Skip to main content
Log in

Nonclassical regimes of wave diffraction in combustible mixtures

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Experimental and numerical results of investigating the diffraction of combustion and detonation waves, including the diffraction in unsteady deflagration-to-detonation transition regimes, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Campbell, “The propagation of explosion waves in gases contained in tubes of varying cross-section,” J. Chem. Soc., 2483–2498 (1922).

  2. P. Laffitte, “On the propagation of a spherical explosion wave,” Com. Rend. Acad. Sci., 177, 178–180 (1923).

    Google Scholar 

  3. Ya. B. Zel’dovich, S. M. Kogarko, and N. N. Simonov, “Experimental study of spherical gas detonation,” Zh. Tekh. Fiz., 26, No. 8, 1744–1769 (1956).

    Google Scholar 

  4. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  5. V. V. Mitrofanov and R. I. Soloukhin, “Diffraction of a multifront detonation wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).

    Google Scholar 

  6. S. M. Kogarko, “Possibility of detonation of gas mixtures in conical tubes,” Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 4, 419–426 (1956).

  7. R. A. Strehlow, A. A. Adamczyk, and R. J. Stiles, “Transient studies of detonation waves,” Astronaut. Acta, 17, Nos. 4–5, 509–527 (1972).

    Google Scholar 

  8. R. A. Strehlow and R. J. Salm, “The failure of marginal detonations in expanding channels,” Acta Astronaut., 3, No. 11, 983–994 (1976).

    Article  Google Scholar 

  9. D. H. Edwards, G. O. Thomas, and M. A. Nettleton, “The diffraction of a planar detonation wave at an abrupt area change,” J. Fluid Mech., 95, No. 1, 79–96 (1979).

    Article  ADS  Google Scholar 

  10. A. A. Vasil’ev and V. V. Grigor’ev, “Critical conditions for gas detonation in sharply expanding channels,” Combust., Expl., Shock Waves, 16, No. 5, 579–585 (1980).

    Article  Google Scholar 

  11. R. Knystautas, J. H. S. Lee, and C. M. Guirao, “The critical tube diameter for detonation failure in hydrocarbon-air mixtures,” Combust. Flame, 48, 63–83 (1982).

    Article  Google Scholar 

  12. D. Desbordes and M. Vachon, “Critical diameter of diffraction for strong plane detonations,” in: J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosion, New York (1986), pp. 131–143.

  13. W. B. Benedick, R. Knystautas, and J. H. Lee, “Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels,” in: I. R. Bowen, N. Manson, A. K. Oppenheim, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 94: Dynamics of Shock Waves, Explosions and Detonations, New York (1983), pp. 546–556.

  14. Y. K. Liu, J. H. Lee, and R. Knystautas, “Effect of geometry on the transmission of detonation through an orifice,” Combust. Flame, 56, 215–225 (1984).

    Article  Google Scholar 

  15. J. O. Moen, A. Sulmistras, G. O. Thomas, et al., “The influence of cellular regularity on the behaviour of gaseous detonations,” in: J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosion, New York (1986), pp. 220–243.

  16. A. A. Vasil’ev, “Initiation of a gas detonation with a spatial source distribution,” Combust., Expl., Shock Waves, 24, No. 2, 232–237 (1988).

    Article  Google Scholar 

  17. A. A. Vasil’ev, “Spatial excitation of a multifront detonation,” Combust., Expl., Shock Waves, 25, No. 1, 104–108 (1989).

    Article  Google Scholar 

  18. A. A. Vasil’ev, “Gas detonation propagation with simultaneous change in tube section and mixture composition,” Combust., Expl., Shock Waves, 21, No. 2, 262–265 (1985).

    Article  Google Scholar 

  19. N. V. Bannikov and A. A. Vasil’ev, “Plane initiation of a detonation,” Combust., Expl., Shock Waves, 29, No. 3, 409–414 (1993).

    Google Scholar 

  20. A. A. Vasil’ev, “Near-critical regimes of gas detonation,” Doct. Dissertation in Phys.-Math. Sci., Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci. (1995).

  21. A. A. Vasil’ev, “Modes of a detonation and high-speed burning in channels with perforated walls,” in: V. Molkov (ed.), Fire-and-Explosion Hazard of Substances and Venting of Deflagrations, Proc. of the Second Int. Seminar, Inst. for Fire Protection, Moscow (1998), pp. 582–592.

  22. A. A. Vasil’ev et al., “The basic results of reinitiation processes in diffracting multifront detonations. Part I,” Eurasian Chem.-Technol. J., 5, No. 4 (2003).

    Google Scholar 

  23. K. Hiramatsu, T. Fujiwara, and S. Taki, “A computational study of transmission of gaseous detonation to unconfined space,” in: Proc. 20th Symp. (Int.) on Combustion, Pittsburgh (1984).

  24. M. Fisher, E. Pantow, and T. Kratzel, “Propagation, decay and re-ignition of detonations in technical structures,” in: G. Roy, S. Frolov, K. Kailasanath, and N. Smirnov (eds.), Gaseous and Heterogeneous Detonations. Science to Applications, ENAS Publ., Moscow (1999), pp. 197–212.

    Google Scholar 

  25. B. Khasainov, C. Priault, H.-N. Presles, and D. Desbordes, “On the mechanism of transition of self-sustained detonation from a tube to a half-space through an annular orifice with central obstacle,” in: Proc. 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (July 29–August 03, 2001, Seattle), Univ. Washington. CD ISBN 0-9711740-0-8, No. 096.

  26. A. A. Vasil’ev, A. I. Valishev, V. A. Vasil’ev, and L. V. Panfilova, “Combustion and detonation characteristics of hydrazine and its methyl derivatives,” Combust., Expl., Shock Waves, 36, No. 3, 358–373 (2000).

    Google Scholar 

  27. G. Munday, A. R. Ubbelohde, and I. F. Wood, “Marginal detonation in cyanogen/oxygen mixtures,” Proc. Roy. Soc. A, 306, No. 1485, 179–184 (1968).

    ADS  Google Scholar 

  28. S. M. Kogarko, “Pressure at the end of a tube with unsteady fast combustion,” Zh. Tekh. Fiz., 28, No. 9, 2041–2045 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 137–143, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, A.A., Drozdov, M.S. & Khidirov, S.G. Nonclassical regimes of wave diffraction in combustible mixtures. Combust Explos Shock Waves 42, 746–752 (2006). https://doi.org/10.1007/s10573-006-0110-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0110-y

Key words

Navigation