
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-021-00761-9

CrashNet: an encoder–decoder architecture to predict crash
test outcomes

Mohamed Karim Belaid1 ·Maximilian Rabus2 · Ralf Krestel3

Received: 20 September 2020 / Accepted: 30 April 2021
© The Author(s) 2021

Abstract
Destructive car crash tests are an elaborate, time-consuming, and expensive necessity
of the automotive development process. Today, finite element method (FEM) simula-
tions are used to reduce costs by simulating car crashes computationally. We propose
CrashNet, an encoder–decoder deep neural network architecture that reduces costs
further and models specific outcomes of car crashes very accurately. We achieve this
by formulating car crash events as time series prediction enriched with a set of scalar
features. Traditional sequence-to-sequence models are usually composed of convolu-
tional neural network (CNN) and CNN transpose layers. We propose to concatenate
those with an MLP capable of learning how to inject the given scalars into the output
time series. In addition, we replace the CNN transpose with 2D CNN transpose layers
in order to force the model to process the hidden state of the set of scalars as one time
series. The proposed CrashNet model can be trained efficiently and is able to process
scalars and time series as input in order to infer the results of crash tests. CrashNet
produces results faster and at a lower cost compared to destructive tests and FEM
simulations. Moreover, it represents a novel approach in the car safety management
domain.

Keywords Predictive models · Time series analysis · Supervised deep neural
networks · Car safety management

Responsible editor: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

B Ralf Krestel
ralf.krestel@hpi.de

Mohamed Karim Belaid
belad01@ads.uni-passau.de

Maximilian Rabus
maximilian.rabus2@porsche.de

1 University of Passau, Passau, Germany

2 Porsche AG, Stuttgart, Germany

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00761-9&domain=pdf
http://orcid.org/0000-0002-5036-8589

M. K. Belaid et al.

1 Crash tests

Multi-national car manufacturers are hampered, in their race towards globalization, by
the law requirements of each country. Indeed, for each new car model, a large class of
crash tests with different scenarios has to be fulfilled. These tests are performed multi-
ple times during the development process to ensure that the required safety standards
are being met. Each real crash requires several weeks of organization. The develop-
ment of a new car model is time-consuming and expensive as it requires hundreds of
crash tests in order to fulfill all regulations and laws. A first attempt to replace crash
tests and lower the costs was the introduction of crash simulations based on the finite
elementmethod (FEM simulations). Let’s consider a specific crash scenario: The auto-
motive safety assessment process embraces various front normal crash tests where a
car drives against a rigid barrier at a certain speed. As an example, one is performed
with a male dummy in the driver position, and one is done with a female dummy.
Both tests share the same crash scenario characteristics. Thus, the car’s acceleration
time series can be obtained from the first real crash and used for the FEM simulations
performed afterward for the female dummy.Moreover, an acceptable prediction of the
car’s acceleration time series could also be directly obtained using classical simulation
software.

Nevertheless, the obtained estimation requires numerous working days to set up
the simulation software. Then, the simulation runs for 4–33 h depending on the crash
scenario, the capacity of the cluster, and the quality of the results (Böttcher et al. 2005;
Vangi et al. 2018). This massive computing capacity drives the cost again to $400 or
even $5000 per simulation, against $300,000 for a real crash test (Spethmann et al.
2009).Thegoal of this research is to decrease the cost of the safety development process
by decreasing the number of necessary destructive crashes and FEM-simulations.
Since the structure of the car is highly complex for physical models, we opted to apply
machine learning techniques to explore new ways to model a crash event.

Deep neural network architectures are very successful in computer vision, natu-
ral language processing, and other perception tasks. In these contexts, large training
datasets can be gathered consisting of unprocessed and unfiltered, raw data. In the case
of supervised learning, no other data is used as input, apart from the labels, e.g., for
face detection, only the raw images are used without further information. This allows
us to create a large dataset without expensive annotations. Crash cars are equipped
with several hundred sensors, e.g., acceleration sensors on the car structure and inside
the dummies. The signals of these sensors can be understood as a time series and are
used as the raw input data for CrashNet. But in contrast to large-scale perception tasks,
these time series are accompanied by a set of scalar features like the car mass or the
dummy type. They are used as additional information to predict crash test outcomes.

In this paper, we present CrashNet, a deep neural network that uses as inputmultiple
scalar features and the car’s acceleration time series: a 1-dimensional time series
representing the deceleration of the car during a crash event. CrashNet predicts the
occupant’s kinematic during the crash event, by outputting a full 1-dimensional time
series representing its chest acceleration. Based on this information, the injury severity
of the occupant can be estimated. CrashNet can also be reshaped to output only one
scalar such as e.g., the maximum chest acceleration.

123

CrashNet: an encoder–decoder architecture…

2 Related work

Car safetymanagement needsmonitoring during the entire life cycle of a car. Research
related to car safety starts during prototyping and continues after the production phase
in order to understand the safety behavior. Research in the car safety domain can be
divided into three different fields:

1. Predicting the risk of an accident based on general facts (geographic location, car
speed, car model, etc.) (Chen et al. 2016).

2. Optimizing the active safety features by, e.g., improving the object detection and
real-time risk evaluation modules (Sivaraman and Trivedi 2009; Szczurek et al.
2012; Sun et al. 2006) and warning distracted drivers (Trivedi et al. 2007).

3. Predicting the car deformation (Hilmann and Hänschke 2009; Grunert and Fehr
2016; Zhao et al. 2010), and the occupant behavior during a crash (Bastien et al.
2017; Iwamoto et al. 2012; Untaroiu and Adam 2012).

The first field is the most explored one by the data science community as road acci-
dent data are made available to the public by governments and agencies. The second
field requires only non-destructive testing and hardware equipment (cameras, graphic
cards, sensors) and research can be conducted with a small budget. However, the third
field requires many destructive tests for data collection. Car manufacturers have been
collecting these data for decades during the development phases of new cars. This data
is confidential and therefore only car manufacturers have access to it. This explains
why only a few research papers are published in this field, and, generally, there is no
training data publicly available. Public research about predicting occupant behavior
using data science aims either at creating crash test dummies with higher bio-fidelity
or to improve computer simulations. Diverse AI techniques were applied: from classi-
fication methods (Untaroiu and Adam 2012) to reinforcement learning (Iwamoto et al.
2012). But none of them tried to predict the driver’s chest acceleration time series,
required by law and regulations.

2.1 Physical andmathematical models

Given enough input data and a complex model, predicting car crash outcomes is
theoretically possible using machine learning. The model can learn patterns from the
crash test setup, generalize over the individual data points, and predict the results of
future tests. To model a crash test, two different approaches can be followed.

The first approach is based on a physical model. It takes into consideration the
structure of the car and all physical phenomena observed during the crash (friction,
torsion, etc.). Therefore, any prototype, even a completely novel type of car, can
be assessed. In addition, the safety of the occupant is proven before investing in
production. On the other hand, this method requires a fairly extensive description of
all car components.

The second approach is supported by a mathematical model. The idea is to extrap-
olate results from different real crash tests and deduce the result for similar crash
tests. This approach is applicable to similar car models. Given that commercialized

123

M. K. Belaid et al.

car models evolve slowly, e.g., vehicle components are used for multiple lines of cars,
mathematical models are a valid approach.

Researchers have applied the mathematical approach to predict the behavior of
dummies since 1995 (Melvin 1995). The working methodology relies on the principle
of dimensional analysis, which states that any measure can be decomposed into com-
binations of mass, time, temperature, and length. The idea is to scale up the available
results and infer the head injury criterion (HIC) of a similar dummy (Park and Kan
2010). Other measures can also be inferred, including the occupant chest acceleration
time series. This latter is the main research focus of this paper.

2.2 Data sciencemodels

From brain signal prediction (Ullah et al. 2018) to wind speed prediction (Fukuoka
et al. 2018), neural networks have been used to predict all types of time series. In
general, an encoder–decoder architecture is used. The encoder handles the extraction
of valuable information from the input data,whereas the decoder learns how togenerate
the output time series out of the obtained hidden state. In the following, we discuss
the most popular layers used in the encoder part.

Convolutional neural network (CNN) architectures became popular since the incep-
tion of ImageNet (Krizhevsky et al. 2012). This work highlighted, in a practical
example, the ability of convolutional layers to analyze the available data hierarchically
and to extract local patterns automatically. In the former cited work, the extracted hid-
den states help classifying images. In another application (Ince et al. 2016), extracted
hidden states help detecting outliers in motor signals. Detected patterns are sharp-
ened thanks to regularization methods (Hinton et al. 2012), which allow the model to
learn distinguishable patterns. Overall, CNN blocks are well-known for their exclu-
sive property of learning patterns unrelated to the time position, which allows them
to generalize on small datasets (Chollet 2017a). Although the stacked 1D CNN layer
module is simple to implement, its architecture has many hyper-parameters (kernel
size, number of filters, number of layers).

Multi-Resolution CNN takes advantage of different kernel sizes. Indeed, each
branch is able to extract specific patterns and analyze the data at a different scale. This
method has been introduced in a paper named “Attention is All You Need” (Vaswani
et al. 2017). The paper promoted attention models and argued against the use of
memory-based layers (RNNs).

Temporal convolutional network (TCN) is a modified version of CNN proposed by
Google in 2016 (van den Oord et al. 2016). It is an audio generative model based on
the PixelCNN (Van Den Oord et al. 2016). It showed impressive performance as an
audio generative model. Compared to a normal CNN block with causal padding, TCN
is able to connect much more input features to one output, thanks to its sparse archi-
tecture (dilated causal padding). Nevertheless, its efficiency for long-term memory
applications is still debated (Wan et al. 2019; Bai 2018).

Depthwise separable convolution performs the same operation as a classical CNN
layer. CNN’s weights are represented as a matrix of size m by n. During a forward
pass, the input is multiplied by the weight matrix. Thus, the output is calculated in

123

CrashNet: an encoder–decoder architecture…

one step and m by n multiplications are performed. In contrast, depthwise separable
convolution has two vectors representing its weights: a column vector of lengthm and
a row vector of length n. This time, the forward pass is calculated in two steps. The
input is multiplied successively by the two vectors. A total of m + n multiplications
are performed. Thus, separable convolution performs less computational operations.
But intermediary results have to be saved in memory. Globally, separable convolution
is significantly faster for filters larger than 4 by 4. Depthwise separable convolution
has certain limitations regarding the learned filters. A separable matrix could repre-
sent a Gaussian filter or a box filter. The demonstration is based on singular value
decomposition (SVD). Opposingly, hexagon filters and “donut”-type bokeh cannot be
represented with separate matrices. In general, band-pass filters are not separable. To
summarize, depthwise separable convolution has a limited learning capability despite
the possible approximation methods. Nevertheless, it can show better results in certain
applications (Wojna et al. 2019; Chollet 2017b).

Concerning the decoder, much less research has been conducted. Nevertheless, it
is not deniable that it plays a significant role in establishing a powerful model (Wojna
et al. 2019). Encoder–decoder models usually have a symmetrical architecture: CNN
layers are replaced by CNN transpose layers (Dumoulin and Visin 2016) while max
pooling layers are replaced by up-sampling methods.

Finally, one should consider other types of improvement of the architecture, such as
activation functions and skip layers (Bishop 1995; Ripley 2007) as they have a specific
added value to themodel. In this paper, we experimentally evaluated and compared the
various layer types for application in the crash test domain. The result of our analysis
is CrashNet, a novel deep neural network architecture capable of modeling the crash
test environment.

3 CrashNet

CrashNet is an encoder–decoder deep neural network architecture. It combines differ-
ent layers and blocks to model the highly complex relationships between input time
series data and selected scalar input features to predict the driver’s chest acceleration
time series.

3.1 Overall architecture

CrashNet and convolutional auto-encoder have similar topologies. Figure 1 gives an
overview of the CrashNet architecture. The encoder part processes the car’s accel-
eration time series and the scalars separately. The car’s acceleration time series is
encoded through two CNN blocks with max-pooling and tanh activation function. In
parallel, scalar features are processed using three densely connected layers with relu
activation. Thus, the output of the encoder is composed of two sets of hidden features.
The first set of features is provided by the input time series. And the second results
from the scalar inputs. It is now the role of the decoder to merge them. The driver’s
chest acceleration time series (output) is reconstructed using transpose convolutions.

123

M. K. Belaid et al.

Fig. 1 CrashNet Architecture (values in brackets are output data dimensions)

We apply a 2-dimensional kernel in order to combine the latent representation of the
car’s acceleration time series with the scalars.

Let k × 2 be the size of the rectangular kernel of the “deconvolutional” layers. The
first dimension represents the time steps. The second dimension jumps from the hidden
state of the car’s acceleration time series to the hidden state of the scalars. The output
of the deconvolutional layer is scaled up in both dimensions (Fig. 2). If we consider
how the kernel is translated, we deduce that three vectors will be created out of the
two input vectors: Output vector 1 results from the latent representation of the car’s
acceleration time series. Output vector 2 combines both car’s acceleration time series
and scalars. Output vector 3 is a combination of the scalar features only. Output vector
3 is, thereafter, cropped in order to limit the influence of the scalars and to foster the
merge between time series and scalars. The cropping could not be done using conv1D
transpose. Mainly, thanks to Conv2D transpose we are able to process, first, the input

123

CrashNet: an encoder–decoder architecture…

Fig. 2 Convolutional transpose operation adopted to scalar inputs

time series, then, then scalars, and the input time series with the same filters. The last
layer of the block performs a bilinear upscaling through the time step dimension. The
second deconvolution block performs the same three operations again. The output of
the decoder, around 22000 features, is fed into one dense layer that outputs the driver’s
chest acceleration time series, 1500 values.

3.2 Added value of CrashNet

The following points summarize the contribution of the architecture:

– The scalar features describe the car and the driver dummy. We suppose that each
scalar influences the driver’s behavior (driver’s chest acceleration) at a particular
time step. Thus, CrashNetmust have the learning capability of transforming scalars
(without any time indication) into a time series. For this, the car’s acceleration time
series is used during the learning process.

– The use of scalar inputs, in this setting, leads to overfitting. To prevent this, Crash-
Net controls the flow of the scalar features through the neural network by adding
multiple bottlenecks.

In the following, we describe the components and concepts in more detail. In order
to integrate the scalars into the output’s time series, CrashNet processes the scalars
using two modules: an MLP and 2D convolutional transpose blocks. Thanks to the
fully connected architecture of MLP, CrashNet is able to map each input scalar to the
time segment that it affects (in the output time series). The role of the 2D deconvolution
is, now, to shape the content of the scalars’ hidden state. To do so, 2D deconvolution
blocks first learn the filters that turn the car’s acceleration time series into the driver’s
chest acceleration. Then, the same filter is applied to the scalars’ hidden state, and,
thanks to back-propagation (fromCNN transpose toMLP), the filtersmold the scalars’
hidden state into a time series’ hidden state. Mainly, CrashNet uses CNN transpose

123

M. K. Belaid et al.

and dense layers in order to inject each scalar exactly when it influences the output
the most.

The second property of CrashNet concerns the bottleneck imposed on the scalars.
Indeed, themodel can overfit easily on the scalars as they represent themain difference
between crash tests. However, they contain incomplete information about the car itself.
The first bottleneck stands at the end of the encoder. The encoder outputs 165 time-
samples by 64 features extracted from the input time series. In contrast, it outputs only
165 values after processing the scalars. This vector is duplicated 64 times to match
the same shape of the car acceleration’s hidden state. The second bottleneck stands in
the architecture of the decoder. Features that are generated out of the scalars only are
discarded. Vector 3 in Fig. 2 represents the discarded features. The cropping is applied
twice since the decoder module is composed of two blocks.

3.3 Alternative architectures

In the process of developing CrashNet, various neural network architectures have
been evaluated. Below is a summary of alternative architectures with competitive
performances.

MLP: Fully dense layers are not able, by themselves, to capture useful patterns.
Thus, all predictions are very similar.

TCN : Temporal convolutional network (TCN) is a variation of causal CNN where
the connection between layers id dilated in order to connect a longer input sequence
to each output node. Inspired by this approach (van den Oord et al. 2016), 5–10 CNN
blocks are stacked with skip connections. The built residual network also contains
dropout and batch normalization layers. After performing hyperparameter optimiza-
tion, it has been found that 8–9 layers represent the best configuration. For 9 layers,
each output is connected to 29 = 512 input features. This implies that the dummy’s
acceleration is affectedmainly by the last 51.2ms. This observation is confirmed again
during the analysis of the CrashNet model in Sect. 5.3.

RNN : Models based only on RNNs (LSTM or GRU) were not competitive (mean
square error around 2000) compared to CrashNet. This might have been due to the
long time series (1500 steps) of the input data. A better architecture combines RNN
and CNN layers. We have found that the best combination is to alternate them. Or one
could obtain this architecture by replacing the MaxPooling layers in CrashNet with
RNN. This makes the model fully trainable. Despite the complexity of this solution, it
showed the samemean square error (MSE) asCrashNet. But since trainingRNNs takes
much more time than training CrashNet, we opted for architectures without recurrent
layers.

To summarize, we propose a unique neural network architecture to simulate car
crashes. CrashNet’s architecture can be generalized to predict and generate any time
series using scalars and time series as input. The encoder and decoder modules learn
how to turn scalars into a time series throughwrestling between theMLP and the filters
of CNN transpose. Overfitting due to the scalar is reduced thanks to the bottlenecks,
sprinkled throughout the layers. Finally, CrashNet has the ability to learn how to predict
the driver’s chest acceleration with respect to causality without weight constraints.

123

CrashNet: an encoder–decoder architecture…

4 Evaluation

In order to evaluate the performance of CrashNet, we compared the prediction results
with a baseline and with the noise threshold, which is a natural lower bound for the
obtainable MSE. To the best of our knowledge, there is currently no state-of-the-art
model that is capable of predicting the driver’s chest acceleration time series. The
baseline outputs the average time series over the training set. The baseline is not a
model. Thus, it doesn’t present a validation score.

4.1 Dataset

In this section, we describe the dataset used in this study. The input variables consist
of 16 scalars and the car’s acceleration time series, a array of 1500 values representing
the car acceleration during the first 150 ms of the crash. The output of the model is the
full time series representing the driver’s chest acceleration. It is also composed of 1500
values (one value every 0.1 ms). By law, the occupant’s maximum chest acceleration
must stay below a certain threshold. For this reason, we are interested in predicting
it. For both time series, t = 0 represents the first instant of interaction between the
barrier and the car. The input and output time series are processed with a low pass
filter, known as Channel Frequency Class Filter, which is a standard in car safety
management (Grenke 2002). The stratified split is made according to the car model
since a higher correlation between these car’s acceleration time series has been noted.

During a crash test, some accelerometersmight fail. These failures result in a discon-
tinued time series. In our dataset, we discarded three incomplete time series resulting
in a dataset composed of 450 destructive crashes plus 52 computer simulations. The
52 computer simulations represent very similar crash scenarios. In this research, we
leverage simulation data to enable the model to learn how minor changes in the input
can affect the driver’s chest acceleration. We train models with and without simulation
data to confirm the intended effect of this augmentation.We found out that the test error
decreased by 3% and the quality of the predictions improved significantly. Since the
dataset is relatively small, the choice of the test set has a high influence on the results.
Tomitigate this effect,we performed three runs of 5-fold cross-validation,which yields
more robust average scores compared to one run of 5-fold-cross-validation. The 52
computer simulations constitute the training set (450 × 4/5 + 52 = 412 data-points
in train and validation set). The remaining 90 data points constitute the test set. The
validation set represents 10% random samples of the training set (412 × 0.1 = 41
data-points) and is used tomonitor the learning process. Further, we use early stopping
and Bayesian optimization for hyperparameter optimization.

4.1.1 Input features describing the car

In total we identified 16 relevant input scalars. One part is extracted from the crash
setup, while the rest is derived from the car’s acceleration time series. The following
paragraphs contain a description and an exact definition of the used features. If the
feature’s name starts with “car”, then the feature applies to any dummy independently

123

M. K. Belaid et al.

on its position inside the car (driver or passenger). Since we limit this work to the
driver, we do not consider features related to the passenger.

car::Sliding_Mean (SM25ms): The sliding mean describes the maximum average
car deceleration within a defined time interval. For this purpose, a time window
of 25 ms is used as a criterion to classify the hardness of a car’s acceleration time
series.
car::Initial_Speed (v0): This is the speed of the car at the time of impact (t = 0).
Crash tests are performed at predefined speeds: at 26, 32, or 40 km/h with unbelted
dummies, and at 50 or 56 km/h with belted dummies.
car::Rebound_Speed (vr): This is the maximum reverse speed of the car after
hitting thewall. vr = min

(∫
[a]CFC180 dt+v0

)
with a being the car’s acceleration

time series and v0 the initial speed of the car.
car::Kinetic_Energy_at_t0 (Ekin): Ekin = 1

2 · mcar · v20 with mcar being the car
mass.
car::Acceleration_Average and car::Acceleration_Max: These are the average and
max car acceleration values. In practice, they are known to correlate well with the
maximum of the driver’s chest acceleration (r = 0.46 and 0.59, respectively).
car::Acceleration_Over_3ms_Max: This is the highest acceleration recorded for a
contiguous period of at least 3 ms.
car::Group: This is the model of the vehicle. This feature is used for the stratified
split and is one-hot encoded into the following features: car::Group_is_Limousine,
car::Group_is_Small_Sports_Car, car::Group_is_Big_Sports_Car, car::Group_
is_SUV.

4.1.2 Input features describing the driver dummy

Different crash test dummies are used to assess the severity of injuries in a crash.
Each dummy type is equipped with specific sensors, e.g., acceleration sensors in the
dummy’s chest. Since the dataset is limited to full-frontal crash tests, the HYBRID-III
family is the most common type of dummy used.

driver::is_H3_Dummy This is set to one if the driver is a HYBRID-III 50th per-
centile male dummy and it is set to zero for a HYBRID-III
5th percentile female dummy.

driver::Seatbelt_Used The usage of the seat belt is not mandatory in certain
countries. For this reason, car manufacturers must perform
crasheswith belted and unbelted dummies (Hollowell et al.
1999).

driver::ROLCp This is the real occupant load criterion predicted
(ROLCp) (Rabus 2019), which is a recent structural cri-
terion developed in 2019. ROLCp is an estimation of the
linear deceleration experienced by the occupant, with a
perfect restraint system. To understand how to calculate
the ROLCp, let us understand the two phases of the decel-
eration of the dummy:

123

CrashNet: an encoder–decoder architecture…

Fig. 3 Example of a NCAP test (Park and Kan 2010)

– At the beginning of the crash, the dummy is almost not connected to the car. One of
the passive safety features that make the dummy decelerate is the friction with the
seat (Anti-submarine seat design). Thus, the dummy keeps traveling to the front
until that it is restrained by the seat belt or until it interacts with the airbag. During
this first phase, the dummy does not decelerate considerably compared to the car.

– During the second phase, the dummy is connected to the car thanks to the seat
belt and the airbags. Thus, the dummy’s relative speed to the car is completely
decreased. During this phase, the limits of a human body could be reached easily.
The twophases are delimited by three time-frames t = 0, tA and tB (see Fig. 3). The
ROLCp is the absolute value of the slope connecting the two points, the car speed
at tA and at tB . Physically speaking, the slope represents a perfect restraint system
where the occupant’s acceleration is constant (a0). The ROLC is the theoretically
minimum acceleration of the dummy while it is restrained inside the occupant’s
compartment. ROLC values aremeasured for a fixed distance traveled by the occu-
pant during its deceleration. Points A and B are chosen dynamically according to
the car model. They are picked without relying on the dummy’s chest acceleration
time series. For this reason, it is called ROLC predicted. Note that ROLCp is one
of the most important scalar features as it shows the highest correlation with the
target. Indeed, Pearson’s r is equal to 0.83 between ROLCp and the maximum of
the chest acceleration. The second-best scalar feature is driver::OLC++ and it has
a correlation of only 0.76.

driver::OLC: OLC is a specific case of ROLCp. Instead of using dynamic param-
eters like in ROLCp that depends on the specific car configuration, the OLC uses
fixed parameters. For further detail about the choice of points A and B please have
a look at (Park and Kan 2010).
driver::OLC++: is a combination of three useful structural criteria. OLC + + =
α1OLC + α2

(t)v=0
+ α3SM25ms with α1, α2, α3 being coefficients, (t)v=0 the time

to zero velocity, SM25ms the car::Sliding_Mean, and �t = 25 ms.

123

M. K. Belaid et al.

Table 1 Average mean squared error (MSE) ± standard error (SE)

Train Validation Test

MSE SE MSE SE MSE SE

Baseline 3896 ± 12 3910 ± 94

MLP 2413 ± 13 2332 ± 23 2407 ± 51

TCN 1462 ± 14 1903 ± 34 1934 ± 35

Seq2seq 1268 ± 12 1431 ± 24 1416 ± 35

RNN + CNN 758 ± 7 924 ± 23 922 ± 21

CrashNet 706 ± 10 881 ± 22 875 ± 12

Noise threshold 585 585 585

4.1.3 Tolerated level of error

Crash test datasets exhibit a significant degree of noise. The robustness noise is a well-
defined and well-known type of noise in the automotive safety field (Bohlien 2016;
Kang 2005; Will et al. 2006). Let us consider two comparable crashes. The obtained
car’s acceleration time series (input of themodel) are not identical. Of course, the same
holds for the observed dummy’s chest accelerations. This is due to diverse tolerances
in the production and the setup of the test. This noise has been quantified and in 95%
of the cases, the MSE is below 585.

4.2 Results

To compare CrashNet’s predictions to real crash tests, wemake use of theMSEmetric.
A direct comparison between CrashNet and FEM simulations using MSE scores is
unfortunately not possible given the following reason: In general, the accuracy of
FEM simulation results varies in the early stages of the development process and is
constantly improved due to validation steps, e.g., after performing the first physical
crash tests. This renders a fair comparison of MSE scores between CrashNet and
FEM simulations impossible. Nevertheless, the comparison between CrashNet and
real crash tests is the most important indicator of the quality of the model.

4.2.1 Overall results

Aggregated results can be found in Table 1. For each model and data set, we pro-
vide the average over 15 runs plus-minus the standard error of the mean. CrashNet
is outperforming the baseline by a very large margin. Its MSE value is close to the
noise threshold and the MSE values are stable. For a qualitative evaluation of the
generated predictions, we refer to the annex file which contains more example predic-
tions. Besides, CrashNet can extract useful patterns, which we will investigate in the
following subsections.

Moreover, the training is much faster than any former method. One real, destruc-
tive crash test requires 3–5 weeks of preparations (delivery of the prototype, dummy

123

CrashNet: an encoder–decoder architecture…

Table 2 Overall comparison of the passive safety assessment tools

Execution time Availability before the start of production Costs

Crash test ∼ 5 weeks 12months > 100, 000 e
FEM simulation ∼ 30 h 24months > 300 e
CrashNet ∼ 1 s 30months � 1 e

Fig. 4 Ground truth output time
series of 15 crashes of the same
car model1

(a) (b)

Fig. 5 Comparing predictions using seq2seq and CrashNet model1

inspection, etc.) plus one day to perform the crash and process the data. On the other
hand, FEM simulations would require a few days to set up the car model (dimension
and stiffness of each component) plus 4–33 h of computation on a high-end machine.
Finally, CrashNet is substantially less demanding: training and testing takes ∼ 14 mi,
using one CPU and inference time is roughly one second. See Table 2 for an overview.

4.2.2 Importance of scalar features

We demonstrate the importance of the scalar features by comparing CrashNet to a
sequence-to-sequence (seq2seq) model. The seq2seq model shares the same param-
eters as CrashNet, but it has only the car’s acceleration time series as input. Table 1
summarizes the performance of bothmodels.A significant drop in theMSE is observed
in the train and test. Without the scalars, the model is clearly underfitting.

The improvement can also be qualitatively observed. In Figs. 4 and 5, a set of crashes
sampled from the training set are compared. All selected crashes are performed with
the same car model and the same initial speed. All dummies are unbelted. The only
notable difference is the dummy type. 4 crash tests employ female dummies (pink
time series) and 11 crashes are conducted with male dummies (blue time series).

123

M. K. Belaid et al.

Figure 4 shows the expected outputs.1 The main difference is that the chest accel-
eration of female dummies reaches the lowest value around 15 ms earlier compared
to male dummies because female dummies are placed closer to the steering wheel.
Figure 5a illustrates the predictions of the seq2seq model. The model is unable to
differentiate the reaction of male and female dummies. CrashNet’s prediction is more
accurate (Fig. 5b). Male and female chest acceleration time series are visually sepa-
rable as they should be. Using scalars to generate a time series is challenging since
already a small number of them may lead to overfitting. But with the CrashNet archi-
tecture, the influence of the scalars on the output is limited and thus the model does
not overfit.

5 Discussion

This section is dedicated to the patterns learned by CrashNet: The first subsection
compares the importance of each scalar feature. The second subsection demonstrates
the time dependency between scalars and the output time series. The last subsection
explains the causality between input and output time series.

5.1 Which scalar features are most important?

In the following paragraphs, we estimate the importance of each input scalar within the
trained model using themean decrease accuracy algorithm, also known as the permu-
tation importance algorithm. It was initially introduced by Breiman in 2001 (Breiman
2001). Afterward, a model-agnostic version was developed in 2018 and explained in a
paper named“Allmodels arewrong, butmanyare useful” (Fisher et al. 2019). The algo-
rithm measures the decrease in the score when a feature is not available. Technically,
themodel requires an input value for the tested feature. The tested feature cannot be dis-
carded. The trick is to feed in randomnoise, i.e., no useful information. To not break the
model, the generated noise is drawn from the samedistribution as the original set of val-
ues. In practice, this means shuffling the original feature values. Thus, the distribution
remains the same, and the model is less likely to malfunction. In this way, permutation
importance can be measured. For a better understanding of Fig. 6, let us consider
the dummy type feature named driver::is_H3_Dummy. The values are binary: male
dummy or female dummy. After shuffling the dummy type values, the test MSE (even-
tually) increases by a certain value (here 88%). Thus, it is estimated that the importance
of this feature is prorated to the increase. The permutation importance algorithm con-
firms the importance of binary features, a task that was not feasible with Pearson’s r.

The driver::is_H3_Dummy feature obtained the highest score, which means that
dummies behave differently as seen in the subsection above. And this confirms again
the need to perform crashes with male and female dummies.

1 This research was conducted in collaboration with Porsche AG. The provided data has been anonymized:
sensitive data—such as measurements and the associated car model—has been masked.

123

CrashNet: an encoder–decoder architecture…

Fig. 6 Importance of scalar features for prediction outcome

The driver’s ROLCp feature has a high correlation with the target variable and
is among the top features selected by the trained model. This confirms earlier find-
ings (Rabus 2019) about the usefulness of ROLCp also as a standalone feature.

The driver::Seatbelt_Used feature is a binary feature with a uniform distribution in
the dataset. When the feature importance algorithm replaces it with a random value,
this random value still has a 50% chance to be correct. Therefore we expect that the
total generated error is much higher than 20% in case we provide a wrong input, not
only a random input.

5.2 Time dependency between scalars and driver’s chest acceleration

In this experiment, we investigate which part of the predicted time series is affected by
the scalars. For this, we calculate the permutation importance for each scalar without
averaging over the entire time series. For each scalar and for each time stepwecalculate
the additional MSE error that would occur if we provide a wrong input scalar.

Figure 7 shows the additional error per time step in case of a wrong input scalar.
Curves are smoothed by averaging over 10 successive time steps (1ms). Let’s consider
the driver::Seatbelt_Used feature. Given the distribution of the error, we notice that
this binary feature is affecting the beginning of the output time series. Technically, the
seat belt connects the dummy to the car, so that the dummy starts decelerating as soon
as possible. We conclude that the model learned perfectly where to inject this scalar
feature in the output time series.

In a global view of Fig. 7, we can order the features given the time interval at which
they affect the driver’s chest acceleration time series:

– driver::Seatbelt_Used (25–50 ms)

123

M. K. Belaid et al.

Fig. 7 Feature importance applied on each output timestep separately

– driver::is_H3_Dummy (45–55 ms)
– car::Sliding_Mean (50–55 ms)
– driver::ROLCp (50–65 ms and 85–95 ms)

Note that certain remaining input features did not show any particular pattern: The
maximum additional error they generated did not exceed 100% i.e., it did not double
the MSE. Thus, we discarded these distributions from the plot to keep only the 5 most
impacting features.

5.3 Fully connected layers versus causal padding

In this subsection, we analyze the patterns learned by the output module, which is
composed of only one fully connected layer without an activation function. We aim to
show that the dense layer learned to rely on past events to predict the occupant’s chest
acceleration. The equation of the dense layer is ŷ = Wx + b. The bias (b) and the
kernel weights (W) play distinct roles. The bias learns the mean predicted occupant
chest acceleration with respect to the input. While the W · x term learns the deviation
from it. The x vector represents 22,302 hidden features extracted from the input time
series and the scalars. The W matrix is of shape 22,302× 1500. For each of the 1500
outputs, 22,302 weights are affecting its value.

Figure 8 is a heatmap representing the amplitude of the kernel weights (W) shared
between each input–output pair. For example, the output value at t = 80 ms is the
scalar product between the extracted features x and the weights represented in the
horizontal line at t = 80 ms.

When weight amplitudes are close to 0, the output is almost not affected by x , as at
the beginning (0−20ms) and at the end (110−150ms) of the crash.Whereas, the range
20−110 ms is the output segment, which is mainly affected by the input. In general, a
higher weight amplitude is associated with a higher correlation. In the following, we
look at four regions of the heatmap in more detail: past measures (Region 1), future
measures (Region 2), and recent past measures (Region 3) of the car acceleration and
their correlationwith the output time series, aswell as an interesting artifact (Region 4).

123

CrashNet: an encoder–decoder architecture…

Fig. 8 Impact of the input time series on the occupant chest acceleration

By comparing Region 1 (the upper triangle) to Region 2 (the lower triangle) we
notice that the weights of Region 1 have a higher impact on the prediction. Thus,
the model is mainly using the past of the car’s acceleration time series to predict the
dummy’s behavior. Moreover, the dense layer learns not only causality but also the
number of past steps that must be taken into account. To predict the chest acceleration
at a certain time frame t, the model uses the input within the range (t − 40) ms and t .
Thus, the last 40 ms is the most valuable segment to predict the actual occupant chest
acceleration (Region 3).

Physical models are based only on causality. Whereas data science models exploit
any type of correlation, i.e., both causality and observation of the effect. To better
understand this, let us consider Region 4, which indicates a high correlation between
the dummy’s acceleration at 40ms and the car’s acceleration at t = 90ms. Overall, the
model is relying on what happened to the car in the future to predict what happened
to the occupant a few milliseconds before. After modeling the setup with a spring
and masses system, it can be shown that the dummies inside the car (which represent
around 10% of the total weight of the car) indeed affect the car deceleration time
series. At around 40 ms, the dummy connects to the airbag for the first time and starts
transferring its kinetic energy to the airbag that acts as a spring. The kinetic energy
becomes potential energy. A fewmilliseconds later, the energy is transferred gradually
from the airbag to the car in the formof kinetic energy,which is observable by analyzing
the acceleration of the car. Around 90 ms, the dummy is moving backward.

123

M. K. Belaid et al.

Mainly, we showed how the model learned by itself how the car is affecting the
dummy’s chest acceleration and also how the dummy is affecting, in turn, the car
acceleration time series. Thus, the model is able to infer the dummy acceleration
through the causality effect (car affects the dummy) and observations of the effect of
the dummy on the car’s acceleration time series.

6 Broader impact

CrashNet is a proof of concept for predicting chest accelerations with neural networks
that are able to turn scalars into a time series by learning when to inject them. This
architecture can also be applied to predict other time series (knee forces, head accel-
eration, etc.) and can potentially be applied to different time series prediction tasks.
CrashNet is a new tool for automotive safety engineers. It is faster than real crashes
and even cheaper than computer simulations.

Moreover, neural networks are based on statistics. They represent a novel approach
and we expect it to allow automotive safety engineers to tackle unanswered questions.
In the long term, we expect that CrashNet would allow car manufacturers to gradually
replace expensive, destructive crash testing. In the short term, we expect that CrashNet
will render slow, expensive computer simulations partially obsolete. As a first step, we
could perform one real crash to obtain the car pulse and predict the result for the other
dummy gender using CrashNet. This would already decrease the costs for car safety
development. Nevertheless, a wrong isolated prediction might corrupt the entire car
safety development process. Hence, the precision of the results for a specific crash
scenario is more important than covering all crash scenarios.

Finally, CrashNet was trained using the dataset of one particular car manufacturer.
Nevertheless, we expect that each car manufacturer will fine-tune the model using
their own datasets and benefit from accurate CrashNet predictions.

7 Conclusion

Wepresented CrashNet, a deep neural network architecture to predict the driver’s chest
acceleration time series based on scalar input features and the car’s acceleration time
series. CrashNet is composed of three parts. The encoder processes the car’s accelera-
tion time series and the scalar features separately. The decoder merges both and learns
how to turn scalars into a time series. The output layer learns the correlation between
the high-level features, and the occupant chest acceleration time series. Visualizing
the learned weights of the network, we demonstrated that the model learned causal
padding by itself resulting in the car’s acceleration recorded between t − 40 ms and
t having the highest influence on the dummy’s behavior at time t . Other significant
patterns have been observed concerning the effect of the scalar features. Using this
model, mechanical engineers could easily vary any feature (e.g., the car mass) and
predict its effect on the chest acceleration without any additional cost. We hope that
soon automotive safety engineers will benefit from this model to improve the car pro-
totypes especially at an earlier stage of the development process when fewer details

123

CrashNet: an encoder–decoder architecture…

about the car model are needed. CrashNet can assist automotive safety engineers in
making better decisions and reducing the number of trial and error iterations thanks
to its near-instant predictions. Fewer iterations would finally lead to reducing some of
the destructive crash tests or FEM simulations.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Annex: Example predictions

Below is a group of predictions. Note that the data is confidential. Thus, the input
scalars and the y-axis of the time series remain undisclosed (Fig. 9).

123

http://creativecommons.org/licenses/by/4.0/

M. K. Belaid et al.

Fig. 9 Example of predictions from the test set using the CrashNet model

123

CrashNet: an encoder–decoder architecture…

Fig. 9 continued

References

Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271

Bastien C, Blundell M, Neal-Sturgess C (2017) A study into the kinematic response for unbelted human
occupants during emergency braking. Int J Crashworthiness 22:689–703

Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
Bohlien J (2016) Stochastic crash simulations to analyze the influence of joint and assemble scattering on

the deformation behavior of vehicle structures under crash. Master’s thesis, Universität Stuttgart
Böttcher CS, Frik S, Gosolits B (2005) 20 years of crash simulation at opel-experiences for future challenges
Breiman L (2001) Statistics department. University of California, Berkeley, p 94720
Chen C, Zhang G, Qian Z, Tarefder R, Tian Z (2016) Investigating driver injury severity patterns in rollover

crashes using support vector machine models. Accid Anal Prev 90:128–139
Chollet F (2017b) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the

conference on computer vision and pattern recognition. IEEE, pp 1251–1258
Chollet F (2017a) Deep learning with python. Manning Publications Co., New York
Dumoulin V, Visin F (2016) A guide to convolution arithmetic for deep learning. arXiv preprint

arXiv:1603.07285
FisherA,RudinC,Dominici F (2019)Allmodels arewrong, butmany are useful: learning a variable’s impor-

tance by studying an entire class of predictionmodels simultaneously. JMach Learn Res 20(177):3–81
Fukuoka R, Suzuki H, Kitajima T, Kuwahara A, Yasuno T (2018) Wind speed prediction model using

LSTM and 1D-CNN. J Signal Process 22(4):207–210
Grenke BD (2002) Digital filtering for j211 requirements using a fast Fourier transform based filter. SAE

Trans 111:359–401
Grunert D, Fehr J (2016) Identification of nonlinear behavior with clustering techniques in car crash simu-

lations for better model reduction. Adv Model Simul Eng Sci 3:1–19
Hilmann J, Hänschke IA (2009) On the development of a process chain for structural optimization in vehicle

passive safety. Technical University, Berlin
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks

by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580

123

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1207.0580

M. K. Belaid et al.

Hollowell WT, Gabler HC, Stucki SL, Summers S, Hackney JR (1999) Updated review of potential test
procedures for FMVSS no. 208. NHTSA Docket, pp 6407-6

InceT,Kiranyaz S, ErenL,AskarM,GabboujM (2016)Real-timemotor fault detection by 1Dconvolutional
neural networks. Trans Ind Electron 63(11):7067–7075

Iwamoto M, Nakahira Y, Kimpara H, Sugiyama T, Min K (2012) Development of a human body finite
element model with multiple muscles and their controller for estimating occupant motions and impact
responses in frontal crash situations. Stapp Car Crash J 56:231–268

KangZ (2005)Robust design optimization of structures under uncertainties. PhD thesis,Universität Stuttgart
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural

networks. In: Advances in neural information processing systems, pp 1097–1105
Melvin JW (1995) Injury assessment reference values for the crabi 6-month infant dummy in a rear-facing

infant restraint with airbag deployment. SAE Trans 104:1553–1564
Park CK, Kan C (2010) Objective evaluation method of vehicle crash pulse severity in frontal new car

assessment program (NCAP) tests. Center forCollisionSafety andAnalysis,GeorgeMasonUniversity,
pp 15-0055

Rabus M (2019) Prognose von Insassenbelastungen mit Strukturkennwerten. 10 Freiberger Crashworkshop
Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, Cambridge
Sivaraman S, Trivedi MM (2009) Active learning based robust monocular vehicle detection for on-road

safety systems. In: Intelligent vehicles symposium. IEEE, pp 399–404
Spethmann P, Herstatt C, Thomke SH (2009) Crash simulation evolution and its impact on R&D in the

automotive applications. Int J Product Dev 8(3):291–305
Sun Z, Bebis G,Miller R (2006)Monocular precrash vehicle detection: features and classifiers. Trans Image

Process 15(7):2019–2034
Szczurek P, Xu B, Wolfson O, Lin J (2012) A platform for the development and evaluation of passive safety

applications. In: Intelligent vehicles symposium. IEEE, pp 808–813
Trivedi MM, Gandhi T, McCall J (2007) Looking-in and looking-out of a vehicle: computer-vision-based

enhanced vehicle safety. Trans Intell Transport Syst 8(1):108–120
Ullah I, HussainM, Aboalsamh H et al (2018) An automated system for epilepsy detection using EEG brain

signals based on deep learning approach. Expert Syst Appl 107:61–71
Untaroiu C, Adam T (2012) Occupant classification for an adaptive restraint system: the methodology

and benefits in terms of injury reduction. IRCOBI Conference Proceedings–International Research
Council on the Biomechanics of Injury, pp 205–216

Van Den Oord A, Kalchbrenner N, Kavukcuoglu K (2016) Pixel recurrent neural networks. In: Proceedings
of the 33rd international conference on international conference on machine learning, vol 48, pp
1747–1756

van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A,
Kavukcuoglu K (2016) WaveNet: A generative model for raw audio. In: 9th ISCA speech synthesis
workshop, p 125

Vangi D, Begani F, Gulino MS, Spitzhüttl F (2018) A vehicle model for crash stage simulation. IFAC-
PapersOnLine 51(2):837–842

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, GomezAN, Kaiser Ł, Polosukhin I (2017) Attention
is all you need. In: Advances in neural information processing systems, pp 5998–6008

Wan R, Mei S, Wang J, Liu M, Yang F (2019) Multivariate temporal convolutional network: a deep neural
networks approach for multivariate time series forecasting. Electronics 8(8):876

Will J, Baldauf H, Bucher C (2006) Robustheitsbewertungen bei der Virtuellen Auslegung Passiver Sicher-
heitssystem und Beim Strukturcrash. Proceedings Weimarer Optimierungs-und Stochastiktage 3

Wojna Z, Ferrari V, Guadarrama S, Silberman N, Chen LC, Fathi A, Uijlings J (2019) The devil is in the
decoder: classification, regression and GANS. Int J Comput Vis 127(11–12):1694–1706

Zhao Z, Jin X, Cao Y,Wang J (2010) Data mining application on crash simulation data of occupant restraint
system. Expert Syst Appl 37(8):5788–5794

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	CrashNet: an encoder–decoder architecture to predict crash test outcomes
	Abstract
	1 Crash tests
	2 Related work
	2.1 Physical and mathematical models
	2.2 Data science models

	3 CrashNet
	3.1 Overall architecture
	3.2 Added value of CrashNet
	3.3 Alternative architectures

	4 Evaluation
	4.1 Dataset
	4.1.1 Input features describing the car
	4.1.2 Input features describing the driver dummy
	4.1.3 Tolerated level of error

	4.2 Results
	4.2.1 Overall results
	4.2.2 Importance of scalar features

	5 Discussion
	5.1 Which scalar features are most important?
	5.2 Time dependency between scalars and driver's chest acceleration
	5.3 Fully connected layers versus causal padding

	6 Broader impact
	7 Conclusion
	Annex: Example predictions
	References

