
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-021-00739-7

Detecting virtual concept drift of regressors without
ground truth values

Emilia Oikarinen1 · Henri Tiittanen1 · Andreas Henelius1,2 ·
Kai Puolamäki1,3

Received: 15 May 2020 / Accepted: 15 January 2021
© The Author(s) 2021

Abstract
Regression analysis is a standard supervised machine learning method used to model
an outcome variable in terms of a set of predictor variables. In most real-world appli-
cations the true value of the outcome variable we want to predict is unknown outside
the training data, i.e., the ground truth is unknown. Phenomena such as overfitting
and concept drift make it difficult to directly observe when the estimate from a model
potentially is wrong. In this paper we present an efficient framework for estimating
the generalization error of regression functions, applicable to any family of regression
functions when the ground truth is unknown.We present a theoretical derivation of the
framework and empirically evaluate its strengths and limitations. We find that it per-
forms robustly and is useful for detecting concept drift in datasets in several real-world
domains.

Keywords Concept drift · Generalization error · Unknown ground truth

1 Introduction

Regression models are one of the most used and studied machine learning primi-
tives. They are used to model a dependent variable (denoted by y ∈ R) given an
m-dimensional vector of covariates (here we assume real valued attributes x ∈ R

m).
The regression model is trained using training data in such a way that it gives good
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estimates of the dependent variable y on testing data unseen in the training phase. In
addition to estimating the value of the dependent variable, it is in practice important to
know the reliability of the estimate on testing data. In this paper, we use the expected
root mean square error (RMSE) between the dependent variable and its estimate to
quantify the uncertainty, but some other error measure could be used as well. In text-
books, one finds a plethora of ways to train various regression models and to estimate
uncertainties, see, e.g., Hastie et al. (2009). For example, for a Bayesian regression
model the reliability of the estimate can be expressed in terms of the posterior distribu-
tion or, more simply, as a confidence interval around the estimate. Another alternative
to assess the error of a regression estimate on unseen data is to use (cross-)validation.
All of these approaches give some measure of the error on testing data, even when the
dependent variable is unknown.

Textbook approaches are, however, valid only when the training and testing data
obey the same distribution. In many practical applications this assumption does not
hold: a phenomenon known as concept drift (Gama et al. 2014) occurs. Concept drift
means that the distribution of the data changes over time, inwhich case the assumptions
made by the regression model break down, resulting in regression estimates with
unknown and possibly large errors. For example, in sensor calibration a regression
model trained tomodel the sensor responsemay failwhen the environmental conditions
change from those used in training (Kadlec et al. 2011;Vergara et al. 2012;Rudnitskaya
2018; Maag et al. 2018; Huggard et al. 2018). Other examples arise, e.g., in online
streaming data applications such as sentiment classification (Bifet and Frank 2010)
and spam detection (Lindstrom et al. 2010).

In the simplest case, if the ground truth (the dependent variable y) is known, con-
cept drift may be detected by observing the magnitude of the error, i.e., the difference
between the regression estimate and the dependent variable. However, in practice, this
is seldom possible. Indeed, a typical motive for using a regression model is that the
value of the dependent variable is not readily available. In this paper, we address the
problem of assessing the regression error when the ground truth is unknown, which,
despite its significance, has not really been adequately addressed in the literature, see
Sect. 2 for a discussion of related work. We do not focus on any particular applica-
tion domain in this paper. Instead, our goal is to introduce a generic computational
methodology that can be applied in a wide range of domains where regression is used.

Concept drift can be divided into two main categories: real and virtual concept
drift (Gama et al. 2014). The former refers to the change in the conditional probability
p(y | x) and the latter to the change in the distribution of the covariates p(x). If only
the covariates x are known but the ground truth y is not, then it is not possible even
in theory to detect changes occurring only in p(y | x) and not in p(x). However, it is
possible to detect changes in p(x) even when the values of y have not been observed;
hence, we focus on the detection of virtual concept drift in this paper. Note, that
one possible interpretation for a situation where p(y | x) changes but p(x) remains
unchanged is that we are missing some covariates from x which would parametrize the
changes in p(y | x). Thus, an occurrence of real concept drift without virtual concept
drift can indicate that not all necessary attributes are at our disposal. An obvious
solution is then to include more attributes into the set of covariates. One should further
observe, that when studying concept drift, we are not interested in detecting merely
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any changes in the distribution of x . Rather, we are only interested in changes that
likely increase the error of the regression estimates. This property is satisfied by our
proposed method.
Contributions and organization In this paper we (i) define the problem of detecting
the concept drift affecting the regression error when the ground truth is unknown, (ii)
present an efficient algorithm to solve the problem for arbitrary (black-box) regression
models, (iii) show theoretical properties of our solution, and (iv) present an empirical
evaluation of our approach.

The rest of this paper is structured as follows. In Sect. 2, we review the related
work. In Sect. 3, we introduce the idea behind our proposed method for detecting
virtual concept drift, which is then formalized in the algorithm discussed in Sect. 4.
We demonstrate different aspects of our method in the experimental evaluation in
Sect. 5. Finally, we conclude with a discussion in Sect. 6.

2 Related work

The term concept drift was coined by Schlimmer and Granger (1986) to describe
the phenomenon where the data distribution changes over time in dynamic and non-
stationary environments. The research related to concept drift has become popular over
the last decades with many real world applications, see, e.g., the recent surveys (Gama
et al. 2014; Žliobaite et al. 2016; Lu et al. 2019). Concept drift detectionmethods can be
divided into supervised (requiring ground truth values) and unsupervised approaches.
Our approach falls into the latter category, andwe focus on reviewing the unsupervised
approaches. Furthermore, most concept drift literature focuses on classification and
concept drift adaptation problems, while our focus is on concept drift in regression
problems.

One of the few concept drift detection methods for regression is proposed byWang
et al. (2017), where an ensemble of multiple regression models trained on subsets of
the data is used to find the best weighting for combining their predictions, and concept
drift is defined as the angle between the estimated weight and mean weight vectors.
While there are similarities to our method, i.e., subsets of data are used to train several
regressors, the fundamental difference is that ground truth values are required in the
method by Wang et al. (2017).

The unsupervised approaches can be roughly divided into two categories: those
detecting purely distributional changes, e.g., Dasu et al. (2006), Shao et al. (2014) and
Qahtan et al. (2015), and those taking the model into account in some way, e.g., Sethi
and Kantardzic (2017), Lindstrom et al. (2013) and Sobolewski and Wozniak (2013).
Approaches directly monitoring the covariate distribution p(x) detect all changes
in p(x) regardless of their effect on the performance of the model. However, when
detecting concept drift that degrades the performance of the model, these approaches
suffer from a high false alarm rate (Sethi and Kantardzic 2017).

The approaches taking the model into account are typically not generic, but, e.g.,
require a classifier with a meaningful notion of margin (Sethi and Kantardzic 2017)
or a score interpretable as an estimate of the confidence of the correctness of the
prediction (Lindstrom et al. 2013). The MD3 method (Sethi and Kantardzic 2017)
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uses classifier margin densities for concept drift detection, hence, requiring a classifier
with some meaningful notion of margin, e.g., a probabilistic classifier or a Support
Vector Machine (SVM). The method works by dividing the input data into segments,
and for each segment the proportion of samples in the margin ρ is computed. The
minimum and maximum values of ρ are monitored, and if their difference exceeds a
given threshold, concept drift is declared. Lindstrom et al. (2013) calculate a stream
of indicator values using the Kullback–Leibler divergence to compare the histogram
of classifier output confidence scores on a test window to a reference window. If a
certain proportion of previous indicator values are above a threshold, concept drift is
declared. The method is not generic, however, since it requires a classifier producing
a score that can be interpreted as an estimate of the confidence associated with the
correctness of the prediction.

Since probabilistic regression models provide direct information of the model
behavior in the form of uncertainty estimates, it is straightforward to implement a
concept drift detection measure by thresholding the uncertainty estimate, e.g., Chan-
dola and Vatsavai (2011) present a method based onGaussian processes for time series
change detection. Sobolewski and Wozniak (2013) develop a concept drift detection
method especially for data containing recurring concepts. Hence, they require prior
knowledge about properties of concepts present in the data (namely the samples resid-
ing in the centers or at the borders of the class clusters). Then, a distinct classification
model is trained for each concept, and for each test data segment the closest concept
in the training data is selected using a non-parametric statistical test.

Generalization error is a central concept in statistical learning theory and in the
study of empirical processes. One of the key insights relevant to our work are the
symmetrization lemmas; see, e.g.,Mohri andMedina (2012) andKuznetsov andMohri
(2017). Our Theorem 1 follows these ideas, where we estimate generalization loss,
i.e., the difference between the regression estimate and the unknown ground truth,
by using the differences of estimates given by regressors trained on separate samples
of data. Our work differs from these earlier more theoretical approaches by the fact
that we wish to provide a practical method by which concept drift can be detected
for off-the-self regression functions. We can therefore give a theoretical intuition that
applies in a special case and show that our method works in practice with experiments.

In time series regression the objective is to estimate a variable of interest given a set
of covariates and/or lagged (past) measurements; see, e.g., Hyndman and Athana-
sopoulos (2018). In this paper, we focus on the straightforward task of building
regression functions of covariates on time series data. We do not attempt to predict
future values using past values, even though in principle we could append the most
recent data values as additional covariates to the data, nor do we explicitly control
autocorrelation, seasonality, or trends; instead, we assume that this is taken care of
by the used (black-box) regression model. Our objective is solely to find whether the
regression error on the test data is likely to exceed a given threshold. We use the time
series nature of the data only when we assume that the samples within a temporal
segment are more likely to be from the same distribution.
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3 Methods

Let the training data Dtr consist of ntr triplets: Dtr = {(i, xi , yi )}ntri=1, where i ∈ [ntr] =
{1, . . . , ntr} is the time index, xi ∈ R

m are the covariates and yi ∈ R is the dependent
variable. Also, let the testing data similarly be given by Dte = {(i, x ′

i , y
′
i )}ntei=1 where

i ∈ [nte], and the covariates and the dependent variable are given by x ′
i ∈ R

m and
y′
i ∈ R, respectively. Furthermore, let the reduced testing data be the testing data
without the dependent variable, i.e., D′

te = {(i, x ′
i )}ntei=1. Segments of the data are

defined by tuples s = (a, b) where a and b are the endpoints of the segment such that
a ≤ b. We write D|s to denote the triplets in D = {(i, xi , yi )}ni=1 such that the time
index i belongs to the segment s, i.e., D|s = {(i, xi , yi ) | a ≤ i ≤ b}.

Assume that we are given a regression function f : Rm → R trained using Dtr. The
function f estimates the value of the dependent variable at time i given the covariates,
i.e., y′

i ≈ ŷ′
i = f (x ′

i ). Thegeneralization error of f on the data set D = {(i, x ′
i , y

′
i )}ni=1

is defined as

RMSE( f , D) =
(

n∑
i=1

[
f (x ′

i ) − y′
i

]2
/n

)1/2

, (1)

i.e., we consider the root mean squared error and formulate the following problem.

Problem 1 Given a regression function f trained using the dataset Dtr, and a thresh-
old σ , predict whether the generalization error E of f on the testing data D as defined
by Eq. (1) satisfies E ≥ σ when only the reduced testing data D′ is known and the
true dependent variable y′

i , i ∈ [n], is unknown.
As discussed in the introduction, without the ground truth we can only detect virtual

concept drift that occurs as a consequence of changes in the covariate distribution p(x).
We therefore need a distance measure d(x) indicating how “far” a vector x is from
the data Dtr used to train the regressor. Small values of d(x) (later called the concept
drift indicator value) mean that we are close to the training data and the regression
estimates should be reliable, while large values of d(x) mean that we have moved
away from the training data and regression accuracy may be degraded.

We can now list some properties of a good distance measure. On one hand, we
are only interested in the changes in the covariate distribution p(x) that may affect
the behavior of the regression. If there is an attribute not used by the regressor, then
changes in the distribution of that attribute alone should be irrelevant. On the other
hand, if a changed, i.e., drifted, attribute is important for the output of the regressor,
then its fluctuations may cause concept drift and the value of d(x) should be large.

We propose to define this distance measure as follows. We first train different
regression functions, say f and f ′, on different subsets of the training data. We then
define the distance measure to be the difference between the predictions of these two
functions, e.g., d(x) = [ f (x) − f ′(x)]2. The details of how we select the subsets and
compute the difference are given later in Sect. 4. We can immediately observe that this
distancemeasure has the suitable property that if some attributes are independent of the
dependent variable, then they will not affect the behavior of the regression functions

123



E. Oikarinen et al.

and, hence, the distance measure d is insensitive to them. Next, we show that at least
in the case of a simple linear model, the resulting measure is, in fact, monotonically
related to the expected quadratic error of the regression function.

3.1 Theoretical motivation

In this section, we show that our method can be used to approximate the ground truth
error for an ordinary least squares (OLS) linear regression model. Assume that our
covariates xi ∈ R

m have been sampled from some distribution for which the expected
values and the covariancematrix existwith the first termbeing the intercept, or xi1 = 1.
Hence, we rule out, e.g., the Cauchy distribution for which the expected value and
variance are undefined. Given the parameter vector β ∈ R

m and the variance σ 2
y , the

dependent variable is given by yi = βT xi + εi , where εi are independent random
variables with zero mean and variance of σ 2

y .
Now, assume that we have trained an OLS linear regressionmodel, parametrized by

β̂, on a dataset of size n and obtained a linear model f , and that we have also trained
a different linear model on an independently sampled dataset of size n′ and obtained
a linear model f ′ parametrized by β̂ ′, respectively. For a given x , the estimates of the

dependent variable y are then given by ŷ = f (x) = ˆβT x and ŷ′ = f ′(x) = β̂ ′T x ,
respectively. We now prove the following theorem.

Theorem 1 Given the definitions above, the expected mean squared error, i.e.,
E

[
( f (x) − y)2

]
, is monotonically related to the expectation of the squared difference

between the two regressors f and f ′, i.e., E
[
( f (x) − f ′(x))2

]
, by the following

equation to a leading order in n−1 and n′−1:

E
[
( f (x) − y)2

]
= (1 + n/n′)−1E

[
( f (x) − f ′(x))2

]
+ σ 2

y . (2)

Proof First, we observe that Eq. (2) and specifically the values of the terms βT xi
remain unchanged for arbitrary translations and rotations of the covariate vectors xi
if the parameter vector β is adjusted appropriately. More specifically, translations and
rotations are absorbed in the parameter β as follows. Translations a j of coordinates
j �= 1 are defined by a constant shift xi j ← xi j − a j and are absorbed by redefining
β1 ← β1 + ∑m

j=2 β j a j ; recall that xi1 = 1 is the constant intercept term. A rotation
of the data by an orthogonal matrix U ∈ R

m×m xi ← Uxi can on the other hand be
absorbed by redefining β ← Uβ. We can therefore, without loss of generality and
to simplify the proof below, assume that the distribution from which the covariates
have been sampled has been centered so that all terms except the intercept have an
expectation of zero, or xi1 = 1 and E[xi j ] = 0 for all j �= 1. We can further assume
that the axes of the covariates have been rotated so that they are uncorrelated and
satisfy E

[
xi j xik

] = σ 2
x jδ jk, where the Kronecker delta satisfies δ jk = 1 if j = k and

δ jk = 0 otherwise and with σx1 = 0.
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For a dataset of size n, the OLS estimate of β, denoted by β̂, is a random variable
that obeys a distribution with a mean of β and a covariance given by n−1Σ , where

Σ = σ 2
y diag(1, σ

−2
x2 , . . . , σ−2

xm ) + O(n−1), (3)

where the terms of the order n−1 or smaller have been included in O(n−1). The
covariance n−1Σ is therefore proportional to n−1 and hence, at the limit of a large
dataset we obtain the correct linear model, i.e., limn→∞ β̂ = β. For finite data there is
always an error in the estimate of β̂. The expected estimation error is larger for small
data, i.e., if n is small.

It follows from Eq. (3) that the expected mean squared error for a model evaluated
at x is given by

E
[
( f (x) − y)2

]
= xT

(
n−1Σ

)
x + σ 2

y , (4)

and the expected quadratic difference between the linear model estimates is given by

E
[
( f (x) − f ′(x))2

]
= xT

[(
n−1 + n′−1

)
Σ

]
x . (5)

Equation (2) then follows by solving xTΣx from Eq. (5) and inserting it in Eq. (4). ��
We hence postulate that the squared differences between the estimates given by

regressors trained on different subsets of the data—either sampled randomly or
obtained by other means—can be used to estimate the mean squared error even when
the ground truth y is unknown. Of course, in most interesting cases the regression
functions are not linear, but as we show later in Sect. 5, the idea works also for real
datasets and complex non-linear regression models. Our claim is therefore that the
difference between the estimates of regressors trained on different subsets of the data
in the point x defines a distance function which can be evaluated even when the ground
truth is unknown. If a data point x is close to the data points used to train the regres-
sors the distance should be small. On the other hand, if the data point is far away from
the data used to train the regressors, the predictions of the regressors diverge and the
distance and also the prediction error will be larger.

4 The Drifter algorithm

In this section we describe our algorithm, called drifter, for detecting concept
drift when the ground truth is unknown. We start with the general idea using a simple
data set shown in Fig. 1 as an example. We then provide the algorithmic details of the
training and testing phases of our algorithm, and discuss how to select a suitable value
for the drift detection threshold in practice.

By Theorem 1, we can estimate the generalization error using the terms [ f (x) −
f ′(x)]2 instead of the terms [ f (x)− y]2, where f ′ is another regressor. Our approach
to obtain a suitable f ′ is to train several regression functions, called segment models
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Fig. 1 Example data set with
covariate x and response
variable y. The training data
D15 is shown with filled circles
labelled with numbers and the
testing data DABC with filled
squared labelled with letters
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Fig. 2 The models trained using D15 (solid black line), and using four segments of D15 (lines with long
dashes) (Color figure online)

using subsequences of the data (i.e., segments). Recall that segments are defined as
continuous intervals of time indices. We call a distribution of covariates in a segment
a concept. We assume here that due to autocorrelation, a segment is more likely to
contain samples from the same distribution of covariates (i.e., concept) than, e.g., a
subset of data sampled at random. Further, we assume that the segment models trained
on autocorrelated data provide a piecewise approximation of the full function.

Note that if the underlying assumption that the data in a segment comes from
the same distribution is violated the drifter algorithm may exhibit suboptimal
performance. For this reason it is important to validate the choice of model parameters,
such as segment lengths and the types of segment models, for any new dataset and
regression model.

To illustrate the idea, let us consider D15 = {(i, xi , yi )}15i=1 of 15 data points, with
the one-dimensional covariate xi and response yi , as shown in Fig. 1, and assume that
D15 has been used to train a Support Vector Machine (SVM) regressor f . The SVM
model estimate of y is shown with a black solid line in Fig. 2. Our testing data DABC
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Fig. 3 The response variable y and the estimates of y using different models for the training data D15 and
the testing data DABC

then consists of the data points labeled with A, B, and C in Fig. 1, and we want to
estimate the generalization error of f , when we only have access to the covariates of
DABC .

We can consider, e.g., the overlapping segments s1 = (1, 6), s2 = (4, 9), s3 =
(7, 12), and s4 = (10, 15), and train the segment models using OLS regression. The
choice of overlapping segments aims for robustness, i.e., we assume it is unlikely
that the overlapping segmentation splits very clear concepts such that they would not
appear in any of the segments. The linear segment models are shown in Fig. 2 using
colored dashed lines, and the estimates are shown in Fig. 3 using the same colors.
We observe that the segment models are good estimates for the SVM model on their
respective training segments.

Now, we can compute an estimate of the generalization error with the terms [ f (x)−
fi (x)]2 instead of [ f (x) − y]2 for each segment model fi ∈ { f1, . . . , f4}. This then
allows us to compute some statistics based on the estimates from this ensemble of
segment models. Here, we choose the statistics, namely the concept drift indicator
value, to be the second smallest error. The intuition is that if the test data resembled
some concept in the training data, and an overlapping segmentation scheme was used,
at least two of the segment models should provide a reasonably small indicator value.
If there exists only a single small indicator value, it could well be due to chance, and
using the second smallest value as the indicator value increases the robustness of the
method. For our example, f4 trained using the segment (10, 15) is the second-best
linear model for DABC . In Fig. 2 we visualize the terms [ f (x) − f4(x)]2 for DABC

using black vertical arrows. Our estimate for the generalization error of f in DABC is
large even for the second-best linear model f4 and we conclude that concept drift in
DABC is indeed likely.
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4.1 The drifter algorithm

Now, we are ready to formalize the ideas presented above, and describe in detail the
drifter algorithm consisting of the (i) training and (ii) testing phases.
(i) Training phase In the training phase of drifter (Algorithm 1), we train the
segment models for the subsequences, i.e., segments, of the training data. As input,
we assume the training data Dtr = {(i, xi , yi )}ntri=1, a segmentation S of [ntr], and a
function tr_f for training segment models.

Hence,we assume that the user provides a segmentation S of [ntr] such thatwhen the
segment models are trained, the data used to train a model approximately corresponds
to only one concept, i.e., the models “specialize” in different concepts. Here there
might, of course, be overlap so thatmultiplemodels are trained using the same concept.
We show in Sect. 5 that using a scheme in which the segmentation consists of equally-
sized segments of length ltr with 50% overlap, the drifter method is quite robust
with respect to the choice of ltr, i.e., just selecting a reasonably small segment length
ltr generally makes the method perform well and provides a simple baseline approach
for selecting a segmentation. However, the segments could well be of varying length
or non-overlapping. For instance, by using a segmentation that is a solution to the basis
segmentation problem (Bingham et al. 2006), one would know that each segment can
be approximated with linear combinations of the basis vectors.

The training phase essentially consists of training a regression function fi for each
segment si ∈ S using Dtr|si (lines 3–4 in Algorithm 1). These regression functions
are the segment models. Note, that the model family of the segment models is chosen
by the user and provided as input to Algorithm 1. Natural choices are, e.g., linear
regression models or, if known, functions from the same model family as f used in
the testing phase.
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(ii) Testing phase The tester function of drifter (Algorithm 2) takes as input the
testing data D′

te, the model f , the segment models F from Algorithm 1, and an integer
nind (indicator index order). For each of the k segment models fi , we then determine
the RMSE between the predictions from fi and f on the test data (lines 3–4), i.e.,

RMSE∗( f , fi , D
′
te) =

⎛
⎝ nte∑

j=1

[
f (x ′

j ) − fi (x
′
j )

]2
/nte

⎞
⎠

1/2

, (6)

where D′
te = {( j, x ′

j )}ntej=1. This gives us k values zi (line 4) estimating the generaliza-
tion error, and we then choose the nindth smallest value as the concept drift indicator
value d (line 5). If this value is large, then the predictions from the full model on the
test data in question can be unreliable.

In this paper we use nind = 2 by default. The intuition behind this choice is that,
due to the overlapping segmentation scheme we use, it is reasonable to assume that at
least two of the segment models should have small values for zi ’s, if the testing data
has no concept drift, while a single small value for zi could still occur by chance even
in the presence of concept drift. Other types of data may require a different nind value.

In the testing phase, there is an implicit assumption that nte ≤ ltr should hold, where
ltr is the length of a segment in the training phase, i.e., the testing data can be covered
by a single segment. This is due to the assumption that the segment models are trained
to model concepts present in the training data. If nte � ltr, the testing data might
consist of several concepts, resulting in a large value for the concept drift indicator
value d, implying concept drift even if none was present. This can be easily prevented,
e.g., as done in the experimental evaluation in Sect. 5, by dividing the testing data
into smaller (non-overlapping) test segments of length lte ≤ ltr and applying the tester
function (Algorithm 2) on each of the test segments. In this way we thus obtain a
concept drift indicator value for each smaller segment in the testing data.

4.2 Selection of the drift detection threshold

To solve Problem 1, we still need a threshold for the concept drift indicator value d
(Algorithm 2) that estimates the threshold for the generalization error in Problem 1. A
good concept drift detection threshold δ depends both on the dataset and the application
in question. A validation set Dval with known ground truth values (not used in the
training of f ) could be used to compute the generalization error RMSE( f , Dval) and
determine a suitable threshold δ, e.g., using receiver operating characteristics (ROC)
analysis, which makes it possible to balance the number of false positives and false
negatives (Fawcett 2006). However, one needs to assume that there is no concept
drift in Dval, and consider using, e.g., cross-validation when training f to prevent
overfitting.

We propose here a generalmethod for obtaining a threshold δ using only the training
data,which according to our empirical evaluation (seeSect. 5) performswell in practice
for the datasets used in this paper. However, a user knowledgeable of a particular data
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(a) (b) (c)

(d) (e)

Fig. 4 The effect of themultiplier constant c for δ in Eq. (7), copt fromTable 1 shownwith the corresponding
F1-score

and an application can use this knowledge to select and potentially adjust a better
threshold for the data and the application in question.

For computing the threshold δ, we first split the training dataset into �ntr/nte� (non-
overlapping) segments of the same length as the testing data. Next we compute the
concept drift indicator value di for each of these segments si in the training data Dtr|si
using Algorithm 2, i.e., di = dr_te(Dtr|si , f , F, nind). We then choose a concept
drift detection threshold δ by using the mean and standard deviation of the indicator
values of these segments

δ = mean(di ) + c × sd(di ), (7)

where c is a constant multiplier of choice. The optimal value of c depends on the
properties of a particular dataset, but our empirical evaluation (see Fig. 4 in Sect. 5)
shows that the performance with respect to the F1-score is not overly sensitive with
respect to the choice of c (e.g., c = 5 works well for all datasets we used here).

4.3 Using drifter to solve Problem 1

We now summarize, how the driftermethod is used in practice to solve Problem 1.
Assume that a model f has been trained using Dtr = {(i, xi , yi )}ntri=1, and we know

that the concept length in the training data is approximately ltr. We use this knowledge
to form a segmentation S of [ntr] such that there are k segments of length ltr. We also
need to choose the model family of the segment models (function tr_f). In practice,
linear regression models seem to consistently perform well (see Sect. 5). Then, the
trainingphase consists of a call toAlgorithm1 to obtain an ensemble F = ( f1, . . . , fk)
of segment models.

Once the segment models have been trained, we can readily use these to detect
concept drift in the testing data D′

te = {(i, xi )}ntei=1. In the testing phase, we should
apply Algorithm 2 on a testing data with nte ≤ ltr, where ltr is the segment length used
to train the segment models F in Algorithm 1. In practice, this is achieved by splitting
the testing data into small segments of length lte (e.g., we use constant lte = 15 in
Sect. 5) and applying Algorithm 2 individually on each small test segment.
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If we have split the testing data into k′ segments, and obtained a vector of concept
drift indicator values (d1, . . . , dk′) using Algorithm 2, we can then compare these
values to the concept drift detection threshold δ, which is either user-specified or
obtained using the approach described in Sect. 4.2, and classify each segment in the
testing data, either as a segment exhibiting concept drift (di ≥ δ) or not (di < δ).

The time complexity of drifter is dominated by the training phase, where we
need to train k regressors using data of sizeO (ntr/k) and dimensionality m. For OLS
regression, the complexity of training one segment model is hence O (

ntrm2/k
)
and

the complexity of the training phase is O (
nm2

)
.

5 Experiments

In this section we experimentally evaluate drifter in the detection of concept drift.
We first present the datasets and regressors used. Then, we discuss the generaliza-
tion error and default parameters used in the experiments in Sect. 5.1. In Sect. 5.2
we pin down suitable combinations of the remaining parameters of drifter. In
Sect. 5.3 we assess the runtime scalability of drifter on synthetic data, and finally
in Sect. 5.4 we look at how drifter finds concept drift on our considered dataset
and regression function combinations. The experiments were run using R (v. 3.5.3) on
a high-performance cluster (FCGI 2019): 2 cores from an Intel Xeon E5-2680 2.4GHz
with 256Gb RAM. An implementation of the drifter algorithm and the code for
the experiments presented in this paper has been released as open-source software
(Tiittanen et al. 2019).
Datasets and regressors We use the datasets described below. During preprocessing
we removed rows with missing values, and transformed factors into numerical values.
For each dataset, we then use the first 50% of the data as the training set, and the
remaining 50% as a testing dataset, i.e., ntr = �0.5n� and nte = �0.5n�. We split the
testing data into non-overlapping test segments of length lte = 15.

Air quality data (n = 7355, m = 11) The aq dataset (Vito et al. 2008) contains
hourly air quality sensormeasurements spanning approximately 1 year.We trained
a regressor for hourly averaged concentrations of carbon monoxide CO(GT) using
Support Vector Machine (SVM) from the ‘e1071’ R package with default param-
eters.

Flight delay data (n = 38042, m = 84) The airline dataset collected by U.S.
Department of Transportation (2017) contains data related to flight delays. We
used arrival delay as the target variable and a subset of the other attributes as
covariates. To keep computation time manageable we used every 150th sample
and trained a regressor for the arrival delay using Random Forest (RF) from the
‘randomForest’ R package with default parameters.

Bike rental data (n = 731, m = 8) The bike dataset (Fanaee-T and Gama 2014)
contains daily counts of bike rentals and covariates related to weather and date
types for a period of about 2 years. Exploratory analysis indicated real concept
drift in the form of an increasing trend in the counts of bike rentals. Thus, we
prepared an alternative version of the data by removing the trend by multiplying
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each y′
i ∈ Dte by m = meany∈Dtr(y)/meany′∈Dte(y

′). In the dataset bike(raw)
we use the original rental counts yi , whereas in the dataset bike(detr) we use the
modified rental counts m × yi . We trained OLS linear regression models (LM) for
predicting the rental counts for bike(raw) and bike(detr).

Synthetic data We constructed the synth(n,m) datasets as follows. The covariate
matrix X ∈ R

n×m is sampled columnwise from AR(1) with correlation length
h = 150, defined as the number of steps after which the expected autocorrelation
drops to 0.5, and the amplitude amp = 1. The elements of a noise vector e ∈ R

n are
sampled from a normal distribution N (0, σ 2

N ), whereσN = 0.3. The target variable
is Y = g(XT ) + e, where g = sin is used to introduce non-linearity. In Sect. 5.3,
we vary the data dimensions n and m when generating datasets synth(n,m),
and otherwise use the dataset synth(2000,5) with a concept drift component at
[1700, 1800] added by using amp = 5 during this period. We trained LM, RF, and
SVM regressors with the synth data.

5.1 Generalization error threshold and parameters of drifter

The datasets we use do not have predefined ground truth values andwe hence first need
to define what constitutes concept drift in the test datasets. The user should choose
the threshold σ : in some applications a larger generalization error could be tolerated,
while in some other applications the user might want to be alerted already about
smaller errors. In the absence of a user, we determined the error threshold σemp for
the datasets as follows. We used 5-fold cross-validation, where we randomly split the
training data into five folds, and estimated the value of the i th dependent variable yi by
a regressor trained on the four folds that do not contain i , thereby obtaining a vector of
estimates ŷi for all i ∈ [ntr].We then computed the generalization error for the training
data as in Eq. (1) and then chose σemp = 2 × (

∑ntr
i=1

(
ŷi − yi

)2
/ntr)1/2. All values

exceeding σemp in the test dataset are consequently considered concept drift. While
this cross-validation procedure does not fully account for possible autocorrelation in
the training data we found that in our datasets it gives a reasonable estimate of the
generalization error in the absence of concept drift.

To find a suitable value for c for selecting the detection threshold δ (Sect. 4.2)
and to assess how well the scheme works in practice, we compute the “optimal”
detection threshold δopt in terms of the F1-score for a given error threshold σemp as
follows. We vary the concept drift detection threshold δ and evaluate the true and
false positive rates on the test dataset, allowing us to form a ROC curve. We then
pick the δopt maximizing the F1-score, i.e., F1 = 2TP/(2TP + FP + FN), where
TP are true positives, FP are false positives and FN are false negatives. For the other
parameters, we use in the training phase the segmentation scheme with 50% overlap
between consecutive segments. In the testing phase, we split the testing data into
non-overlapping segments of fixed length (lte = 15), and evaluate the concept drift
indicator value on each test segment using nind = 2. In preliminary experiments, we
also tested a segmentation scheme with no overlap between segments in the training
phase, and values nind ∈ {1, 2, 3, 5}. The effect of these parameter options was rather
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small in practice, and we chose the values for which the driftermethod performed
most robustly in detecting virtual concept drift for our datasets.

5.2 Effect of concept length, segment models, and drift detection threshold

We next investigate the effects of the remaining input parameters, i.e., (i) the constant
c in Eq. (7), (ii) the concept length (i.e., the segment length ltr in the training phase),
and (iii) the effect of the model family for the segment models.

We varied k = �ntr/ltr�, which means that there are 2k−1 segments in the training
phase in the overlapping segmentation scheme. The maximum value for k was deter-
mined by the requirement ltr ≥ lte = 15. For each k and each dataset, we determined
the value for copt that leads to δopt in Eq. (7) maximizing the F1-score.

For the model family, we considered two choices: either the segment models were
trained using the same model family as the model f given as input, or linear regres-
sion was used for the segment models. Our evaluation showed that the linear segment
models consistently performed the best (both in terms of performance, e.g., F1-score,
robustness, and computational cost, i.e., time needed to train the models). We hence
focus on linear regression models as segment models in the rest of this paper. Observe
that there is an intuitive reason why LM outperforms SVM and RF as segment models.
While SVM and RF give accurate predictions on the training data covariate distribu-
tion, they predict constant values outside of it. The linear OLS regressor on the other
hand gives (non-constant) linearly increasing/decreasing predictions the farther from
the training data covariate distribution the testing data is. It should also be noted that
for SVM the kernel choice makes a difference in terms of generalization behavior. We
used here a radial basis function kernel, but if a polynomial kernel or a linear kernel
were used, the model would behave more like LM.

The results are presented in Table 1 showing the number of segments of length
lte = 15 in the testing data identified as true (TP) and false (FP) positives, and true
(TN) and false (FN) negatives, respectively. We observe, that concept drift is detected
with a reasonable accuracy for the aq, airline and synth(2000,5) datasets in terms
of the F1-score, i.e., the number of true positives and negatives is high, while the
number of false positives and negatives remains low. For each of these datasets we
have identified thebest performing combinationof k and c (shownwith bold inTable 1),
and we subsequently use these particular combinations in Sect. 5.4.

bike(raw) has real concept drift in the data, i.e., the bike rental counts are higher
during the second year likely due to increasing popularity of the service. Since real
concept drift does not affect the concept drift indicator values, we observe a high
number of false negatives. Note that this is as expected, because any algorithmwithout
access to the ground truth values cannot detect real concept drift. When considering
the bike(detr) dataset where the real concept drift has been removed, no concept
drift is observed (hence we cannot compute the F1-scores). Our algorithm correctly
handles this, i.e., all the segments in the testing data are classified as true negatives.
For the values of bike(raw) and bike(detr) in Table 1 we have used δ larger than
the maximal value of d (similarly as in Sect. 5.4 and Fig. 8c, d).
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Table 1 The effect of segment length ltr, using k = �ntr/ltr�, on drift detection accuracy in terms of the
F1-score

Data FM SM k copt F1 TP FP TN FN

aq SVM LM 2 6.770 0.735 61 20 139 24

10 7.144 0.741 63 22 137 22

20 7.080 0.737 56 11 148 29

100 5.835 0.688 54 18 141 31

airline RF LM 2 5.632 0.786 11 1 1250 5

10 5.695 0.786 11 1 1250 5

20 5.769 0.786 11 1 1250 5

100 5.424 0.769 10 0 1251 6

bike(raw) LM LM 2, 4, 6 – – 0 0 5 18

bike(detr) LM LM 2, 4, 6 – – 0 0 23 0

synth(2000,5) LM LM 2 5.571 0.737 7 1 54 4

10 4.722 0.778 7 0 55 4

60 1.747 0.857 9 1 54 2

synth(2000,5) SVM LM 2 6.930 0.769 5 2 58 1

10 8.817 0.769 5 2 58 1

60 17.015 0.833 5 1 59 1

synth(2000,5) RF LM 2 5.819 0.750 6 1 56 3

10 9.649 0.778 7 2 55 2

60 3.883 0.842 8 2 55 1

Here, FM and SM stand for the used full and segment model family, respectively, copt is the value using
which Eq. (7) results in δopt maximizing the F1-score, TP (resp. FP) is the count of true positives (resp.
false positives), and TN (resp. FN) is the count of true negatives (resp. false negatives)

Finally,we investigate howvarying the value of the drift detection threshold c affects
the performance of the drifter algorithm. For aq, airline, and synth(2000,5)
datasets we used the fixed parameter values as defined in Sect. 5.1 and selected the
concept length based on the previous experiment, i.e., we used k resulting in the best
performance in terms of the F1-score using the optimal c (shown in bold in Table 1).
We excluded the bike datasets here, since they do not contain virtual concept drift,
which makes the relation between the F1-score and c less informative. The results are
presented in Fig. 4. The performance of our method is quite insensitive to the value
of c, and c = 5 seems to be a robust choice for the datasets considered.

5.3 Scalability

The scalability was studied using the synth(n,m) data, by varying the length n ∈
{5000, 10,000, 20,000, 40,000, 80,000, 160,000} of training data, the data dimen-
sionality m ∈ {5, 10, 50, 100, 250}, and the parameter k ∈ {5, 10, 25, 50, 100, 200}
controlling the number of segments (and hence, ltr). We used synth(n,m) with
amp = 1 as the training data and for testing data we used synth(15,m) with amp = 5.
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(a) (b) (c)

Fig. 5 Scalability of the drifter algorithm in the training phase using synth(n,m). In each figure, one of
the parameters is varied, while the remaining ones are kept constant (n = 80,000, m = 100, and k = 100)

(a) (b) (c) (d) (e)

Fig. 6 ROC-curves (Fawcett 2006) for a–c synth(2000,5), d aq, and e airline datasets

We used the first 500 samples of the training data to train an SVM regressor f , and
varied the choice for the model family (LM, SVM, RF) used by drifter in training
the segment models. The median running time of the training phase of drifter
over five runs are shown in Fig. 5 (the respective running times for the testing phase
are negligible). We observe that in particular when using OLS regression to train the
segment models, the drifter algorithm is fast for reasonable dataset sizes.

5.4 Detection of concept drift

Finally, we consider examples illustrating how the drifter method works in prac-
tice. In Figs. 7 and 8 , we show the generalization error (green lines) and the concept
drift indicator value d (orange line), and in Fig. 6 the ROC-curves for the datasets
considered. For synth(2000,5), airline, and aq we used the parameters bolded in
Table 1, and for bike(raw) and bike(detr) we used k = 4 and selected δ to be larger
than the maximal value of d.

For synth(2000,5) (Fig. 7) we observe that our algorithm correctly detects the
virtual concept drift introduced during the period [1700, 1800]. For aq (Fig. 8a) we
observe that a significant amount of the testing data seems to exhibit concept drift,
and our algorithm detects this. There is a rather natural explanation for this. The aq
data contains measurements of a period of 1 year. The model fAQ has been trained
on data covering the spring and summer months (March to August), while the testing
period consists of the autumn and winter months (September to February). Hence, it
is natural that the testing data contains concepts not present in the training data. Also
observe that the last segments of data again begin to resemble the training data, and
hence we do not observe concept drift in these segments.

For airline, also some of the segments in the training data have a rather high value
for the generalization error, indicating that there are parts of the training data that the

123



E. Oikarinen et al.

(a)

(b)

(c)

Fig. 7 The generalization error and concept drift indicator d for test segments of length lte = 15 in the
synth(2000,5) dataset.Here, δ denotes the concept drift detection threshold andσ denotes the generalization
error threshold. The vertical lines between the curves indicate the segments that are true positives (gray solid
line), false positives (orange dashed line), or false negatives (green longdash line) (Color figure online)

regressor f AL does not model well. However, the concept drift indicator d behaves
similarly to RMSE (both for segments in the training and testing data), demonstrating
that it can be used to estimate when the generalization error would be high.

For bike(raw) (Fig. 8c) we observe that even though the generalization error is
large for most of the segments in the testing data, the drift detection indicator does
not indicate concept drift. This is explained by the real concept drift present in data,
and once we have removed it in the bike(detr) data (Fig. 8d) we observe no concept
drift. We hence observe that a considerable number of false negatives can indicate real
concept drift in the data. However, in order to detect this, one needs to have access to
the ground truth values.

6 Discussion

In this paper,we have presented and evaluated an efficientmethod for detecting concept
drift in regression models when the ground truth is unknown. We here define concept
drift as a phenomenon causing larger than expected estimation errors on new data, as
a result of changes in the generating distribution of the data. Defining concept drift
this way instead of considering all changes in the distribution, makes it possible to
detect only the changes that actually affect the prediction quality. Thus, if concept
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(a)

(b)

(c)

(d)

Fig. 8 The generalization error and concept drift indicator d for test segments of length lte = 15 in the
aq, airline, and bike datasets. Here, δ denotes the concept drift detection threshold and σ denotes the
generalization error threshold. The vertical lines between the curves indicate the segments that are true
positives (gray solid line), false positives (orange dashed line), or false negatives (green longdash line)
(Color figure online)

drift detection is used to monitor the performance of a regression model, the false
positive rate is reduced. It is surprising how little attention this problem has received,
considering its importance in multiple domains.

When the dependent variable y is unknown it is only possible to detect changes
in the distribution of the covariates p(x). Our idea is to use the regression functions
themselves to study the changes in this distribution. As we have shown for linear
models in Theorem 1, we postulate that if we train two or more regression functions
on different subsets of the data, then the difference in the estimates given by the
regression functions contains information about the generalization error. This method
is powerful, while also being simple and straightforward to implement. It, e.g., by
design ignores features of the data that are irrelevant for estimating y. The underlying
assumption is that by using subsets of the training data we can train regressors that
can capture concepts in the data, and if the testing data contains concepts not found
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in the training data, then it is likely that there is concept drift. The drifter method
presented in this paper also scales well. Especially high performance is reached using
OLS linear segment models.

The main limitation of any concept drift detection method that works without the
ground truth information—including ours—is that it is only possible to detect virtual
concept drift. We cannot even in princple detect concept drift, if the distribution of the
covariates p(x) remains unchanged. Another underlying assumption in our method
is that the segment models describe different concepts in the data, after which the
differences in predictions between the segment models gives us the concept drift
indicator. For this to work the segments should be long enough so that the segment
models do not overfit the data. Also, we need the segmentmodels to be different, which
can fail, e.g., if the segments are too long and the segment models end up modeling
the distribution of the training data instead of individual concepts. In general, the
parameters of the drifter should be chosen and validated for each dataset and
problem separately, because the best choices for segment lengths and threshold value
depend on the dataset properties and the requirements of the practical application (e.g.,
how large errors should be tolerated before warning about potential concept drift).

We have used models trained using different segments of the data in this paper.
An interesting topic for future work is to study how the data could be “optimally”
partitioned for this problem. In our examples linear segment models had the best
performance. The reason may be that their predictions diverge the further away from
the training data we go, while the SVM and RF regression models used in this paper
predict constant values far away from the training data. For the SVM and RF models
an alternative concept drift indicator could be that the predictions remain constant
under small perturbations of the covariate vector. Another alternative—which we have
experimented with but not reported here—is to train several regression models from
different model families for the whole data, instead of using segment models. We have
also focused on estimating the generalization error of a regression function. The same
ideas could be applied to detect concept drift in classifiers as well.

The theoretical foundation for this approach is shown to hold in the simple case
of linear regression. However, our empirical evaluation with real datasets of various
types (and different regressors) demonstrates that the idea also works when there are
sources of non-linearity. Our experiments suggest that often the (black-box) regressor
given as input can be locally approximated using linear regressors, and the differences
between the estimates from these regressors serve as good indicators for concept drift.
The current paper represents initial work towards a practical concept drift detection
algorithm, with experimental evaluation illustrating parameters that work robustly
for the datasets considered in this work. Further work is needed to establish general
practices for selecting suitable parameters for drifter; even though we can give
general guidance of sensible values of the parameters in drifter it is still important
to validate the parameters of the model for new data sets and regression models.
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