Skip to main content
Log in

Methanolysis of carboxymethyl cellulose: a comprehensive study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Two commercial carboxymethyl celluloses (CMC) with degree of substitution (DS) 0.75 and 0.77, respectively, have been submitted to exhaustive methanolysis until the amount of the insoluble residue did not further decrease. Dissolved and insoluble material were determined gravimetrically and further analyzed with respect to their substituent distribution in the glucosyl units by capillary electrophoresis, and by size exclusion chromatography. While the substitution of the soluble fraction was slightly above the average DS and in accordance with a random distribution (Spurlin), unsubstituted glucose was steadily enriched in the retained solid material (10 and 20 mol%), resulting in a final DS of 0.46 and 0.42, respectively. An “excess” of unsubstituted glucose is mainly responsible for the heterogeneity of this portion, since deviation from the Spurlin model could be minimized by reducing the molar fraction of glucosyl units. Estimation of the DS/DP-distribution profile of the insoluble residue from molar mass and substituent distribution data, and comparison with the profile of the original CMC (DS 0.75) showed that roughly only about half of the residue could be covered by sequences of the original CMC if random substitution is assumed. This indicates that there is a certain portion of unsubstituted domains in a low substituted heterogeneous part of the CMC. By this procedure, low or unsubstituted areas as a minor part of the CMC material can be concentrated and heterogeneity detected with higher sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adden R, Müller R, Brinkmalm G, Ehrler R, Mischnick P (2006a) Comprehensive analysis of the substituent distribution in hydroxyethyl celluloses by quantitative MALDI-ToF-MS. Macromol Biosci 6:435–444

    Article  CAS  PubMed  Google Scholar 

  • Adden R, Niedner W, Müller R, Mischnick P (2006b) Comprehensive analysis of the substituent distribution in the glucosyl Units and along the polymer chain of hydroxyethylmethyl celluloses and statistical evaluation. Anal Chem 78:1146–1157

    Article  CAS  PubMed  Google Scholar 

  • Adden R, Müller R, Mischnick P (2006c) Analysis of the substituent distribution in the glucosyl units and along the polymer chain of hydroxypropylmethyl celluloses and statistical evaluation. Cellulose 13:459

    Article  CAS  Google Scholar 

  • Arisz PW, Kauw HJJ, Boon JJ (1995) Substituent distribution along the cellulose backbone in O-methylcelluloses using GC and FAB-MS for monomer and oligomer analysis. Carbohydr Res 271:1–14

    Article  CAS  Google Scholar 

  • Baar A, Kulicke W-M, Szablikowski K, Kiesewetter R (1994) Nuclear magnetic resonance spectroscopic characterization of carboxymethylcellulose. Macromol Chem Phys 195:1483–1492

    Article  CAS  Google Scholar 

  • Bol M, Sakellaris CN, Jacob CR, Mischnick P (2017) Differences in the complexation of sodium with methyl esterified carboxymethyl/methoxyacetyl-O-glucans in electrospray ionization-mass spectrometry. Int J Mass Spectrom 419:20–28

    Article  CAS  Google Scholar 

  • Casaburi A, Montoya Rojo Ú, Cerrutti P, Vázquez A, Foresti ML (2018) Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocoll 75:147–156

    Article  CAS  Google Scholar 

  • Chambers RE, Clamp JR (1971) An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochem J 125:1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuers J, Unterieser I, Burchard W, Adden R, Rinken M, Mischnick P (2012) Simultaneous determination of substituent patterns in partially acid hydrolyzed O-Me/O-Me-d 3-cellulose and quantification of the obtained oligomers by HPLC-ESI-MS. Carbohydr Res 348:55–63

    Article  CAS  PubMed  Google Scholar 

  • Cuers J, Rinken M, Adden R, Mischnick P (2013) Critical investigation of the substituent distribution in the polymer chains of hydroxypropyl methylcelluloses by (LC-)ESI-MS. Anal Bioanal Chem 405:9021–9032

    Article  CAS  PubMed  Google Scholar 

  • Dogsa I, Tomšič M, Orehek J, Benigar E, Jamnik A, Stopar D (2014) Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering. Carbohydr Polym 111:492–504

    Article  CAS  PubMed  Google Scholar 

  • Enebro J, Momcilovic D, Siika-Aho M, Karlsson S (2007) A new approach for studying correlations between the chemical structure and the rheological properties in carboxymethyl cellulose. Biomacromol 8:3253–3257

    Article  CAS  Google Scholar 

  • Enebro J, Momcilovic D, Siika-Aho M, Karlsson S (2009a) Investigation of endoglucanase selectivity on carboxymethyl cellulose by mass spectrometric techniques. Cellulose 16:271–280

    Article  CAS  Google Scholar 

  • Enebro J, Momcilovic D, Siika-Aho M, Karlsson S (2009b) Liquid chromatography combined with mass spectrometry for the investigation of endoglucanase selectivity on carboxymethyl cellulose. Carbohydr Res 344:2173–2181

    Article  CAS  PubMed  Google Scholar 

  • Gelman RA (1982) Characterization of carboxymethylcellulose: distribution of substituent groups along the chain. J Appl Polym Sci 27:2957–2964

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Heinze T, Erler U, Nehls I, Klemm D (1994) Determination of the substituent pattern of heterogeneously and homogeneously synthesized carboxymethyl cellulose by using high-performance liquid chromatography. Angew Makromol Chem 215:93–106

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165

    Article  CAS  Google Scholar 

  • Ho FFL, Klosiewicz DW (1980) Proton nuclear magnetic resonance spectrometry for determination of substituents and their distribution in carboxymethylcellulose. Anal Chem 52:913–916

    Article  CAS  Google Scholar 

  • Hoogendam CW, de Keizer A, Cohen Stuart MA, Bijsterbosch BH, Smit JAM, van Dijk JAPP, van der Horst PM, Batelaan JG (1998) Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations. Macromolecules 31:6297–6309

    Article  CAS  Google Scholar 

  • Käuper P, Kulicke W-M, Horner S, Saake B, Puls J, Kunze J, Fink H-P, Heinze U, Heinze T, Klohr E-A, Thielking H, Koch W (1998) Development and evaluation of methods for determining the pattern of functionalization in sodium carboxymethylcelluloses. Angew Makromol Chem 260:53–63

    Article  Google Scholar 

  • Klemm D, Heinze T, Wagenknecht W (1996) Properties of regioselectively substituted anionic cellulose polyelectrolytes. Ber Bunsenges Phys Chem 100:730–733

    Article  CAS  Google Scholar 

  • Kono H, Oshima K, Hashimoto H, Shimizu Y, Tajima K (2016) NMR characterization of sodium carboxymethyl cellulose. Substituent distribution and mole fraction of monomers in the polymer chains. Carbohydr Polym 146:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kragten EA, Kamerling JP, Vliegenthart JFG (1992) Composition analysis of carboxymethylcellulose by high-pH anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 623:49–53

    Article  CAS  Google Scholar 

  • Lazik W, Heinze T, Pfeiffer K, Albrecht G, Mischnick P (2002) Starch derivatives of high degree of functionalization 6. Multi step carboxy-methylation. J Appl Polym Sci 86:743–752

    Article  CAS  Google Scholar 

  • Mischnick P, Kühn G (1996) Model studies on methyl amyloses: correlation between reaction conditions and primary structure. Carbohydr Res 290:199–207

    Article  CAS  Google Scholar 

  • Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210

    Article  CAS  PubMed  Google Scholar 

  • Mischnick P, Unterieser I, Voiges K, Cuers J, Rinken M, Adden R (2013) A new method for the analysis of the substitution pattern of hydroxyethyl(methyl)-celluloses along the polysaccharide chain. Macromol Chem Phys 214:1363–1374

    Article  CAS  Google Scholar 

  • Niemelä K, Sjöström E (1988) Identification of the products of hydrolysis of carboxymethylcellulose. Carbohydr Res 180:43–52

    Article  Google Scholar 

  • Pritchard DG, Todd CW (1977) Gas chromatography of methyl glycosides as their trimethylsilyl ethers. The methanolysis and Re-N-acetylation steps. J Chromatrogr 133:133–139

    Article  CAS  Google Scholar 

  • Ramos LA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267

    Article  CAS  Google Scholar 

  • Reuben J, Conner HT (1983) Analysis of the carbon-13 n.m.r. spectrum of hydrolyzed O-(carboxymethyl)cellulose. Monomer composition and substitution patterns. Carbohydr Res 115:1–13

    Article  CAS  Google Scholar 

  • Saake B, Horner S, Kruse T, Puls J, Liebert T, Heinze T (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201:1996–2002

    Article  CAS  Google Scholar 

  • Saake B, Horner S, Puls J, Heinze T, Koch W (2001) A new approach in the analysis of the substituent distribution of carboxymethyl celluloses. Cellulose 8:59–67

    Article  CAS  Google Scholar 

  • Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47:577–584

    Article  CAS  Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  • Shakun M, Heinze T, Radke W (2015) Characterization of sodium carboxymethyl cellulose by comprehensive two-dimensional liquid chromatography. Carbohydr Polym 130:77–86

    Article  CAS  PubMed  Google Scholar 

  • Spurlin HM (1939) Arrangement of substituents in cellulose derivatives. J Am Chem Soc 61:2222–2227

    Article  CAS  Google Scholar 

  • Tüting W, Albrecht G, Volkert B, Mischnick P (2004) Structure analysis of carboxymethyl starch by capillary electrophoresis and enzymic degradation. Starch/Stärke 56:315–321

    Article  CAS  Google Scholar 

  • Voiges K, Lämmerhardt N, Distelrath C, Mischnick P (2017a) Substituent effects on the kinetics of acid-catalyzed hydrolysis of methyl cellulose. Cellulose 24:555–569

    Article  CAS  Google Scholar 

  • Voiges K, Lämmerhardt N, Mischnick P (2017b) Kinetic studies of acid-catalyzed hydrolysis of mixed cellulose ethers. Cellulose 24:627–639

    Article  CAS  Google Scholar 

  • Wirick MG (1968) A study of the enzymic degradation of CMC and other cellulose ethers. J Polym Sci Polm Chem 6:1965–1974

    Article  CAS  Google Scholar 

  • Wüstenberg T (2015) Cellulose and cellulose derivatives in the food industry: fundamentals and applications, 1st edn. Wiley, Weinheim

    Google Scholar 

  • Zeller SG, Griesgraber GW, Gray GR (1991) Analysis of positions of substitution of O-carboxymethyl groups in partially O-carboxymethylated cellulose by the reductive-cleavage method. Carbohydr Res 211:41–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, Mi 398/16-1). We thank Franziska Steingaß for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Mischnick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol, M., Dobos, M.A., Lebioda, S. et al. Methanolysis of carboxymethyl cellulose: a comprehensive study. Cellulose 26, 383–397 (2019). https://doi.org/10.1007/s10570-018-2089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2089-4

Keywords

Navigation