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Abstract
Moral responsibility is a major concern in autonomous systems, with applications
ranging from self-driving cars to kidney exchanges. Although there have been recent
attempts to formalise responsibility and blame, among similar notions, the problem
of learning within these formalisms has been unaddressed. From the viewpoint of
such systems, the urgent questions are: (a) How can models of moral scenarios and
blameworthiness be extracted and learnt automatically from data? (b) How can judge-
ments be computed effectively and efficiently, given the split-second decision points
faced by some systems? By building on constrained tractable probabilistic learning,
we propose and implement a hybrid (between data-driven and rule-based methods)
learning framework for inducing models of such scenarios automatically from data
and reasoning tractably from them.We report on experiments that compare our system
with human judgement in three illustrative domains: lung cancer staging, teamwork
management, and trolley problems.
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1 Introduction

Moral responsibility is amajor concern in autonomous systems. In applications ranging
from self-driving cars to kidney exchanges (Conitzer et al. 2017), contextualising and
enabling judgements of morality and blame is becoming a difficult challenge, owing
in part to the philosophically vexing nature of these notions. In the infamous trolley
problem (Thomson 1985), for example, a putative agent encounters a runaway trolley
headed towards five individuals who are unable to escape the trolley’s path. Their
death is certain if the trolley were to collide with them. The agent, however, can save
them by diverting the trolley to a side track by means of a switch, but at the cost of the
death of another individual, who happens to be on this latter track. While one would
hope that in practice the situations encountered by, say, self-driving cars would not
involve such extreme choices (many of which may already be covered under the law
or other regulations Etzioni and Etzioni 2017), in our view it is crucial that AI systems
act in line with human values and preferences. Imbuing such systems with the ability
to reason about moral value, blame, and intentionality is one possible step towards
this goal.

Moral reasoning has been actively studied by philosophers, lawyers, and psychol-
ogists for many decades. Within the context of interactions between humans and
autonomous systems, the notion of blameworthiness has been argued as being crit-
ical to effective collaboration, decision-making, and to our thoughts about morality
in general (Kim and Hinds 2006; Groom et al. 2010). In many frameworks, espe-
cially the limited number that are quantitative, a definition of responsibility that is
based on causality and counterfactuals has been argued to be particularly appealing.
For example, Malle et al. (2014) argue that for blame to emerge, an agent must be
perceived as the cause of a negative event. Similarly, Chockler and Halpern (2004)
extend the definition of causality given by Halpern and Pearl (2005) to account for the
degree of responsibility (as opposed to an ‘all or nothing’ definition). However, in each
of these frameworks and definitions the problem of learning has been unaddressed.
Instead, the theories are motivated and instantiated by carefully constructed examples
designed by the expert, and so are not necessarily viable in large-scale applications.
Indeed, problematic situations encountered by autonomous systems are likely to be in
a high-dimensional setting, with large numbers of latent variables capturing the low-
level aspects of the application domain, and potentially requiring fast judgements.
Thus, the urgent questions are:

(a) How can models of moral scenarios and blameworthiness be extracted and learnt
automatically from data?

(b) Howcan judgements be computed effectively and efficiently, given the split-second
decision points faced by some systems?

In this work, we propose and implement a hybrid learning framework for inducing
models of moral scenarios and blameworthiness automatically from data, and reason-
ing tractably from them. To the best of our knowledge, this is the first of such proposals.
We remark that we do not motivate any new definitions for moral responsibility, but
show how an existing formal framework (Halpern and Kleiman-Weiner 2018) can be
embedded in our learning framework. We suspect it should be possible to analogously
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Learning tractable probabilistic models for moral responsibility…

embed other definitions from the literature too, and refer the reader to Halpern and
Kleiman-Weiner (2018), Malle et al. (2014) for a discussion of alternative logics and
frameworks.

The demands on our learning framework are two-fold. First, it must support the
efficient learning of probabilities. Second, it must be able to compute decisions (i.e.,
probabilistic queries) efficiently. To address these challenges in general, the tractable
learning paradigm has recently emerged (Poon and Domingos 2011; Choi et al. 2015;
Kisa et al. 2014), which can induce both high- and low-treewidth graphical models
with latent variables. In this sense, they realise a deep probabilistic architecture. Most
significantly, conditional or marginal distributions can be computed in time linear in
the size of the model. We discuss how the class of tractable models considered in
Kisa et al. (2014) turn out to be particularly appropriate for the task at hand. Overall,
our primary contributions within this work can be grouped into three main areas:
theoretical details of an embedding between our chosen framework and class ofmodel,
including complexity results; a fully implemented demonstration version of our system
(Hammond 2018); and a series o f experimental results, together with discussion of
the more philosophical aspects of our work.

We begin in Sect. 2 with an introduction to the particular framework for moral
responsibility and class of model that we use in our framework, along with a simple,
illustrative example of each. In Sect. 3 we present our embedding between this frame-
work and model, before providing a series of complexity results (Sect. 4). Details
of our implementation are given in Sect. 5, with full documentation to be included
alongside our code. We then report on experiments (Sect. 6) regarding the alignment
between automated and human judgements of moral decision-making in three illus-
trative domains: lung cancer staging, teamwork management, and trolley problems.
Finally, in Sect. 7 we discuss some of the more philosophical issues surrounding our
work, its motivation, and its potential applications, before concluding with a look at
related work and directions for future research (Sects. 8 and 9 respectively).

2 Preliminaries

In this section we discuss an existing formal framework around which we develop
a learning framework. In particular we build on the causality-based definition from
Halpern and Kleiman-Weiner (2018), henceforth HK, discussed in more detail below.
We also provide a brief technical introduction to our model of choice, probabilistic
sentential decision diagrams (PSDDs) (Kisa et al. 2014), and a brief example in Sect.
2.3 illustrating the use of each.

2.1 Blameworthiness

In order to avoid ambiguity, we follow the authors of HK by using the word blamewor-
thiness to capture an important part of what can more broadly be described as moral
responsibility, and consider a set of definitions taken directly from their original work,
with slight changes in notation for the sake of clarity and conciseness. In HK, environ-
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ments are modelled in terms of variables and structural equations relating their values
(Halpern and Pearl 2005). More formally, the variables are partitioned into exogenous
variables X external to the model in question, and endogenous variables V that are
internal to the model and whose values are determined by those of the exogenous
variables and some subset of the already determined endogenous variables. A range
function R maps every variable to the set of possible values it may take. We abuse
notation slightly by writing R(Y) instead of ×Y∈YR(Y ) for a set of variables Y . In
any model, there exists one structural equation FV : R(X ∪ V \ {V }) → R(V ) for
each V ∈ V .

Definition 1 A causal model M is a pair (S,F) where S is a signature (X ,V,R)

and F is a set of modifiable structural equations {FV : V ∈ V}. A causal setting
is a pair (M,X), where X ∈ R(X ) is a called a context.

In general we denote an assignment of values to variables in a setY asY. Following
HK, we restrict our considerations to recursive models M , in which, given a context
X, the values of all variables in V are uniquely determined. We denote this unique
valuation by V(M,X).

Definition 2 A primitive event is an equation of the form V = v for some V ∈ V ,
v ∈ R(V ). We denote a causal formula as ϕY←Y where Y ⊆ V and ϕ is a Boolean
formula of primitive events. This says that if the variables in Y were set to values Y
(i.e. by intervention) then ϕ would hold. For such a causal formula ϕY←Y we write
(M,X) |� ϕY←Y if ϕY←Y is satisfied in causal setting (M,X).

An agent’s epistemic state is given by (Pr,K,U)whereK is a set of causal settings,
Pr : K → [0, 1] is a probability distribution over this set, and U : R(V) → R≥0 is a
utility function.

Definition 3 We define howmuchmore likely it is that ϕ will result from perform-
ing an action a than from action a′ using:

δa,a′,ϕ = max

([ ∑
(M,X)|�ϕA←a

Pr(M,X) −
∑

(M,X)|�ϕA←a′
Pr(M,X)

]
, 0

)

where A ∈ V is a variable identified in order to capture an action of the agent.

The costs of actions are measured with respect to a set of outcome variablesO ⊆ V
whose values are determined by an assignment to all other variables. OA←a

(M,X) denotes
the setting of the outcome variables when action a is performed in causal setting
(M,X) and VA←a

(M,X) denotes the corresponding setting of the endogenous variables
more generally.

Definition 4 The (expected) cost of a relative to O is:

c(a) =
∑

(M,X)∈K
Pr(M,X)

[
U(V(M,X)) − U(VA←a

(M,X))
]
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Finally, HK introduce one last quantity N to measure how important the costs of
actions are when attributing blame (this varies according to the scenario). Specifically,
as N → ∞ then dbN (a, a′, ϕ) → δa,a′,ϕ and thus the less we care about cost. Note
that blame is assumed to be non-negative and so it is required that N > maxa∈A c(a).

Definition 5 The degree of blameworthiness of a for ϕ relative to a′ (given c and
N ) is:

dbN (a, a′, ϕ) = δa,a′,ϕ
N − max(c(a′) − c(a), 0)

N

The overall degree of blameworthiness of a for ϕ is then:

dbN (a, ϕ) = max
a′∈R(A)\{a}

dbN (a, a′, ϕ)

2.2 PSDDs

Since, in general, probabilistic inference is intractable (Bacchus et al. 2009), tractable
learning has emerged as a recent paradigm where one attempts to learn classes of
Arithmetic Circuits (ACs), for which exact inference is tractable (Gens and Domin-
gos 2013; Kisa et al. 2014).1 In particular, we use probabilistic sentential decision
diagrams (PSDDs) (Kisa et al. 2014) which are tractable representations of a proba-
bility distribution over a propositional logic theory (a set of sentences in propositional
logic) represented by a Sentential Decision Diagram (SDD). SDDs are in turn based
on vtrees (Darwiche 2011). PSDDs thus represent a complete, canonical class with
respect to distributional representation, but can also be naturally learnt with the inclu-
sion of logical constraints or background knowledge.2 We now provide a brief, formal
overview of SDDs and PSDDs and subsequently include a small example in Sect. 2.3
in order to better illustrate their syntax and semantics. Relationships to other tractable
probabilistic models within statistical relational learning are discussed in Sect. 8.

Definition 6 A vtree V for a set of variables X is a full binary tree whose leaves are
in a one-to-one correspondence with the variables in X .

Definition 7 S is an SDD that is normalised for a vtree V over variables X if and only
if one of the following holds:

– S is a terminal node such that S = � or S = ⊥.
– S is a terminal node such that S = X or S = ¬X and V is a leaf node corresponding
to variable X .

– S is a decision node (p1, s1), ..., (pk, sk) where primes p1, ..., pk are SDDs cor-
responding to the left sub-vtree of V , subs s1, ..., sk are SDDs corresponding to

1 It is important to note that this learning framework itself is approximate, based on log-likelihoods, and
that tractability guarantees are not always extended to the exact learning of ACs (Volkovich 2016).
2 In this work we refer to PSDDs as statistical relational models as we learn them in the presence of logical
constraints (encoding relations), but in the absence of such constraints it is more correct to call them purely
statistical models.
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the right sub-vtree of V , and p1, ..., pk form a partition (the primes are consistent,
mutually exclusive, and their disjunction p1 ∨ ... ∨ pk is valid).

We refer to each (pi , si ) as an element of a decision node. Each terminal node cor-
responds to its literal or truth symbol and each decision node (p1, s1), ..., (pk, sk)
corresponds to the sentence

∨k
i=1(pi ∧si ). S represents a theory (which can be viewed

as a set of logical constraints) in that the root of S evaluates to true if and only if the
assignment of values to the variables in X are consistent with that theory.

Note that in an SDD (and therefore in a PSDD), for any possible assignment
of values X to the variables X that the SDD ranges over, at each decision node
(p1, s1), ..., (pk, sk) at most one prime pi evaluates to true. In fact, though not strictly
necessary, we also make the simplifying assumption that at least one (and thus exactly
one) prime evaluates to true for any possible assignment. For such an assignment X
we write X |� pi . Further, for any decision node corresponding to a node v in the
vtree, the variables Xl under the left sub-vtree and the variables Xr under the right
sub-vtree partition the set of variablesX in the vtree rooted at v, and hence the primes
p1, ..., pk are sentences over Xl and the subs s1, ..., sk are sentences over Xr .

Definition 8 A PSDD P is a normalised SDD S (for some vtree V ) with the following
parameters:

– For each decision node (p1, s1), ..., (pk, sk) and prime pi a non-negative parameter
θi such that

∑k
i=1 θi = 1 and θi = 0 if and only if si = ⊥.

– For each terminal node � a parameter θ such that 0 < θ < 1 (denoted as X : θ

where X is the variable of the vtree node that � is normalised for).

These parameters then describe the probability distribution over the SDD theory as
follows. For each node n in P , normalised for some vtree node v in V , we have a
distribution Prn over the set of variables X in the vtree rooted at v where:

• If n is a terminal node and v has variable X :

n Prn(X) Prn(¬X)

X 1 0
¬X 0 1
X : θ θ 1 − θ

⊥ 0 0

• If n is a decision node (p1, s1), ..., (pk, sk) with parameters θ1, ..., θk and v has
variables Xl in its left sub-vtree and variables Xr in its right sub-vtree:

Prn(Xl ,Xr ) =
k∑

i=1

θiPr pi (Xl)Prsi (Xr ) = θ jPr p j (Xl)Prs j (Xr )

for the single j such that Xl |� p j .
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Most significantly, probabilistic queries, such as conditionals and marginals, can
be computed in time linear in the size of the model. PSDDs can also be learnt from
data (Liang et al. 2017), possibly with the inclusion of logical constraints standing
for background knowledge. The ability to encode logical constraints into the model
(unlike in other tractable probabilistic models, such as themore common Sum-Product
Network (Poon and Domingos 2011), for example) directly enforces sparsity which
in turn can lead to increased accuracy and decreased size. A small selection of ethical
considerations relating to the possible use of constraintswithin our learning framework
are discussed in Sect. 7. Aside from this, the intuitive interpretation of both local and
global semantics that can be given to the parameters in a PSDD allows for a degree
of explainability not found in other deep probabilistic architectures (Kisa et al. 2014).
A final advantage of PSDDs with respect to our work is that their underlying logical
representation makes them particularly conducive to our embedding of the structural
equations framework (though existing work in this area is still in its early stages
Papantonis and Belle 2019), as we explain further in Sect. 3.1.

2.3 Example

Here we provide a simple worked example demonstrating each of the two frameworks
above (we refer the reader to the original works for more extensive examples Kisa
et al. 2014; Halpern and Kleiman-Weiner 2018), though this subsection may safely be
skipped with respect to our results and later discussion. The experimental results in
Sect. 6 provide examples of our particular embedding of HK’s framework, and more
realistic applications are discussed in Sect. 7.

Consider the following decision-making scenario, with four binary variables, in
which Alfred is walking to work and is not sure if it will rain (R); he thinks the
probability that it will is 0.5. If he decides to go back and collect his umbrella (U )
there is a probability (again, 0.5) he will be late (L). However, more important than his
being on time is whether he arrives at work wet (W ) or dry (¬W ). In HK’s framework
we have X = {R} and V = {U ,W , L}. Let M1 contain these variables and the
structural equations F1 such that Alfred is late to work due to his going back, and
M2 include structural equations F2 such that he is not late despite going back.3 Then
K = {(M1,¬R), (M1, R), (M2,¬R), (M2, R)} and Pr is such that Pr(M,X) = 0.25
for all (M,X) ∈ K. We define our utility function such that being on time gives utility
2 and remaining dry gives utility 3 (meaning overall utilities fall in the range [0, 5]).
A causal graph and set of structural equations for M1 and the context R = 1 is given
in Fig. 1.

Suppose we wish to compute dbN (U ,¬U , L = 1) with N = 2, say: how blame-
worthy Alfred is for being late to work because he went back to get his umbrella.
Note that {(M,X) : (M,X) |� (L = 1)U←1} = {(M1,¬R), (M1, R)} and {(M,X) :
(M,X) |� (L = 1)U←0} = ∅. Thus we have δU ,¬U ,L=1 = max

([(0.25 + 0.25) −
0], 0) = 0.5. Next, we sum over the differences in expected utility across all causal
models to find that c(U ) = 0.25[5−3]+0.25[3−3]+0.25[5−5]+0.25[5−5] = 0.5.

3 Here we assume that the ‘default’ option in any one specific causal model is to collect the umbrella if it
will rain and not when it won’t, though of of course Alfred does not have this perfect information.
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R L

W U

Variable Equation Note

R 1 Due to the context R = 1
U R The ‘default’ strategy
L U Varies between M1 and M2
W R(1 U) The same in M1 and M2

Fig. 1 A causal graph and set of structural equations representing the causal setting (M1, R) in which it
rains and Alfred is late to work if he goes back to collect his umbrella
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Fig. 2 A PSDD encoding all features of the example data and constraints as defined above

Similarly, we have c(¬U ) = 1. Substituting these values into the final equation gives
db2(U ,¬U , L = 1) = δU ,¬U ,L=1

2−max(c(¬U )−c(U ),0)
2 = 0.375.

Now, using the same variables and probabilities as above, let us imagine we have
some dataset of decision-making scenarios (gathered from irrational agents, if we are
to assume the same utility function as above) in which the umbrella is collected with
probability 0.667 when it rains and probability 0.444 otherwise. We might also wish
to constrain our model with background knowledge such that the decision-maker
arrives to work wet if and only if it is raining and they don’t have their umbrella
(W ↔ (R ∧ ¬U ), akin to the structural equation W = R(1 − U ), for example) and
that they cannot be late if they don’t go back for their umbrella (¬U → ¬L , consistent
with structural equations L = U in M1 and L = 0 in M2). Combining these data and
constraints allows our system to learn the small PSDD shown in Fig. 2 (note that the
model would typically be further compacted by removing superfluous branches or
nodes and possibly joining some of the remaining nodes, but for ease of presentation
we have not done so here).

3 Blameworthiness via PSDDs

We aim to leverage the learning of PSDDs, their tractable query interface, and their
ability to handle domain constraints for inducing models of moral scenarios.4 This is

4 Our technical development can leverage both parameter and (possibly partial) structure learning for
PSDDs. Of course, learning causal models is a challenging problem (Acharya et al. 2018), and in this regard,
probabilistic structure learning is not assumed to be a recipe for causal discovery in general (Pearl 1998).
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made possible by means of an embedding that we sketch below in terms of the key
components of our models and computations: variables, probabilities, utilities, and
finally costs and blameworthiness. In each subsection we also discuss any assumptions
required and choices made. At the outset, we reiterate that we do not introduce new
definitions here, but show how an existing one, that of HK, can be embedded within
a learning framework. Where there is any chance of ambiguity we denote the original
definitions with a superscript HK .

3.1 Variables

Wefirst distinguish between scenarios in which we do and do not model outcome vari-
ables. In both cases we have exogenous variablesX , but in the former the endogenous
variables V are partitioned into decision variables D and outcome variablesO, and in
the latter we have V = D = O (this does not affect the notation in our later definitions,
however). This is because we do not assume that outcomes can always be recorded,
and in some scenarios it makes sense to think of decisions as an end in themselves.

Our range functionR is defined by the scenario we model, but in practice we one-
hot encode the variables and so the range of each is simply {0, 1}. A subset (possibly
empty) of the structural equations in F is implicitly encoded within the structure of
the SDD underlying the PSDD, corresponding to the logical constraints that remain
true in every causal model M . The remaining equations are those that vary depending
on the causal model. Each possible assignment V (in other words D and O) given X
corresponds to a set of structural equations that combine with those encoded by the
SDD to determine the values of the variables in V given X, as we make the trivial
assumption that all parentless variables are considered exogenous. The PSDD then
corresponds to the probability distribution Pr over K, compacting everything neatly
into a single structure, as described in Sect. 3.2.

To be more precise regarding our use of the word ‘implicitly’ in the above para-
graph, structural equations can be viewed as encoding (in a specific functional form)
dependencies and independencies between variables. Such dependencies are similarly
(though not identically) captured by propositional formulae involving multiple vari-
ables. In fact, just as one may read off independencies from casual graphs representing
sets of structural equations using the well-known d-separation criterion (Pearl 2009),
it is also possible to read off independencies from the structure of a PSDD (though
this feature is not necessary for our purposes). Such structures, more generally, enable
context-specific independence (Boutilier et al. 1996; Kisa et al. 2014). We further note
that the framework of HK essentially involves events of the form V = v (see Defini-
tion 2) which can be viewed instead simply as propositions (Halpern and Pearl 2005)
(especially when considering binary variables, as in our equivalent one-hot encoding),
in turn meaning that structural equations represent logical formulae. While this suits

Footnote 4 continued
Rather, we learn a probabilistic model from data without making any claims about the causal dependencies
between variables that may be induced and show how, under certain assumptions discussed later, we are
able to perform causal reasoning such as conditioning on intervention.
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our choice of PSDDs well, we remark that in general structural equations may be far
more complex and therefore less amenable to the embedding we describe here.

Returning to our example in Fig. 1, if we were to enforce the constraint U ↔ R in
the PSDD in Fig. 2 then this would capture the dependency U = R or R = U (where
‘=’ is directional in the standard sense of structural equations Pearl 2009).5 We note,
however, that for the purposes of learning a distribution from data, the direction in
this structural equation does not matter per se. Where the direction is revealed, and is
critically important, is when intervening on variables. For example, intervening on R
would change the value of U when the equation is U = R but not when R = U . This
difference underlies why in general it is not possible to answer arbitrary causal queries
using a probabilistic model. In this work, however, our queries are of a specific form
which means that a probabilistic model is sufficient for our purposes (as explained in
the following section). Therefore, although our models do not encode directionality in
the same way as structural equations, they are nonetheless suitable for our embedding.
On a related theme, we also note that the opposite direction of obtaining structural
equations from PSDDs is also non-trivial, though there is recent work in this direction
(Papantonis and Belle 2019).

Our critical assumption here is that the signature S = (X ,V,R) (the variables
and the values they may take) remains the same in all models, although the structural
equations F (the ways in which said variables are related) may vary. Given that each
model represents an agent’s uncertain view of a decision-making scenario we do not
think it too restrictive to keep the elements of this scenario the same across the potential
eventualities, so long as the way these elements interact may differ. Indeed, learning
PSDDs from decision-making data requires that the data points measure the same
variables each time.

3.2 Probabilities

Thus, by partially encoding the possible sets of structural equations governing the
variables in the domain (those not ruled out by the logical constraints on the PSDD),
the represented distribution Pr : R(X ∪D ∪O) → [0, 1] ranges over assignments to
variables instead of a set of causal models K. As a slight abuse of notation we write
Pr(X,D,O). The key observation needed to translate between these two distributions
(we denote the original as PrHK ) is that each set of structural equations F together
with a context X deterministically leads to a unique, complete assignment V of the
endogenous variables, which we write (abusing notation slightly again) as (F ,X) |�
V. In general theremay bemany such sets of equations that lead to the same assignment
(in otherwords,many possible sets of rules governing theworldwhich, given a context,
produce the same result), which we may write as {F : (F ,X) |� V}. This observation
relies on our assumption above, which implies that for any causal model (M,X)we in
fact have PrHK (M,X) = PrHK ((S,F),X) = PrHK (F ,X), as the signature S is the

5 We have offered a very simple instance here, as in the general case logical constraints in a PSDD serve
to rule out sets of structural equations (if they are logically inconsistent with the constraints) rather than
capture them directly (and so wewould have to provide a set of possible equations as an example for a single
logical constraint). The link between structural equations and constraints is thus by no means ‘one-to-one’.
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same in all models. Hence, for any context X and any (possibly empty) assignment Y
for Y ⊆ V we may translate between the two distributions as follows:

Pr(X,Y) =
∑

(F ,X)|�Y

PrHK (F ,X)

Given our assumptions and observations described above, the following proposition
is immediate.

Proposition 1 Let PrHK be a probability distribution over a set of causal settings K.
Further, assume that the signature S = (X ,V,R) in each causal setting M = (S,F)

remains fixed. Then there exists a PSDD P representing a distribution Pr over the
variables in X and V such that for any context X, the joint probability of Y also
occurring (where Y ⊆ V) is the same under both PrHK and Pr.

Weview aBoolean formula of primitive events (possibly resulting from decision A)
as a functionϕ : R(Y) → {0, 1} that returns 1 if the original formula overY ⊆ V is sat-
isfied by the assignment, or 0 otherwise. Here, the probability of ϕ occurring given that
action a is performed (i.e. conditioning on intervention)

∑
(M,X)|�ϕA←a PrHK (M,X)

given by HK can be written more simply as Pr(ϕ | do(a)). Note that in general, it is
not the case that Pr(ϕ | do(a)) = Pr(ϕ | a), where Pr(ϕ | a) is defined as the stan-
dard conditioning on observation. However, given the specific nature of the causal
models in our framework which capture sequential/temporal moral decision-making
scenarios (in which one or more decisions are made in some context, each producing
one or more outcomes), and given that the quantities we calculate only require us to
intervene on decision variables, we are able to make use of a certain technical result
and compute intervention conditionals in terms of observation conditionals. We note
here that our mild assumptions below on the structure of the domain refers to the
structure of the actual data-generating process rather than referring to some feature
of the learnt PSDD.

To see this, note that in the causal graph of such a decision-making scenario (see
Fig. 3), the ancestors (by which wemean those nodes with a directed causal path to the
node in question) of a decision variable A, representing some action, are a (possibly
non-proper) subset of the context variables X , any preceding decision variablesDpre,
and any outcome variables that have been determined Opre, where we write PRE =
X ∪Dpre ∪Opre to denote this set. Note also that any remaining decisionsDpost and
outcomesOpost , where we similarly writePOST = Dpost ∪Opost , are in turn caused
by the variables in PRE ∪ {D}. This is true simply in virtue of the form of decision-
making scenarios that we consider in this work. Given this, we may use the back-door
criterion (Pearl 2009) with PRE as a sufficient set (meaning that no element of PRE
is a descendant of A and that PRE blocks all back-door paths from POST to A) to
write:

Pr(POST | do(a)) =
∑
PRE

Pr(POST | a,PRE)Pr(PRE)
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Here we write PRE and POST for instantiations of PRE and POST respectively,
just as for a variable set Y and an instantiation Y. Note that PRE , POST , and {A}
partition the full set of variables, and in the case where there is only a single decision,
D = {A}, then we have simply PRE = X and POST = O. Given the equality
above we may thus compute the quantity Pr(ϕ | do(a)) as follows:

Pr(ϕ | do(a)) =
∑
POST

Pr(ϕ(POST) | do(a))

=
∑
POST

ϕ(POST)Pr(POST | do(a))

=
∑
POST

∑
PRE

ϕ(POST)Pr(POST | a,PRE)Pr(PRE)

where we again use our mapping between Pr and PrHK given above. With this equiva-
lence we define our term δa,a′,ϕ = max([Pr(ϕ | do(a))−Pr(ϕ | do(a′))], 0) as in HK.
In some cases we may wish to calculate blameworthiness in scenarios in which the
distribution over contexts is not the same as in our training data. Fortunately, due to
our factorised sum above this is as simple as allowing the user of our system the option
of specifying a current, alternative distribution over contexts and existing observations
Pr′(PRE), which then replaces the term Pr(PRE) in each summand.

We remark here that although the causal structure illustrated in Fig. 3 admits a wide
range of sequential moral decision-making scenarios and allows us to compute all of
the quantities we need, it is also the case that additional variables and dependencies

Fig. 3 A causal graph representing the form of sequential moral decision-making scenario we consider in
this work. Dashed edges indicate sets of variables (which may also contain other arrows between nodes; it
is assumed that such arrows break the apparent cyclicity between Dpre and Dpost , and Opre andOpost )
and solid edges indicate single variables. Arrows represent causal connections. The set of variables PRE
is highlighted in red and blocks all back-door paths betweenPOST (highlighted in blue) and the decision
variable in question, A, thus forming a sufficient set (Color figure online)
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Fig. 4 Two causal graphs indicating how the back-door criterion can be violated when extra variables are
added that we are unable to condition on (left) and when the intervention in question is not made on a
decision node (right)

could invalidate our use of the back-door criterion, and that it is certainly not possible to
compute the effects of arbitrary interventions in this model. Returning to our previous
example, suppose (as illustrated in the left half of Fig. 4) that both Alfred’s decision
to take his umbrella and whether or not he is late to work depends on whether he sees
the bus approaching from out of the window (B). If we were, for some reason, unable
to condition on B as part of a sufficient set, then the back-door path L ←− B −→ U
would not be blocked and thus Pr(l, w | do(u)) �= Pr(l, w | u, r)Pr(r). Similarly if we
wanted to, say, condition on an intervention on a non-decision variable then we would
not be able to. Consider the slightly modified version of the original scenario in which
L also depends on W (perhaps because Alfred cycles to work and is slower when
his clothes are wet) in the right half of Fig. 4, and consider an intervention do(w).
Then Pr(l | do(w)) �= Pr(l | w, r)Pr(r) because there is an unblocked back-door path
L ←− U −→ W .

3.3 Utilities

We now consider the utility function U, the output of which we assume is normalised
to the range [0, 1].6 For simplicity we (trivially) restrict our utility functions to be over
outcomes O = (O1, ..., On) (and optionally parameterised using contexts X) instead
of the full set of endogenous variables. In our implementation we allow the user to
input an existing utility function or to learn one from data. In the latter case the user
further specifies whether or not the function should be context-relative, i.e. whether we
have U(O) or U(O;X) (our notation) as, in some cases, how good a certain outcome
O is naturally depends on the context X. Similarly, the user also decides whether the
function should be linear in the outcome variables, in which case the final utility is
U(O) = ∑

i Ui (Oi ) or U(O;X) = ∑
i Ui (Oi ;X) respectively (where we assume

that each Ui (Oi ;X) or Ui (Oi ) is non-negative). Here the utility function is simply a
vector of weights and the total utility of an outcome is the dot product of this vector
with the vector of outcome variables (O1, ..., On).

When learning utility functions, the key assumption we make (before normali-
sation) is that the probability of a certain decision being made given a context is
proportional to some function of the expected utility of that decision in the context,

6 This has no effect on our calculations as we only use cardinal utility functions with bounded ranges,
which are invariant to positive affine transformation.
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i.e. Pr(D | X) ∝ f (
∑

OU(O)Pr(O | D,X)). Note that here a decision is a general
assignment D and not a single action a, and U(O) may be context-relative and/or
linear in the outcome variables. In our implemented demonstration system we make
the simplifying assumption that f is the identity function (and thus the proportionality
represents a linear relationship), however this is by no means necessary. In general we
may choose any invertible function f (on the range [0, 1]) and simply apply f −1 to
each datumPr(D |X) before fitting our utility function, the process of said fitting being
described in Sect. 5.7 For example, using f (x) = exp(x) − 1 allows us to capture (a
slightly modified version of) the commonly-used Logistic Quantal Response model
of bounded rationality, sometimes referred to as Boltzmann Rationality, in which the
likelihood of a certain decision is proportional to the exponential of the resulting
expected utility (McKelvey and Palfrey 1995).

This proportionality assumption is critical to the learning procedure in our imple-
mentation, however we believe it is in fact relatively uncontroversial, and can be
restated as the simple rationality principle that an agent is more likely to choose a
decision that leads to a higher expected utility than one that leads to a lower expected
utility. If we view decisions as guided by a utility function, then it follows that the deci-
sions should, on average, be consistent with and representative of that utility function.
Of course this is not always true (consider the smoker who wishes to quit but cannot
due to their addiction), and attempting to learn the preferences of fallible, inconsis-
tent agents such as humans is a particularly interesting and difficult problem. While
outside the scope of our current work, we refer the reader to Evans et al. for a recent
discussion (Evans et al. 2016). We also note here that learning moral preferences from
data must be done sensitively, at is it is quite possible the data may include biases that
we would typically deem unethical. Space precludes us from discussing this important
issue further, but it is undoubtedly a key concern in practice for any method that learns
from human decision-making.

3.4 Costs and blameworthiness

Finally, we adapt the cost function given in HK, denoted here by cHK . As actions do
not deterministically lead to outcomes in our work, we cannot useOA←a

(M,X) to represent
the specific outcome when decision a is made (in some context (M,X)). For our
purposes it suffices to use:

c(a) = −
∑
O

U(O)Pr(O | do(a)) = −
∑

O,PRE

U(O)Pr(O | a,PRE)Pr(PRE)

Again,Umay be context-relative and/or linear in the outcome variables. This is sim-
ply the negative expected utility over all contexts and preceding decisions/outcomes,
conditioning by intervention on decision A ← a. By assuming as before that action
a is causally influenced only by the variables in set PRE (i.e. PRE is a suffi-
cient set for A) we may again use the back-door criterion (Pearl 2009) to write

7 In general we should expect f to be a positive monotonic transformation with non-negative range so as
to preserve the ordinality of utilities.
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Pr(O | do(a)) = ∑
PRE Pr(O | a,PRE)Pr(PRE).With this useful translation between

conditioning on intervention and conditioning on observation, alongside our earlier
result converting between PrHK and Pr, it is a straightforward exercise in algebraic
manipulation to show the following proposition.

Proposition 2 Let cHK be a cost function determined using a distribution PrHK and
utility function U. Then, given an equivalent distribution Pr (via the assumptions and
result of Proposition 1) and the assumption thatX forms a sufficient set for any action
variable A, the cost function c determined using Pr and U is such that for any values
a, a′ of A: c(a′) − c(a) = cHK (a′) − cHK (a).

As dbN (a, a′, ϕ) = δa,a′,ϕ
N−max(c(a′)−c(a),0)

N it follows that our cost function is
equivalent to the one in HK with respect to determining blameworthiness scores.
Again, in our implementation we also give the user the option of updating the dis-
tribution over contexts and previously observed variables Pr(PRE) to some other
distribution Pr′(PRE) so that the current model can be re-used in different scenarios.
Given δa,a′,ϕ , c(a), and c(a′), both dbN (a, a′, ϕ) and dbN (a, ϕ) are computed as in
HK, although we instead require that N > −mina∈Ac(a) (the equivalence of this
condition to the one in HK is trivial). With this the embedding is complete.

Proposition 3 Let Pr and c be equivalents of PrHK and cHK under the assumptions
and results described in Propositions 1 and 2. Then for any values a, a′ of any action
variable A ∈ D ⊆ V , for any Boolean formula ϕ, and any valid measure of cost
importance N, the values of δa,a′,ϕ , dbN (a, a′, ϕ), and dbN (a, ϕ) are the same in our
embedding as in HK.

4 Complexity results

Given our concerns over tractability we provide several computational complexity
results for our embedding. Basic results were given in HK, but only in terms of the
computations being polynomial in |M |, |K|, and |R(A)| (Halpern andKleiman-Weiner
2018). Here we provide more detailed results that are specific to our embedding and to
the properties of PSDDs. The complexity of calculating blameworthiness scores also
depends onwhether the user specifies an alternative distribution Pr′ in order to consider
specific contexts only, although in practice this is unlikely to have a major effect on
tractability. Finally, note that here we assume that the PSDD and utility function are
given in advance and so we do not consider the computational cost of learning. This
parallels the results inHK, inwhich only the cost of reasoning is considered (there is no
mention of how their models are obtained). Asmentioned previously, guarantees in the
tractable learning paradigm are provided for tractable inference within learnt models,
but not for the learning procedure itself, which is often approximate (Volkovich 2016).
A summary of our results is given in Table 1.

Here, O(|P|) is the time taken to evaluate the PSDD P where |P| is the size of
the PSDD, measured as the number of parameters; O(U ) is the time taken to evaluate
the utility function; and O(|ϕ|) is the time taken to evaluate the Boolean function ϕ,
where |ϕ| measures the number of Boolean connectives in ϕ. The proofs of the results
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Table 1 Time complexities for each of the key terms that we compute

Term Time Complexity

δa,a′,ϕ O(2|X |+|D|+|O|(|ϕ| + |P|))
c(a) O(2|X |+|O|(U + |P|))
dbN (a, a′, ϕ) O(2|X |+|O|(U + 2|D|(|ϕ| + |P|)))
dbN (a, ϕ) O(|R(A)|2 | X |+|O|(U + 2|D|(|ϕ| + |P|)))
If the user specifies an extra distribution Pr′ over contexts, then the complexity is given by the expressions
below with each occurrence of the term |P| replaced by |P| + Q, where O(Q) is the time taken to evaluate
Pr′

above are an easy exercise (we give an informal explanation of each in the following
paragraph), though for illustrative purposes we provide one example.

Proposition 4 δa,a′,ϕ can be calculated using our framework with time complexity
O(2|X |+|D|+|O|(|ϕ| + |P|)).
Proof First recall that, following the definitions in HK and our embedding from Sect.
3, in our framework we use:

δa,a′,ϕ = max
([

Pr(ϕ | do(a)) − Pr(ϕ | do(a′))
]
, 0

)

Where, as was shown in Sect. 3.2:

Pr(ϕ | do(a)) =
∑
POST

∑
PRE

ϕ(POST)Pr(POST | a,PRE)Pr(PRE)

The proof now follows straightforwardly from inspection of the terms involved. Cal-
culating Pr(PRE) and Pr(POST | a,PRE) can each be done in time O(|P|), linear
in the size of the PSDD P representing the distribution over all variables (Kisa et al.
2014). ϕ(POST) is computed in time O(|ϕ|), linear in the length of ϕ. Thus, form-
ing each summand in the expression for Pr(ϕ | do(a)) takes time O(|P| + |ϕ|),
and as each variable being summed over is binary, we need to calculate at most
2|X |+|D|+|O| − 1 such summands, giving us a time complexity for Pr(ϕ | do(a)) of
O(2|X |+|D|+|O|(|ϕ| + |P|)). This is the same for our other term Pr(ϕ | do(a′)), and
the remaining arithmetic operations can be performed in constant time, meaning the
final complexity of calculating δa,a′,ϕ is also O(2|X |+|D|+|O|(|ϕ| + |P|)). ��

Note that although we have to evaluate ϕ each time, in practice only a small subset
of all possible models will evaluate to true and thus remain in our final sum for
Pr(ϕ | do(a)). By evaluating ϕ first we may therefore greatly reduce the number of
causal models that require evaluation under Pr. This, alongside being able to factor
out terms ϕ(POST) and Pr(PRE) from δa,a′,ϕ , means that our actual computations
will be far more efficient than this worst-case bound.

Calculating the cost of an action c(a) is a simple matter of summing over all
possible outcomes inO and contexts in X , evaluating the utility of each combination
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(complexity O(U )) and two probabilities (each having complexity O(|P|)): that of
the context and that of the outcome given action a and the context. As described above,
once we have δa,a′,ϕ , c(a), and c(a′), both dbN (a, a′, ϕ) and dbN (a, ϕ) are computed
as in HK, where dbN (a, a′, ϕ) requires the computation of δa,a′,ϕ and the costs of
two actions c(a) and c(a′), and dbN (a, ϕ) requires the same process |R(A)| times.
Combining and factoring the complexity results for δa,a′,ϕ and c(a) accordingly gives
us the time complexities for calculating blame using our embedding.

Finally,weobserve that all of these complexities are exponential in the size of at least
some subset of the variables. This is a result of the Boolean representation; our results
are, in fact, more tightly bounded versions of those in HK, which are each polynomial
in the size of |K| = O(2|X |+|D|+|O|). In practice, however, we only sum over worlds
with non-zero probability of occurring. Using PSDDs allows us to exploit this fact in
ways that other models cannot, as we can logically constrain the model to have zero
probability on any impossible world. Thus, when calculating blameworthiness we can
ignore a great many of the terms in each sum and speed up computation dramatically.
To give some concrete examples, the model counts (variable assignments with non-
zero probability) of the PSDDs in our three experiments were 52, 4800, and 180 out
of 212, 221, and 223 total variable assignments, respectively.

5 Implementation

The importance of having implementablemodels of moral reasoning has been stressed
by Charisi et al. (2017), amongst others. In this section we provide a brief summary
of our implementation, before proceeding to experimentally evaluate it in Sect. 6.
The underlying motivation behind our demonstration system (a high-level overview
of which can be seen in Fig. 5) was that a user should be able to go from any stage of
creating amodel to generating blameworthiness scores as conveniently and as straight-
forwardly as possible. Any inputs and outputs can be saved and thus each model and
its results can be easily accessed and re-used if needed. Our implementationmakes use
of two existing resources: The SDD Package 2.0 (Automated Reasoning Group 2018),
an open-source system for creating and managing SDDs, including compiling them
from logical constraints; and LearnPSDD (Liang et al. 2017), a recently developed set
of algorithms that can be used to learn the parameters and structure of PSDDs from
data, learn vtrees from data, and to convert SDDs into PSDDs. While this work is
not the appropriate place to explain the precise details of this software (we refer the
interested reader to Darwiche 2011; Automated Reasoning Group 2018; Liang et al.
2017), we give a brief description of their workings in what follows.

The SDD Package 2.0 functions by initialising an SDD based on a vtree (which can
be created at the same time or read from a file) and then gradually constructs the model
from a propositional logic theory using a series of logical operations that are sequen-
tially applied to larger and larger sub-SDDs over the set of variables. LearnPSDD can
be used either with or without logical constraints. When used with constraints, the
structure of the PSDD is found by compiling them into an SDD (as described above),
and the parameters are given by their maximum likelihood estimates (possibly with
smoothing). Without constraints, LearnPSDD first learns a vtree over a set of vari-
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ables by splitting branches between variable subsets thatminimise the average pairwise
mutual information between the variables, then iteratively performs two operations,
split and clone (described in more detail in Liang et al. 2017), on an initialised PSDD
over the given vtree until a time or size limit is reached, or until the log likelihood of
the model converges.

Aswell asmaking use of existing code,we also provide novel code for the remaining
parts of the overall learning framework. These are as follows:

– Building and managing models, and accepting various optional user inputs such
as hand-specified utility functions or logical constraints specified in simple infix
notation (e.g. (A ∧ B) ↔ C can be entered using |=(&(A,B),C)|) and then
converted to restrictions upon the learntmodel. Being able to run the demonstration
without using The SDD Package 2.0 or LearnPSDD directly greatly simplifies the
interface to these two packages.

– Performing inference by evaluating the model or by calculating the most probable
evidence (MPE), both possibly given partial evidence (as these functionalities are
not provided in the original LearnPSDD package). Each of our inference algo-
rithms are linear in the size of the model, and are based on pseudocode given in
Kisa et al. (2014) and Peharz et al. (2017) respectively.

– Learning utility functions from data, whose properties (such as being linear
or being context-relative) are specified by the user in advance. This learning
is done by forming a matrix equation representing our assumed proportional-
ity relationship Pr(D | X) ∝ f (

∑
O U(O)Pr(O | D,X)) across all decisions

and contexts, then solving to find utilities using non-negative linear regression
with L2 regularisation (equivalent to solving a quadratic program). In particu-
lar, writing A = Pr(O | D,X), b = Pr(D | X), and x = U(O), we solve
arg minx (‖Ax − f −1(b)‖22 + λ‖x‖22) where λ is a regularisation constant and
‖ · ‖ 2

2 is the square of the Euclidean norm.
– Computing blameworthiness by efficiently calculating the key quantities defined
by our embedding described in Sect. 3, using parameters for particular queries
given by the user when required. Results are displayed in natural language and
automatically saved for future reference.

The packaged version of our implementation (including full documentation), our
data, and the results of our experiments detailed below are available online (Hammond
2018).

6 Experiments and results

Using our implementation we learnt several models using a selection of datasets from
varying domains in order to test our hypotheses. In particularwe answer three questions
in each case:

(Q1) Does our system learn the correct overall probability distribution?
(Q2) Does our system capture the correct utility function?
(Q3) Does our system produce reasonable blameworthiness scores?
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Fig. 5 The control flow of our system, split into two halves. Rounded rectangles are start and end points,
diamonds represent decisions, parallelograms correspond to inputs from the user, and rectangles are pro-
cesses undertaken by the program. q refers to an optional alternative distribution over context and preceding
decision/observation variables (allowing our model to re-used in a variety of scenarios) and N refers to the
measure of cost importance defined earlier

123



L. Hammond, V. Belle

In this section we first summarise the results from our three experiments before pro-
viding a more in-depth analysis of our final experiment as an example. We direct the
interested reader to Appendix A for results from the other two experiments. Appendix
B contains summaries of our datasets.

6.1 Summary

We performed experiments on data from three different domains. In Lung Cancer
Staging we used a synthetic dataset generated from the lung cancer staging influence
diagram given in Nease and Owens (1997). The data was generated assuming that
the overall medical decision strategy recommended in the original paper is followed
with some high probability at each decision point. In this experiment, the utility of an
outcome is captured by the expected length of life of the patient given that outcome,
and the aim should be to make decisions regarding the diagnostic tests or treatments to
apply that maximise this, meaning blame could reasonably be attributed to decisions
that fail to do so. The Teamwork Management experiment uses a recently collected
dataset of human decision-making in teamwork management (Han et al. 2017). This
data was recorded from over 1000 participants as they played a game that simulates
task allocation processes in a management environment, and includes self-reported
emotional responses from each participant based on their performance. Here, differ-
ent levels of blame are attributed to decision strategies that lead to lower-self reported
happiness scores with respect to the various levels of the game and outcomes that mea-
sure performance such as the timeliness and quality of the work managed. Finally, in
Trolley Problems we devised our own experimental setup with human participants,
using a small-scale survey (documents and data are included in the code package
Hammond 2018) to gather data about hypothetical moral decision-making scenar-
ios. These scenarios took the form of non-deterministic and expanded variants on
the famous trolley problem (Thomson 1985), where blame can quite intuitively be
attributed (as explained in more detail in Sect. 6.2 below) to the participant’s decisions
about who should live or die depending on the context and outcomes.

For (Q1), we begin by noting that although we embed a causal framework in our
choice of statistical relational model (PSDDs), that (as shown in Sect. 3.2) the causal
querieswe need to answerwithin this framework can be computed using standard prob-
abilistic methods. Thus, the question of how well we are able to answer such queries
reduces to the question of how well we are able to compute the relevant probabilities,
and thus to how well our system learns the correct overall probability distribution.
This essentially requires an evaluation of density estimation, which we measure via
the overall log likelihood of the models learnt by our system on training, validation,
and test datasets (see Table 2). A full comparison across a range of similar models
and learning techniques is beyond the scope of our work here, although to provide
some evidence of the competitiveness of PSDDs we include the log likelihood scores
of a sum-product network (SPN), another tractable probabilistic model, created using
Tachyon (2017) as a benchmark. We also compare the sizes (measured by the number
of nodes) and the log likelihoods of PSDDs learnt with and without logical constraints
in order to demonstrate the effectiveness of the former approach.We reiterate here that
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Table 2 Log-likelihoods and
sizes of the constrained PSDDs
(the models we use in our
system, indicated by the *
symbol), unconstrained PSDDs,
and the SPNs learnt in our three
experiments

Model Training Validation Test Size

1 PSDD* −2.047 −2.046 −2.063 134

PSDD −2.550 −2.549 −2.564 436

SPN −3.139 −3.143 −3.158 1430

2 PSDD* −5.541 −5.507 −5.457 370

PSDD −5.637 −5.619 −5.556 931

SPN −7.734 −7.708 −7.658 3550

3 PSDD* −4.440 −4.510 −4.785 368

PSDD −6.189 −6.014 −6.529 511

SPN −15.513 −16.043 −15.765 3207

Higher log-likelihoods are better, as are lower sizes (measured by the
number of model parameters)

we include these comparisons not to thoroughly benchmark our models against a suite
of baselines, but merely to indicate that their performance is in line with competitors.
A brief further discussion of said competitors and related models in probabilistic logic
learning is included in Sect. 8. In Sect. 6.2 we also provide, as an illustrative example,
a more intuitive visual representation of the learnt marginal distribution over decision
variables for one particular moral decision-making scenario.

Answering (Q2) ismore difficult, as self-reportedmeasures of utility (or other proxy
metrics, such as life expectancy in Lung Cancer Staging, for example) may form an
unreliable baseline. More generally, one might argue that to attempt to measure utility
quantitatively is problematic in and of itself. Though discussion of this question is
beyond the scope of our work here, we note that in recent years, with experiments
such as the ‘Moral Machine’ (Awad et al. 2018), we have seen efforts to capture the
moral judgements of humans in a principled and quantitative fashion. It is also the
case that in many applications (such as the use of QALYs in healthcare, or the field
of preference elicitation), things of moral value are evaluated using a quantitative
framework in a way that is widely accepted by professionals in that area as well as by
moral philosophers. In our experiments, our models are able to learn utility functions
thatmatch preferences up to ordinality inmost cases, but the cardinal representations of
utilities depends greatly on the function f in the proportionality relationship between
expected decision probabilities and expected utilities. The exact choice of f is highly
domain-dependent and an area for further experimentation in future.

In attempting to answer (Q3) we divide our question into two parts: does the system
attribute no blame in the correct cases, and does the system attribute more blame in the
cases we would expect it to (and less in others)? Needless to say, similar concerns such
as those raised above about the measurement of utility apply to the notion of blame,
and it is very difficult (perhaps even impossible, at least without an extensive survey
of human opinions) to produce an appropriate metric for how correct our attributions
of blame are. However, we suggest that these two criteria are the most fundamental
and capture the core of what we want to evaluate in these initial experiments. We
successfully queried our models in a variety of settings corresponding to the two
questions above and present representative examples below.
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6.2 Trolley problems

In this experiment we extend the well-known trolley problem, as is not uncommon in
the literature (Awad et al. 2018), by introducing a series of different characters that
might be on either track: one person, five people, 100 people, one’s pet, one’s best
friend, and one’s family. We also add two further decision options: pushing whoever is
on the side track into the way of the train in order to save whoever is on the main track,
and sacrificing oneself by jumping in front of the train, saving both characters in the
process. Our survey then took the form of asking each participant which of the four
actions theywould perform (the fourth being inaction) given each possible permutation
of the six characters on the main and side tracks (we assume that a character could
not appear on both tracks in the same scenario). The general setup can be seen in Fig.
6, with locations A and B denoting the locations of people on the main track and side
track respectively.

Last of all, we added a probabilistic element to our scenarios whereby the switch
only works with probability 0.6, and pushing the character at location B onto the main
track in order to stop the train succeeds with probability 0.8. This was used to account
for the fact that people are generally more averse to actively pushing someone than
to flipping a switch (Singer 2005), and people are certainly more averse to sacrificing
themselves than doing either of the former. However, depending on how much one
values the character on the main track’s life, one might be prepared to perform a less
desirable action in order to increase their chance of survival.

In answering (Q1), as well as the primary log-likelihood metric recorded in Table
2, for illustrative purposes we also investigate how well our model serves as a rep-
resentation of the aggregated decision preferences of participants by calculating how
likely the system would be to make particular decisions in each of the 30 contexts
and comparing this with the average across participants in the survey. For reasons of
space we focus here on a representative subset of these comparisons: namely, the five
possible scenarios in which the best friend character is on the main track (see Fig.
7). In general, the model’s predictions are similar to the answers given in the survey,
although the effect of smoothing our distribution during learning is noticeable, espe-
cially due to the fact that the model was learnt with relatively few data points. Despite
this handicap, the most likely decision in any of the 30 contexts according to the model

Fig. 6 A cartoon given to participants showing the layout of the experimental scenario and the four possible
options. Clockwise from top (surrounding the face symbol) these are: sacrificing oneself, flipping the switch,
inaction, and pushing the character at B onto themain track. Locations A and B are instantiated by particular
characters depending on the context

123



Learning tractable probabilistic models for moral responsibility…

Survey Answers

1 Person

5 People

100 People Pet
Family

On Track B

0

0.2

0.4

0.6

0.8

1
D

ec
is

io
n 

M
ad

e
Model Predictions

1 Person

5 People

100 People Pet
Family

On Track B

0

0.2

0.4

0.6

0.8

1

D
ec

is
io

n 
M

ad
e

Do Nothing Flip Switch Push B Sacrifice Yourself

Fig. 7 A comparison of the decisions made by participants and the predictions of our model in each of the
five scenarios in which the best friend character is on the main track (A)

is in fact the majority decision in the survey, with the ranking of other decisions in
each context also highly accurate.

Unlike our other two experiments, the survey data does not explicitly contain any
utility information, meaning our system was forced to learn a utility function by
using the probability distribution encoded by the PSDD. Within the decision-making
scenarios we presented, it is plausible that the decisions made by participants were
guided by weights that they assigned to the lives of each of the six characters and to
their own life. Given that each of these is captured by a particular outcome variable
we chose to construct a utility function that was linear in said variables. We also chose
to make the utility function insensitive to context, as we would not expect how much
one values the life of a particular character to depend on which track that character
was on, or whether they were on a track at all.

For (Q2), with no existing utility data to compare our learnt function, we interpreted
the survival rates of each character as the approximate weight assigned to their lives by
the participants.While the survival rate is a non-deterministic function of the decisions
made in each context, we assume that over the experiment these rates average out
enough for us to make a meaningful comparison with the weights learnt by our model.
A visual representation of this comparison can be seen in Fig. 8. It is immediately
obvious that our system has captured the correct utility function to a high degree of
accuracy. With that said, our assumption about using survival rates as a proxy for real
utility weights does lend itself to favourable comparison with a utility function learnt
fromaprobability distribution over contexts, decisions, and outcomes (which therefore
includes survival rates). Given the setup of the experiment, however, this assumption
seems justified and, furthermore, to be in line with how most of the participants
answered the survey.
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Fig. 8 A comparison between the average survival rates of the seven characters (including the participants
in the survey), normalised to sum to one, and the corresponding utility function weights learnt by our system

Because of the symmetric nature of the set of contexts in our experiment, the
probability of a particular character surviving as a result of a particular fixed action
across all contexts is just the same as the probability of that character not surviving.
Hence in answering (Q3) we use our system’s feature of being able to accept particular
distributions Pr′ over the contexts in which we wish to attribute blame, allowing us
to focus only on particular scenarios. Regarding the first part of (Q3), clearly in any
of the possible contexts one should not be blamed at all for the death of the character
on the main track for flipping the switch (F) as opposed to inaction (I ), because in
the latter case they will die with certainty, but not in the former.8 Choosing a scenario
arbitrarily to illustrate this point, with one person on the side track and five people on
the main track, we have dbN (F, I ,¬L5) = 0 and dbN (F,¬L5) = 0.307 (with our
measure of cost importance N = 0.762, 1.1 times the negative minimum cost of any
action).

For the second part of (Q3), consider the scenario in which there is a large crowd
of a hundred or so people on the main track, but one is unable to tell from a distance
if the five or so people on the side track are strangers or one’s family. The more
likely it is that the family is on the side track, the more responsible one is for their
deaths (¬LFa) if one, say, flips the switch (F) to divert the train. Conversely, we
also expect there to be less blame for the deaths of the 100 people (¬L100) say, if
one did nothing (I ), the more likely it is that the family is on the side track (because
the cost, for the participant at least, of diverting the train is higher). We compare
cases where there is a 0.3 or 0.6 probability that the family is on the side track and
for all calculations use the cost importance measure N = 1. Therefore, not only
would we expect the blame for the death of the family to be higher when pulling
the switch in the latter case, we would expect the value to be approximately twice as
high as in the former case. Accordingly, we compute values dbN (F,¬LFa) = 0.264

8 Note that this is not to say one would not be blameworthy when compared to all other actions as one
could, for example, have sacrificed oneself instead, saving all other lives with certainty.
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and dbN (F,¬LFa) = 0.554 respectively. Similarly, when considering blame for the
deaths of the 100 people due inaction, we find that dbN (I ,¬L100) = 0.153 in the
former case and that dbN (I ,¬L100) = 0.110 in the latter case (when the cost of
performing another action is higher).

7 Discussion

We begin this section by briefly revisiting two of the technical points in Sects. 3.1 and
3.2: (a) structural equations can be partially encoded in PSDDs using propositional
formulae; and (b) the specific sorts of causal queries wemake in our framework can be
reduced to a number of probabilistic queries. In particular, wewish to highlight the fact
that these claims are independent and used to support independent arguments. The first
claim supports our argument that PSDDs are a natural choice ofmodel due to (amongst
other features) their relation to causal graphical models and the structural equations
that they represent (when compared to, say, alternatives such as SPNs Papantonis and
Belle 2019). The second claim supports our argument that PSDDs (or probabilistic
models more generally) are sufficient to answer the particular set of causal queries
within the particular class of sequential decision-making scenarios we consider, and
are thus an appropriate choice of model in which to embed the formal framework of
HK. Further, the truth of the second claim is what justifies our focus on computing
probabilistic quantities instead of the process of causal discovery which, as noted
earlier, is highly non-trivial. Admittedly, such learning regimes would be interesting
and useful in our context, and we plan to look into this in future work.

As well the technical assumptions discussed in Sect. 3, our work also rests on
several key philosophical assumptions worthy of discussion. These are in turn linked
to our motivations and suggestions for potential applications of the type of system we
exhibit. We discuss each of these aspects with respect to the features and abilities of
our system below.

Most importantly, we wish to draw attention to what we consider an interesting
parallel between the use of statistical relational models that can encode both logical
constraints or structures as well as learnt distributions (which can in turn be used to
deduce preferences), and normative ethical theories that make use of some notion
of both deontological rules (e.g. it is forbidden to kill another human being) and
the principle of utility maximisation. While these two philosophical approaches are
often contrasted with each other, it is plausible and not infrequently suggested that
human beings make use of both in their everyday moral reasoning (Conway and
Gawronski 2013). For example, this helps to explain why many people consider it
morally permissible to flip a switch to kill one person and save five, but not to push
someone to their death in order to save five others (as it would violate a deontological
rule forbidding killing that is not violated in the first, more ‘indirect’ case) (Singer
2005). This parallel suggests that suchmodels (includingPSDDs)mayhave an intrinsic
advantagewhen it comes to capturing the complexities ofmoral reasoning. It is perhaps
also possible that biased data used for learning could bemore easily identified (through
the use of complex logical queries) or perhaps restricted (through the use of logical
constraints) by these models, though this is of course a highly non-trivial problem.
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With respect to our specific embedding and implementation, we can easily constrain
our distribution and thus the utility function that results (for example, in the trolley
problems experiment we could have encoded logical constraints such that any human
life should be prioritised over the life of a pet). Bounding our models before learning
in this way corresponds to a hybrid between the top-down and bottom-up approaches
defined by Allen et al. which we believe seems intuitively more promising and flexible
than using either technique exclusively (Allen et al. 2005). The possibility of such
a hybrid system incorporating both statistical and symbolic methods has also been
discussed elsewhere (Charisi et al. 2017), though as far as we are aware our system
represents the first implemented example of this paradigm. A less immediate but more
general feature is our ability to tractably query an unconstrained model in order to
checkwithwhat probability certain rules are followed, basedon contexts and (possibly)
previous decisions.

Though the primarypurpose of ourmodels is in representingmoral decision-making
scenarios for tractable reasoning about decisions, outcomes, and blame, they can also
be used to make such decisions tractably, using our implemented MPE algorithm.
However, we do not wish to suggest blindly advocating the automation of moral
judgements. In our view, it is crucial that AI systems act in line with human values and
preferences. Our suggestion in this work is merely that imbuing such systems with
the ability to reason about moral value, blame, and intentionality is one possible step
towards this goal.9 Our motivation derives from HK (and others) in our desire to pro-
vide a shared computational framework for representing and reasoning about moral
judgements that may help in our quest to build systems that act ethically; the difference
being that we contribute a concrete, end-to-end implementation and investigation of
such a framework as opposed to an underlying logical theory.

As autonomous systems becomemore widely and deeply embedded within society,
and as the quantity and significance of their interactions with (or on behalf of) humans
grows, so too, we believe, will the need for a computationally realised framework
of the kind we present here (Conitzer et al. 2017; Moor 2006; Charisi et al. 2017),
whether or not it is used to make or merely reason about moral decisions. We wish to
remark, however, that if this frameworkwere employed in thewrongway, such as in the
unchecked automation of moral decision-making tasks, then it could undoubtedly lead
to unethical consequences (see, for example, Asaro 2012 in opposition to autonomous
weapons systems). With that said, it would also be naïve to think that the decisions
made by current and future autonomous systems are without moral consequence,
and so the important discussion surrounding these issues is one that we believe will
undoubtedly continue and hope to encourage through our work here.

Though there are many other related ethical considerations that warrant discussion,
a detailed investigation of such issues is outside the scope of our current work, and so
we conclude this section with suggestions for possible applications of our work (or
extensions thereof). Beginning with our three experiments: the first represents a case
in which, after learning from previous expert behaviour or having certain parameters
specified in advance, a system like ours could, for example, be used to quantify culpa-

9 It is a separate but potentially interesting question to ask whether a group of purely artificial agents might
benefit (say, in their level of coordination) from such abilities.
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bility in the event of a patient’s death due tomedical error; in the second experiment we
could use a similar model for the process of After Action Review within a team train-
ing setting (as proposed in Gratch and Mao 2003); and the models extracted during
our third experiment could be used for comparison against learnt models from specific
individuals or other populations, and potentially alsowhat Etzioni andEtzioni describe
as ‘ethics bots’: personalised models learnt from data that encode moral preferences
and may be transferred between domains (Etzioni and Etzioni 2017).

In addition, autonomous systems that can reason accurately and tractably about
blame andmoral responsibility could see use in ensuring politeness in natural language
generation (Briggs and Scheutz 2014), creating shared understanding in collaborative
tasks between multiple human and/or artificial agents (though see Groom et al. 2010;
Kaniarasu and Steinfeld 2014 for possible negative side effects of autonomous systems
blaming humans), overcoming human cognitive biases in legal, military, or other high-
stakes scenarios (Arkin et al. 2009), and many others.

8 Related work

Our work here is differentiated from related work in twomain ways: jointly addressing
the automated learning of models of moral scenarios, and tractable reasoning. We
discuss other efforts below.

As mentioned before, we do not motivate new definitions for moral responsibility
here but draw on HK which, in turn, is based upon prior work done by Halpern with
Chockler (Chockler andHalpern 2004) andwith Pearl (Halpern and Pearl 2005). Their
framework is also related to the intentions model of Kleiman-Weiner et al. (2015)
which considers predictions about the moral permissibility of actions via influence
diagrams, though unlike our efforts here all of theseworks are primarily theoretical and
there is no emphasis on learning or tractability. In fact, the use of tractable architectures
for decision-making itself is recent (see, for example, Bhattacharjya and Shachter
2012; Melibari et al. 2016). Choi et al. learn PSDDs over preference rankings (as
opposed to decision-making scenarios more generally) (Choi et al. 2015), though
unlike ours their approach does not take account of different preferences in different
contexts and does not capture the causal elements we adopt from HK.

Just as the focus of this work is not to provide a new definition of moral responsi-
bility, it is equally not to introduce a new tractable probabilistic architecture. Instead,
we adopt PSDDs which offer a useful combination of learning in the presence of
logical (and therefore possibly moral) constraints and then tractably computing the
many quantities needed for the blameworthiness framework of HK.With that said, this
does not mean that other models could not have been used. In principle, any tractable
fragment from probabilistic logic learning is perhaps applicable to our work here:
we initially considered a decision-theoretic instance of SPNs (Melibari et al. 2016),
but chose not to pursue this further due to the focus on making decisions as opposed
to reasoning about decisions, and the lack of an available code base. We could also
perhaps have leveraged a high-level language like DTProbLog (Van den Broeck et al.
2010), but we note that there is the exponential cost of compiling such a language to
a circuit, and thus we wished to work with the circuit directly.
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Markov Logic Networks (MLNs) could have been considered, and when their
semantics are viewed from the perspective of weighted model counting, they are
equivalent to the task solved by probabilistic circuits (Richardson and Domingos
2006). Analogously, a tractable fragment of MLNs could have been considered, as
could Probabilistic Soft Logic which supports convex optimisation during inference
but a fuzzy/t-norm type semantics (Bach et al. 2017). The main challenge in extending
our work for any of these other proposal languages would be identifying an embedding
from HK to the target language, but once that is resolved, we would expect to see
similar results (insofar as the models support the class of queries required in order
to tractably compute blameworthiness). Thus, we do not claim that PSDDs are the
only route to the contributions in this work, though their tractable nature, as well as
the partial encoding of the structural equations through the use of logical constraints,
allow a clean practical perspective on HK, and coupled with parameter estimation and
utility learning, we obtain the corresponding implemented framework.

An important part of learning a model of moral decision-making is in learning a
utility function. This is often referred to as inverse reinforcement learning (Ng and
Russell 2000) or Bayesian inverse planning (Baker et al. 2009) and is closely related
to the field of preference elicitation. Our current implementation considers a simple
approach for learning utilities (similar to that of Nielsen and Jensen 2004), but more
involved paradigms such as those above could indeed have been used. Existing work
in these areas, however, typically has the extraction of utilities as a final goal, whereas
in our work such utilities are merely inputs for moral reasoning processes. Learning
preferences from sub-optimal behaviour is an important challenge here that we hope
to take into account in future work. We refer the interested reader to the work of Evans
et al. for details of one attempt to tackle this problem (Evans et al. 2016). Recent work
by Jentzsch et al. indicates that language corpora may form suitable resources from
which data about ethical norms and moral decision-making may be extracted, which
may help in our ability to learn larger and more complex models in future (Jentzsch
et al. 2019).

Our contributions here are related to the body of work surrounding MIT’s Moral
Machine project (Awad et al. 2018). For example, Kim et al. (2018) build on an earlier
theoretical proposal Kleiman-Weiner et al. (2017) by developing a computational
model of moral decision-making whose predictions they test against Moral Machine
data. Their focus is slightly different to ours, as they attempt to learn abstract moral
principles via hierarchical Bayesian inference. Although our framework can be used to
these ends, it is also flexible with respect to different contexts, and allows constraints
on learnt models. Noothigattu et al. develop a method of aggregating the preferences
of all participants (this, while not using techniques that are quite as sophisticated, is
a secondary feature of our system which is strictly more general) in order to make
a given decision (Noothigattu et al. 2017). However, due to the large numbers of
such preference orderings, tractability issues arise and so sampling must be used. In
contrast, inference in our models is both exact and tractable.

There have also been many purely symbolic approaches to creating models of
moral reasoning within autonomous systems. As in our own work, the HERA project
(Lindner et al. 2017) is also based on Halpern and Pearl’s (2005) structural equations
framework for causal and counterfactual reasoning. The system is similarly broad in
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that it allows for the implementation of several kinds of (rule-based) moral theory to be
captured, however their models and utility functions are hand-crafted (as opposed to
learnt from data) and so lack the flexibility, tractability, and scalability of our approach.
Mao and Gratch (2012) also make use of causal models to produce categorical judge-
ments of moral responsibility based on psychological attribution theory. While their
focus is on the multi-agent setting (and again, does not include any learning), reason-
ing in such domains is also supported by the underlying theory of HK and would thus
form a natural extension of our work in the future.

GENETH uses inductive logic programming to create generalised moral princi-
ples from the judgements of ethicists about particular ethical dilemmas, the system’s
performance being evaluated using an ‘ethical Turing test’ (Anderson and Anderson
2014). This work, however, can be seen as less general than our approach in that they
assume preferences to be ordinal (as opposed to cardinal) and actions to be deter-
ministic (as opposed to probabilistic). Their need for feature engineering to extract
ethically relevant facts from each situation is also bypassed by our system, though it
is plausible that adding such variables to our models could improve results. Further
symbolic approaches (as opposed to our own which forms a hybrid between symbolic
and statistical methods) include the ETHAN language, the properties of agents defined
by which are also amendable to formal verification (Dennis et al. 2016), and work on
simulating then evaluating the moral consequences of a robot’s actions as part of its
‘ethical control layer’ (Vanderelst and Winfield 2018).

Finally, there are a number of works that aim to provide overviews of or motiva-
tions for broad classes of algorithms that seek to address similar problems to those
in our own work, though given their nature these works focus more on breadth than
the deeper analysis of a single framework which we provide here. A discussion of
strategies for creating moral decision-making frameworks for autonomous systems is
discussed in Conitzer et al. (2017), and similar considerations regarding hybrid col-
lective decision-making systems are made by Greene et al. (2016). One alternative
proposal, not discussed in either of these works, is made by Abel et al. and suggests
the use of reinforcement learning as a framework for ethical decision-making (Abel
et al. 2016). Recent work by Shaw et al. (2018) has sought to address the tension
between learnt models of moral decision-making and provable guarantees, in a work
not dissimilar to our own. A comprehensive survey of issues surrounding the intersec-
tion of ethics and autonomous systems is provided by Charisi et al. (2017). We refer
the reader to these works for more discussions.

9 Conclusion

In this work we present the first implemented hybrid (between data-driven and rule-
based methods) computational framework for moral reasoning, which utilises the
specification of decision-making scenarios in HK, and at the same time exploits many
of the desirable properties of PSDDs (such as tractability, semantically meaningful
parameters, and the ability to be both learnt from data and include logical constraints).
The implemented system is flexible in its usage, allowing various inputs and spec-
ifications. In general, the models in our experiments are accurate representations of
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the distributions over the moral scenarios that they are learnt from. Our learnt utility
functions, while simple in nature, are still able to capture subtle details and in some
scenarios are able to match human preferences with high accuracy using very little
data. With these two elements we are able to generate blameworthiness scores that
are, prima facie, in line with human intuitions.

We hope that our work here goes some way towards bridging the gap between the
existing philosophical work on moral responsibility and the existing technical work
on reasoning about decision-making in autonomous systems. In future we would like
to expand the application of our implementation to more complex domains in order to
fully exploit and evaluate its tractability. We are also interested in investigating how
intentionality can be modelled within our embedding (a natural extension to the work
presented here, given the close connection between this concept and blameworthiness),
and the possibility of formally verifying certain properties of our models.
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A Further experiments

Aswell as theTrolley Problems experiment in Sect. 6.2, we also applied our framework
to data from moral decision-making scenarios in two other illustrative domains: Lung
Cancer Staging and Teamwork Management. In the following subsections of this
appendix we provide the details and results of these experiments.

A.1 Lung cancer staging

We use a synthetic dataset generated with the lung cancer staging influence diagram
given in Nease and Owens (1997). The data was generated assuming that the overall
decision strategy recommended in the original paper is followed with some high
probability at each decision point. In this strategy, a thoractomy is the usual treatment
unless the patient has mediastinal metastases, in which case a thoractomy will not
result in greater life expectancy than the lower risk option of radiation therapy, which
is then the preferred treatment. The first decision made is whether a CT scan should
be performed to test for mediastinal metastases, the second is whether to perform a
mediastinoscopy. If the CT scan results are positive for mediastinal metastases then a
mediastinoscopy is usually recommended in order to provide a second check, but if
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Fig. 9 A comparison between the five probability values specified in our data generation process and the
corresponding values learnt by our system from this data

the CT scan result is negative then amediastinoscopy is not seen as worth the extra risk
involved in the operation. Possible outcomes are determined by variables that indicate
whether the patient survives the diagnosis procedure and survives the treatment, and
utility is measured by life expectancy.

For (Q1) we again measure the overall log likelihood of the models learnt by our
system on training, validation, and test datasets. In particular, our model is able to
recover the artificial decision-making strategy well (see Fig. 9); at most points of the
staging procedure the model learns a very similar distribution over decisions, and in
all cases the correct decision is made the majority of times.

Answering (Q2) here is more difficult as the given utilities are not necessarily such
that our decisions are linearly proportional to the expected utility of that decision.
However, our strategy was chosen so as to maximise expected utility in the majority
of cases. Thus, when comparing the given life expectancies with the learnt utility
function, we still expect the same ordinality of utility values, even if not the same
cardinality. In particular, our function assigns maximal utility (1.000) to the successful
performing of a thoractomy when the patient does not have mediastinal metastases
(the optimal scenario), and any scenario in which the patient dies has markedly lower
utility (mean value 0.134).

Regarding the first part of (Q3), one case in which we have blameworthiness
scores of zero is when performing the action being judged is less likely to result
in the outcome we are concerned with than the action(s) we are comparing it to. The
chance of the patient dying in the diagnostic process (¬SDP ) is increased if a medi-
astinoscopy (M) is performed, hence the blameworthiness for such a death due to
not performing a mediastinoscopy should be zero. As expected, our model assigns
dbN (¬M, M,¬SDP ) = 0. To answer the second part of (Q3), we show that the sys-
tem produces higher blameworthiness scores when a negative outcome is more likely
to occur (assuming the actions being compared have relatively similar costs). For
example, in the case where the patient does not have mediastinal metastases then the
best treatment is a thoractomy, but a thoractomy will not be performed if the result of
the last diagnostic test performed is positive. The specificity of a mediastinoscopy is
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higher than that of a CT scan, hence a CT scan is more likely to produce a false positive
and thus (assuming no mediastinoscopy is performed as a second check) lead to the
wrong treatment.10 In the case where only one diagnostic procedure is performed we
therefore have a higher degree of blame attributed to the decision to conduct a CT scan
(0.013) as opposed to a mediastinoscopy (0.000), where we use N = 1.

A.2 Teamworkmanagement

Our second experiment uses a recently collected dataset of human decision-making
in teamwork management (Han et al. 2017). This data was recorded from over 1000
participants as they played a game that simulates task allocation processes in amanage-
ment environment. In each level of the game the player has different tasks to allocate
to a group of virtual workers that have different attributes and capabilities. The tasks
vary in difficulty, value, and time requirements, and the player gains feedback from
the virtual workers as tasks are completed. At the end of the level the player receives
a score based on the quality and timeliness of their work. Finally, the player is asked
to record their emotional response to the result of the game in terms of scores corre-
sponding to six basic emotions. We simplify matters slightly by considering only the
self-declared management strategy of the player as our decisions. Within the game
this is recorded by five check-boxes at the end of the level that are not mutually exclu-
sive, giving 32 possible overall strategies. These strategy choices concern methods
of task allocation such as load-balancing (keeping each worker’s workload roughly
even) and skill-based (assigning tasks by how likely the worker is to complete the task
well and on time), amongst others. We also measure utility purely by the self-reported
happiness of the player, rather than any other emotions.

As part of our answer to (Q1) we investigate how often the model would employ
each of the 32 possible strategies (where a strategy is represented by an assignment of
values to the binary indicator decision variables) compared to the average participant
(across all contexts), which can be seen in Fig. 10. In general the learnt probabilities
are similar to the actual proportions in the data, though noisier. The discrepancies are
more noticeable (though understandably so) for decisions that were made very rarely,
perhaps only once or twice in the entire dataset. These differences are also partly due
to smoothing (i.e. all strategies have a non-zero probability of being played).

For (Q2) we use the self-reported happiness scores to investigate our assumption
that the number of times a decision is made is (linearly) proportional to the expected
utility based on that decision. In order to do thiswe split the data up based on the context
(game level) and produce a scatter plot (Fig. 11) of the proportion of times a set of
decisions is made against the average utility (happiness score) of that decision. Overall
there is no obvious positive linear correlation as our original assumption would imply,
although this could be because of any one or combination of the following reasons:
players do not play enough rounds of the game to find out which strategies reliably
lead to higher scores and thus (presumably) higher utilities; players do not accurately
self-report their strategies; or players’ strategies have relatively little impact on their

10 Note that even though a mediastinoscopy has a higher cost (as the patient is more likely to die if it is
performed), it should not be enough to outweigh the test’s accuracy in this circumstance.

123



Learning tractable probabilistic models for moral responsibility…

0 5 10 15 20 25 30 35
Overall Decision Strategy

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Lo
g 

P
ro

po
rti

on
/P

ro
ba

bi
lit

y

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Model
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Fig. 11 Each point is a decision strategy in a level of the game; we compare the proportion of times it is
used against the average self-reported utility that results from it. Each line is a least-squares best fit to the
points in that level

overall utility based on the result of the game. We recall here that our assumption
essentially comes down to supposing that people more often make decisions that
result in greater utilities. The eminent plausibility of this statement, along with the
relatively high likelihood of at least one of the factors in the list above means we
do not have enough evidence here to refute the statement, although certainly further
empirical work is required in order to demonstrate its truth.

Investigating this discrepancy further, we learnt a utility function (linear and
context-relative) from the data and inspected the average weights given to the out-
come variables (see right plot in Fig. 12). A correct function should place higher
weights on the outcome variables corresponding to higher ratings, which is true for
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Fig. 12 A comparison of the learnt utility weights for each of the outcome variables (to the right) and the
proportion of times each outcome occurs in the data (to the left)

timeliness, but not quite true for quality as the top rating is weighted only third highest.
We found that the learnt utility weights are in fact almost identical to the distribution
of the outcomes in the data (see left plot in Fig. 12). Because our utility weights were
learnt on the assumption that players more often use strategies that will lead to better
expected outcomes, the similarity between these two graphs adds further weight to
our suggestion that, in fact, the self-reported strategies of players have very little to
do with the final outcome.

To answer (Q3) we examine cases in which the blameworthiness score should be
zero, and then compare cases that should have lower or higher scores with respect
to one another. Once again, comprehensive descriptions of each of our tested queries
are omitted for reasons of space, but here we present some representative examples.11

Firstly, we considered level 1 of the game by choosing an alternative distribution Pr′
over contexts when generating our scores. Here a player is less likely to receive a
low rating for quality (Q1 or Q2) if they employ a skill-based strategy where tasks
are more frequently allocated to better workers (S). As expected, our system returns
dbN (S,¬S, Q1 ∨ Q2) = 0. Secondly, we look at the timeliness outcomes. A player
is less likely to obtain the top timeliness rating (T5) if they do not use a strategy
that uniformly allocates tasks (U ) compared to their not using a random strategy
of allocation (R). Accordingly, we find that dbN (¬U ,¬T5) > dbN (¬R,¬T5), and
more specifically we have dbN (¬U ,¬T5) = 0.002 and dbN (¬R,¬T5) = 0 (i.e. a
player should avoid using a random strategy completely if they wish to obtain the top
timeliness rating).

11 In all of the blameworthiness scores below we use the cost importance measure N = 1.

123



Learning tractable probabilistic models for moral responsibility…

Table 3 A summary of the lung cancer staging data used in our first experiment

Number of data points 100000

Number of variables 12

Context variables MediastinalMetastases (MM), CTWouldBe Positive (CT+), CTWould
Be Negative (CT−), Mediastinoscopy Would Be Positive (M+), Medi-
astinoscopy Would Be Negative (M−)

Decision variables (D) Perform CT (CT ), Perform Mediastinoscopy (M)

Outcome variables (O) No CT Performed (CTN/A), No Mediastinoscopy Performed (MN/A),
Thoractomy Performed (T ), Diagnosis Procedures Survived (SDP ),
Treatment Survived (ST )

Constraints (CT+ ∨ CT−) ↔ CT

CTN/A ↔ ¬CT

(M+ ∨ M−) ↔ M

MN/A ↔ ¬M

M− → T

M+ → ¬T

(CT− ∧ ¬M) → T

(CT+ ∧ ¬M) → ¬T

¬SDP → M

¬(CT+ ∧ CT−)

¬(M+ ∧ M−)

¬SDP → ¬ST
Model count 52

Utilities given? Yes (life expectancy)

B Datasets

The full set of data, source code, and other supplementary materials can be found
online (Hammond 2018). Here we provide brief summaries of the three datasets used
in our experiments, including the variable encoding used for each domain and the
underlying constraints (Tables 3, 4, 5).
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Table 4 A summary of the teamwork management data used in our second experiment

Number of data points 7446

Number of variables 21

Context variables (X ) Level 1 (L1), ... , Level 6 (L6)

Decision variables (D) Other (O), Load-balancing (L), Uniform (U ), Skill-based (S), Random (R)

Outcome variables (O) Timeliness 1 (T1), ... , Timeliness 5 (T5), Quality 1 (Q1), ... , Quality 5 (Q5)

Constraints
∨

i∈{1,...,6} Li
Li → ¬ ∨

j∈{1,...,6}\i L j∀i ∈ {1, ..., 6}∨
i∈{1,...,5} Ti

Ti → ¬ ∨
j∈{1,...,5}\i T j∀i ∈ {1, ..., 5}∨

i∈{1,...,5} Qi

Qi → ¬ ∨
j∈{1,...,5}\i Q j∀i ∈ {1, ..., 5}

Model count 4800

Utilities given? Yes (self-reported happiness score)

Table 5 A summary of the trolley problem data used in our third experiment

Number of data points 360

Number of variables 23

Context variables (X ) One PersonOn TrackA (A1), ... , Family On TrackA (AFa ), One Person
On Track B (B1), ... , Family On Track B (BFa )

Decision variables (D) Inaction (I ), Flip Switch (F), Push B (P), Sacrifice Oneself (S)

Outcome variables (O) One Person Lives (L1), ... , Family Lives (LFa ), You Live (LY )

Constraints
∨

i∈{1,...,Fa} Ai∨
i∈{1,...,Fa} Bi

¬(Ai ∧ Bi )∀i ∈ {1, ..., Fa}
Ai → ¬ ∨

j∈{1,...,Fa}\i A j∀i ∈ {1, ..., Fa}
Bi → ¬ ∨

j∈{1,...,Fa}\i B j∀i ∈ {1, ..., Fa}∨
D∈{N ,F,P,S} D

D → ¬∨
D′∈{N ,F,P,S}\D D′

(Ai ∧ N ) → ¬Li∀i ∈ {1, ..., Fa}
(Bi ∧ N ) → Li∀i ∈ {1, ..., Fa}
Li → (Ai ∨ Bi )∀i ∈ {1, ..., Fa}
(S ∧ (Ai ∨ Bi )) → Li∀i ∈ {1, ..., Fa}
LY ↔ ¬S

(Li ∧ (P ∨ F)) → ¬ ∨
j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}

(¬Li ∧ (P ∨ F)) → ∨
j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}

Model count 180

Utilities given? No
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