137/S1064827595287997

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Pro-
ceedings of the 5th international conference on learning representations, ICLR 2017, Toulon, France,
April 24–26, 2017, Conference Track Proceedings, OpenReview.net

Knyazev B, Taylor GW, Amer M (2019) Understanding attention and generalization in graph neural net-
works. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R (eds) Advances
in neural information processing systems 32, Curran Associates, Inc., pp 4202–4212

Kriege NM, Johansson FD, Morris C (2020) A survey on graph kernels. Appl Netw Sci 5(1):6. https://doi.
org/10.1007/s41109-019-0195-3

Le Gall F (2014) Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th international
symposium on symbolic and algebraic computation, pp 296–303

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation
applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/
neco.1989.1.4.541

Lee J, Lee I, Kang J (2019) Self-attention graph pooling. In: International conference on machine learning,
pp 3734–3743, ISSN: 1938-7228 Section: Machine Learning

Li M, Ma Z, Wang YG, Zhuang X (2020) Fast Haar transforms for graph neural networks. Neural Netw
128:188–198. https://doi.org/10.1016/j.neunet.2020.04.028

LiQ,HanZ,WuXM(2018)Deeper insights into graph convolutional networks for semi-supervised learning.
In:McIlraith SA,Weinberger KQ (eds) Proceedings of the thirty-secondAAAI conference on artificial
intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the
8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2–7, 2018, AAAI Press, pp 3538–3545

Li Y, Tarlow D, Brockschmidt M, Zemel RS (2016) Gated graph sequence neural networks. In: Proceedings
of the 4th international conference on learning representations, ICLR 2016, San Juan, Puerto Rico,
May 2–4, 2016, Conference Track Proceedings

Luzhnica E, Day B, Lio’ P (2019) Clique pooling for graph classification. arXiv:1904.00374
MaY,Wang S, Aggarwal CC, Tang J (2019) Graph convolutional networks with EigenPooling. In: Proceed-

ings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining,
Association for Computing Machinery, Anchorage, AK, USA, KDD ’19, pp 723–731, https://doi.org/
10.1145/3292500.3330982

Micheli A (2009) Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw
20(3):498–511. https://doi.org/10.1109/TNN.2008.2010350

Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on
graphs and manifolds using mixture model CNNs. pp 5115–5124

Morris C, Ritzert M, FeyM, HamiltonWL, Lenssen JE, Rattan G, GroheM (2019)Weisfeiler and leman go
neural: higher-order graph neural networks. Proc AAAI Conf Artif Intel 33(01):4602–4609. https://
doi.org/10.1609/aaai.v33i01.33014602

Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann M (2020) TUDataset: a collection of
benchmark datasets for learning with graphs. In: ICML 2020 Workshop on Graph Representation
Learning and Beyond (GRL+ 2020), arXiv:2007.08663

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Dietterich TG,
Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press,
Cambridge, pp 849–856

Poulin V, Théberge F (2019) Ensemble clustering for graphs. In: Aiello LM, Cherifi C, Cherifi H, Lambiotte
R, Lió P, Rocha LM (eds) Complex networks and their applications VII, Studies in Computational
Intelligence. Springer, Cham, pp 231–243, https://doi.org/10.1007/978-3-030-05411-3_19

123

https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1016/j.neunet.2020.04.028
http://arxiv.org/abs/1904.00374
https://doi.org/10.1145/3292500.3330982
https://doi.org/10.1145/3292500.3330982
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
http://arxiv.org/abs/2007.08663
https://doi.org/10.1007/978-3-030-05411-3_19


2220 D. Bacciu et al.

Ranjan E, Sanyal S, Talukdar P (2020) ASAP: adaptive structure aware pooling for learning hierarchical
graph representations. Proc AAAI Conf Artif Intel 34(04):5470–5477. https://doi.org/10.1609/aaai.
v34i04.5997

RAPIDS Development Team (2018) RAPIDS: collection of libraries for end to end GPU data science
Scarselli F, Yong SL, Gori M, Hagenbuchner M, Tsoi AC, Maggini M (2005) Graph neural networks

for ranking Web pages. In: The 2005 IEEE/WIC/ACM international conference on web intelligence
(WI’05), pp 666–672, https://doi.org/10.1109/WI.2005.67

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model.
IEEE Trans Neural Netw 20(1):61–80. https://doi.org/10.1109/TNN.2008.2005605

Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the
enzyme database: updates and major new developments. Nucl Acids Res. https://doi.org/10.1093/nar/
gkh081

ShervashidzeN, Schweitzer P, Leeuwen EJV,MehlhornK, Borgwardt KM (2011)Weisfeiler-Lehman graph
kernels. J Mach Learn Res 12:2539–2561

Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
3693–3702

Tomita E, TanakaA, Takahashi H (2006) Theworst-case time complexity for generating all maximal cliques
and computational experiments. Theor Comput Sci 363(1):28–42. https://doi.org/10.1016/j.tcs.2006.
06.015

Traag VA, Waltman L, van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected commu-
nities. Sci Rep 9(1):5233. https://doi.org/10.1038/s41598-019-41695-z
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