Skip to main content

Advertisement

Log in

Conditional Tet-Regulated Over-Expression of Hoxa2 in CG4 Cells Increases Their Proliferation and Delays Their Differentiation into Oligodendrocyte-like Cells Expressing Myelin Basic Protein

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

A–P:

Anterior–posterior

BrdU:

Bromodeoxyuridine

CDK:

Cyclin-dependent protein kinase

CNS:

Central nervous system

DM:

Differentiation medium

DMEM:

Dulbecco’s modified eagle medium

Dox:

Doxycycline

EDTA:

Ethylenediaminetetraacetic acid

ES:

Embryonic stem cells

FITC:

Fluorescein isothiocyanate

GalC:

Galactocerebroside C

GM:

Growth medium

Hyg:

Hygromycin

MBP:

Myelin basic protein

mRNA:

Messenger ribonucleic acid

Myc:

c-myc gene/protein

Nkx2.2:

NK2 transcription factor related, locus 2

Nkx6.1:

NK6 transcription factor related, locus 1

O-2A:

Oligodendrocyte-type 2 astrocyte

OL(s):

Oligodendrocyte(s)

Olig1/2:

Oligodendrocyte lineage gene 1/2

OPC(s):

Oligodendrocyte precursor cell(s)

p27/Kip1:

Kinase inhibitory protein 1

PBS:

Phosphate buffered saline

PDGF:

Platelet-derived growth factor

PDGFαR:

Platelet-derived growth factor receptor α

RIPA:

Radioimmunoprecipitation assay

RT:

Room temperature

RT-PCR:

Reverse transcription polymerase chain reaction

SHoxa2:

Sense Hoxa2

Sox:

SRY-box containing gene

Taq :

Thermus aquaticus

Tet:

Tetracycline

tTA:

Tetracycline transcriptional activator

TF(s):

Transcription factor(s)

References

  • Akin ZN, Nazarali AJ (2005) Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25:697–741

    Article  PubMed  CAS  Google Scholar 

  • Arenkiel BR, Gaufo GO, Capecchi MR (2003) Hoxb1 neural crest preferentially form glia of the PNS. Dev Dyn 227:379–386

    Article  PubMed  CAS  Google Scholar 

  • Arenkiel BR, Tvrdik P, Gaufo GO, Capecchi MR (2004) Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev 18:1539–1552

    Article  PubMed  CAS  Google Scholar 

  • Barber BA, Rastegar M (2010) Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 192:261–274

    Article  PubMed  CAS  Google Scholar 

  • Baron W, Shattil SJ, ffrench-Constant C (2002) The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 21:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72:112–119

    Article  PubMed  CAS  Google Scholar 

  • Booth J, Nicolay DJ, Doucette JR, Nazarali AJ (2007) Hoxd1 is expressed by oligodendroglial cells and binds to a region of the human myelin oligodendrocyte glycoprotein promoter in vitro. Cell Mol Neurobiol 27:641–650

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Wilkinson DG (2004) Establishing neuronal circuitry: Hox genes make the connection. Genes Dev 18:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Bromleigh VC, Freedman LP (2000) p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev 14:2581–2586

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45:41–53

    Article  PubMed  CAS  Google Scholar 

  • Care A, Testa U, Bassani A, Tritarelli E, Montesoro E, Samoggia P, Cianetti L, Peschle C (1994) Coordinate expression and proliferative role of HOXB genes in activated adult T lymphocytes. Mol Cell Biol 14:4872–4877

    PubMed  CAS  Google Scholar 

  • Compston A (2004) The pathogenesis and basis for treatment in multiple sclerosis. Clin Neurol Neurosurg 106:246–248

    Article  PubMed  Google Scholar 

  • Crickmore MA, Mann RS (2006) Hox control of organ size by regulation of morphogen production and mobility. Science 313:63–68

    Article  PubMed  CAS  Google Scholar 

  • Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491

    Article  PubMed  CAS  Google Scholar 

  • Del Bene F, Wittbrodt J (2005) Cell cycle control by homeobox genes in development and disease. Semin Cell Dev Biol 16:449–460

    Article  PubMed  CAS  Google Scholar 

  • Doucette R, Devon R (1994) Media that support the growth and differentiation of oligodendrocytes do not induce olfactory ensheathing cells to express a myelinating phenotype. Glia 10:296–310

    Article  PubMed  CAS  Google Scholar 

  • Doucette R, Jiao R, Nazarali A (2010) Age-related and cuprizone-induced changes in myelin and transcription factor gene expression and in oligodendrocyte cell densities in the rostral corpus callosum of mice. Cell Mol Neurobiol 30:607–629

    Article  PubMed  Google Scholar 

  • Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654

    Article  PubMed  CAS  Google Scholar 

  • Dubrulle J, Pourquie O (2002) From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Curr Opin Genet Dev 12:519–523

    Article  PubMed  CAS  Google Scholar 

  • Ellison JA, de Vellis J (1994) Platelet-derived growth factor receptor is expressed by cells in the early oligodendrocyte lineage. J Neurosci Res 37:116–128

    Article  PubMed  CAS  Google Scholar 

  • Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782

    Article  PubMed  CAS  Google Scholar 

  • Engel U, Wolswijk G (1996) Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia 16:16–26

    Article  PubMed  CAS  Google Scholar 

  • Espinosa de los Monteros A, Zhao P, Huang C, Pan T, Chang R, Nazarian R, Espejo D, de Vellis J (1997) Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J Neurosci Res 50:872–887

    Article  PubMed  CAS  Google Scholar 

  • Fields RD (2005) Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11:528–531

    Article  PubMed  Google Scholar 

  • Fisher D, Méchali M (2003) Vertebrate HoxB gene expression requires DNA replication. EMBO J 22:3737–3748

    Article  PubMed  CAS  Google Scholar 

  • Ford HL (1998) Homeobox genes: a link between development, cell cycle, and cancer? Cell Biol Int 22:397–400

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Bayley SA, Milner R, Ffrench-Constant C, Blakemore WF (1995) Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter. Glia 13:39–44

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Bayley SA, Blakemore WF (1996) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 137:263–276

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693

    PubMed  CAS  Google Scholar 

  • Gabellini D, Colaluca IN, Vodermaier HC, Biamonti G, Giacca M, Falaschi A, Riva S, Peverali FA (2003) Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J 22:3715–3724

    Article  PubMed  CAS  Google Scholar 

  • Gard AL, Pfeiffer SE (1990) Two proliferative stages of the oligodendrocyte lineage (A2B5+O4- and O4+GalC-) under different mitogenic control. Neuron 5:615–625

    Article  PubMed  CAS  Google Scholar 

  • Gaufo GO, Wu S, Capecchi MR (2004) Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 131:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331

    Article  PubMed  CAS  Google Scholar 

  • Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF (2005) Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 25:8311–8321

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Yeung J, Wolf L, Doucette R, Nazarali A (1999) Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord. Dev Dyn 216:201–217

    Article  PubMed  CAS  Google Scholar 

  • He H, Hua X, Yan J (2011) Epigenetic regulations in hematopoietic Hox code. Oncogene 30:379–388

    Article  PubMed  CAS  Google Scholar 

  • Hu JG, Fu SL, Zhang KH, Li Y, Yin L, Lu PH, Xu XM (2004) Differential gene expression in neural stem cells and oligodendrocyte precursor cells: a cDNA microarray analysis. J Neurosci Res 78:637–646

    Article  PubMed  CAS  Google Scholar 

  • Hueber SD, Lohmann I (2008) Shaping segments: Hox gene function in the genomic age. Bioessays 30:965–979

    Article  PubMed  CAS  Google Scholar 

  • Lagarde WH, Benjamin R, Heerens AT, Ye P, Cohen RI, Moats-Staats BM, D’Ercole AJ (2007) A non-transformed oligodendrocyte precursor cell line, OL-1, facilitates studies of insulin-like growth factor-I signaling during oligodendrocyte development. Int J Dev Neurosci 25:95–105

    Article  PubMed  CAS  Google Scholar 

  • Levine EM, Green ES (2004) Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin Cell Dev Biol 15:63–74

    Article  PubMed  CAS  Google Scholar 

  • Louis JC, Magal E, Muir D, Manthorpe M, Varon S (1992) CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res 31:193–204

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    Article  PubMed  CAS  Google Scholar 

  • Ludwin SK (1997) The pathobiology of the oligodendrocyte. J Neuropathol Exp Neurol 56:111–124

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Yang X, Takihara Y, Knoetgen H, Kessel M (2004) The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 427:749–753

    Article  PubMed  CAS  Google Scholar 

  • Maconochie M, Nonchev S, Morrison A, Krumlauf R (1996) Paralogous Hox genes: function and regulation. Annu Rev Genet 30:529–556

    Article  PubMed  CAS  Google Scholar 

  • Magli MC, Barba P, Celetti A, De Vita G, Cillo C, Boncinelli E (1991) Coordinate regulation of HOX genes in human hematopoietic cells. Proc Natl Acad Sci USA 88:6348–6352

    Article  PubMed  CAS  Google Scholar 

  • Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360:737–741

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Morrison A, Studer M, Pöpperl H, Krumlauf R (1996) Retinoids and Hox genes. FASEB J 10:969–978

    PubMed  CAS  Google Scholar 

  • Martinez-Ceballos E, Chambon P, Gudas LJ (2005) Differences in gene expression between wild-type and Hoxa1 knockout embryonic stem cells after retinoic acid treatment or leukemia inhibitory factor (LIF) removal. J Biol Chem 280:16484–16498

    Article  PubMed  CAS  Google Scholar 

  • Miskimins R, Srinivasan R, Marin-Husstege M, Miskimins WK, Casaccia-Bonnefil P (2002) p27Kip1 enhances myelin basic protein gene promoter activity. J Neurosci Res 67:100–105

    Article  PubMed  CAS  Google Scholar 

  • Narita Y, Rijli FM (2009) Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 88:139–167

    Article  PubMed  CAS  Google Scholar 

  • Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  PubMed  CAS  Google Scholar 

  • Nazarali A, Kim Y, Nirenberg M (1992) Hox-1.11 and Hox-4.9 homeobox genes. Proc Natl Acad Sci USA 89:2883–2887

    Article  PubMed  CAS  Google Scholar 

  • Nicolay DJ, Doucette JR, Nazarali AJ (2004a) Hoxb4 in oligodendrogenesis. Cell Mol Neurobiol 24:357–366

    Article  PubMed  CAS  Google Scholar 

  • Nicolay DJ, Doucette JR, Nazarali AJ (2004b) Early stages of oligodendrocyte development in the embryonic murine spinal cord proceed normally in the absence of Hoxa2. Glia 48:14–26

    Article  PubMed  Google Scholar 

  • Nicolay D, Doucette R, Nazarali A (2007) Transcriptional control of oligodendrogenesis. Glia 55:1287–1299

    Article  PubMed  Google Scholar 

  • Noll E, Miller RH (1994) Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord. Development 120:649–660

    PubMed  CAS  Google Scholar 

  • Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128:2723–2733

    PubMed  CAS  Google Scholar 

  • Quaranta MT, Petrini M, Tritarelli E, Samoggia P, Care A, Bottero L, Testa U, Peschle C (1996) HOXB cluster genes in activated natural killer lymphocytes: expression from 3′ → 5′ cluster side and proliferative function. J Immunol 157:2462–2469

    PubMed  CAS  Google Scholar 

  • Ranscht B, Clapshaw PA, Price J, Noble M, Seifert W (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci USA 79:2709–2713

    Article  PubMed  CAS  Google Scholar 

  • Remahl S, Hildebrand C (1990) Relation between axons and oligodendroglial cells during initial myelination I. The glial unit. J Neurocytol 19:313–328

    Article  PubMed  CAS  Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349

    Article  PubMed  CAS  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    PubMed  CAS  Google Scholar 

  • Rivers L, Young K, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson W (2008) PDGFαR/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  PubMed  CAS  Google Scholar 

  • Rumsby M, Suggitt F, Haynes L, Hughson E, Kidd D, McNulty S (1999) Substratum of pleiotrophin (HB-GAM) stimulates rat CG-4 line oligodendrocytes to adopt a bipolar morphology and disperse: primary O-2A progenitor glial cells disperse similarly on pleiotrophin. Glia 26:361–367

    Article  PubMed  CAS  Google Scholar 

  • Serpente P, Tümpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dollé P, Chambon P, Krumlauf R, Gould AP (2005) Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development 132:503–513

    Article  PubMed  CAS  Google Scholar 

  • Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83:311–327

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148

    Article  PubMed  CAS  Google Scholar 

  • Tan DP, Ferrante J, Nazarali A, Shao X, Kozak CA, Guo V, Nirenberg M (1992) Murine Hox-1.11 homeobox gene structure and expression. Proc Natl Acad Sci USA 89:6280–6284

    Article  PubMed  CAS  Google Scholar 

  • Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID (1994) Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci USA 91:11616–11620

    Article  PubMed  CAS  Google Scholar 

  • Tourbah A, Linnington C, Bachelin C, Avellana-Adalid V, Wekerle H, Baron-Van Evercooren A (1997) Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 50:853–861

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13:698–705

    Article  PubMed  CAS  Google Scholar 

  • Tümpel S, Wiedemann LM, Krumlauf R (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137

    Article  PubMed  Google Scholar 

  • Wang L, Mear JP, Kuan CY, Colbert MC (2005) Retinoic acid induces CDK inhibitors and growth arrest specific (Gas) genes in neural crest cells. Dev Growth Differ 47:119–130

    Article  PubMed  CAS  Google Scholar 

  • Wegner M, Stolt CC (2005) From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 28:583–588

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Miskimins WK, Miskimins R (2005) Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 280:16284–16294

    Article  PubMed  CAS  Google Scholar 

  • Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–278

    Article  PubMed  CAS  Google Scholar 

  • Ye P, Bagnell R, D’Ercole AJ (2003) Mouse NG2+oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2+cells. J Neurosci 23:4401–4405

    PubMed  CAS  Google Scholar 

  • Yue L, Daikoku T, Hou X, Li M, Wang H, Nojima H, Dey SK, Das SK (2005) Cyclin G1 and cyclin G2 are expressed in the periimplantation mouse uterus in a cell-specific and progesterone-dependent manner: evidence for aberrant regulation with Hoxa-10 deficiency. Endocrinology 146:2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Zhang SC (2001) Defining glial cells during CNS development. Nat Rev Neurosci 2:840–843

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this manuscript to Marshall Nirenberg, who is remembered for his pioneering work in deciphering the genetic code and in whose lab AJN first cloned the Hoxa2 (Hox1.11) gene. This work was supported by an operating grant from the Canadian Institutes of Health Research (CIHR) to AJN and JRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil J. Nazarali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Doucette, J.R. & Nazarali, A.J. Conditional Tet-Regulated Over-Expression of Hoxa2 in CG4 Cells Increases Their Proliferation and Delays Their Differentiation into Oligodendrocyte-like Cells Expressing Myelin Basic Protein. Cell Mol Neurobiol 31, 875–886 (2011). https://doi.org/10.1007/s10571-011-9685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9685-2

Keywords

Navigation