Skip to main content
Log in

Transmission electron microscopy of cellulose. Part 1: historical perspective

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Following the first electron micrographs of cotton in 1940, the development of transmission electron microscopy applied to native cellulose has been evolving in a series of successive advances. At first, faced with the weak contrast of the early images, the operators had to use specific electron-dense contrasting agents to reveal the ultrastructure of their samples. It was thus found that all native celluloses consisted of microfibrils, with some size variations depending on the sample origin. Following this, a major advance was achieved when the electron microscopes could be adjusted with low electron doses, allowing the recording of diffraction diagrams from the electron beam-sensitive cellulose samples. Under these conditions, one could obtain information of cellulose itself and not, as before, of the contrasting agent. This important development applied to microdiffraction conditions revealed that some large cellulose microfibrils could yield spot diagrams typical of single crystals. Their recording led to a decisive progress for resolving the molecular and crystal structure of the two cellulose allomorphs, cellulose Iα and Iβ. Using various combinations of diffracted beams to create the images, the so called “diffraction contrast images” could then be developed. These micrographs showed many aspects of the crystalline core of cellulose, including spectacular high-resolution images showing the molecular planes of cellulose in their crystalline environment. Today, electron diffraction, diffraction contrast imaging and low-dose electron microscopy have become major tools to follow the effect of various physical, chemical and biochemical processes at the cellulose crystalline level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Throughout the text, the “microfibril” refers to the smallest fibrillar object that can be isolated from cellulosic tissues. Recently, it has often been renamed “nanofiber” or “nanofibril”.

  2. Throughout the text, the crystallographic indices are referred to the Iβ crystal structure of cellulose defined by Sugiyama et al. (1991a).

References

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  PubMed  Google Scholar 

  • Balashov V, Preston RD (1955) Fine structure of cellulose and other microfibrillar substances. Nature 176:64–65

    Article  CAS  Google Scholar 

  • Bittiger H, Husemann E, Kuppel A (1969) Electron microscope investigations of fibril formation. J Polym Sci Part C 28:45–56

    Article  Google Scholar 

  • Bourret A, Chanzy H, Lazaro R (1972) Crystallite features of Valonia cellulose by electron diffraction and dark field microscopy. Biopolymers 11:893–898

    Article  CAS  Google Scholar 

  • Buléon A, Chanzy H, Roche E (1976) Shish kebab-like structure of cellulose. Polym Lett 15:265–270

    Article  Google Scholar 

  • Chanzy HD (1975) Irradiation de la cellulose de Valonia au microscope à 1 MV. Bull BIST, CEA 207:55–57

    Google Scholar 

  • Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Industrial utilization, biotechnology and physico-chemical properties. Ellis Horwood Ltd, Chichester, pp 3–12

    Google Scholar 

  • Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288

    Article  CAS  Google Scholar 

  • Chanzy HD, Roche EJ (1976) Fibrous transformation of Valonia cellulose I into cellulose II. Appl Polym Symp 28:701–711

    CAS  Google Scholar 

  • Chanzy H, Imada K, Vuong R (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94:299–306

    Article  Google Scholar 

  • Chanzy H, Imada K, Mollard A, Vuong R, Barnoud F (1979) Crystallographic aspects of sub-elementary fibrils occurring in the wall of the rose cells cultures in vitro. Protoplasma 100:303–316

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vuong R (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I ⇄ IIII in Valonia. Holzforschung 40:25–30

    CAS  Google Scholar 

  • Dennis DT, Preston RD (1961) Constitution of cellulose microfibrils. Nature 191:667–668

    Article  CAS  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibrils: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  PubMed  Google Scholar 

  • Ding S-Y, Zhao S, Zeng Y (2014) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21:863–871

    Article  CAS  Google Scholar 

  • Eisenhut O, Kuhn E (1942) Lichtmikroskopische und übermikroskopische Untersuchungen an natürlichen und künstlichen Cellulosefasern. Angew Chem 55:198–206

    Article  CAS  Google Scholar 

  • Fengel D (1974) 10-Å-Fibrillen in cellulose. Naturwiss 61:31–32

    Article  CAS  Google Scholar 

  • Franke WW, Ermen B (1969) Negative staining of plant slime cellulose: an examination of the elementary fibril concept. Z Natusforsh 24b:918–922

    Article  Google Scholar 

  • Franke WW, Falk H (1968) Enzymatisch isolierte Cellulose-Fibrillen der Valonia-Zellwand. Z Naturforsch 23b:272–274

    Article  Google Scholar 

  • Franz E, Schiebold E, Weygand C (1943) Über den morphologischen Aufbau der Bakterienzellulose. Natuswissenschaften 31:350

    Article  CAS  Google Scholar 

  • Frey-Wyssling A (1937) Röntgenmetrische Vermessung der submikroskopischen Räume in Gerüstubstanzen. Protoplasma 27:372–411

    Article  CAS  Google Scholar 

  • Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80–82

    Article  CAS  PubMed  Google Scholar 

  • Frey-Wyssling A, Frey R (1950) Tunicin im Elektronenmikroscop. Protoplasma 39:656–660

    Article  Google Scholar 

  • Frey-Wyssling A, Mühlethaler K (1946) Submicroscopic structure of cellulose. J Polym Sci 1:172–174

    Article  CAS  Google Scholar 

  • Frey-Wyssling A, Mühlethaler K (1963) Die Elementarfibrillen der Cellulose. Makromol Chem 62:25–30

    Article  CAS  Google Scholar 

  • Frey-Wyssling A, Mühlethaler K, Wyckoff RWG (1948) Mikrofibrillenbau der pflanzlichen Zellwände. Experientia 4:475–476

    Article  Google Scholar 

  • Frey-Wyssling A, Mühlethaler K, Muggli R (1966) Elementarfibrillen als Grundbausteine der nativen Cellulose. Holz als Roh-und Werkstoff 24:443–444

    Article  CAS  Google Scholar 

  • Hamann A (1942) Das Vehalten von Zellulosefasern im Elektronenmikroskop. Kolloid-Z 100:248–254

    Article  CAS  Google Scholar 

  • Hanna RB, Côté WA Jr (1974) The sub-elementary fibril of plant cell wall cellulose. Cytobiologie 10:102–116

    Google Scholar 

  • Hebert JJ, Müller LL (1974) An electron diffraction study of the crystal structure of native cellulose. J Appl Polym Sci 18:3373–3377

    Article  CAS  Google Scholar 

  • Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998a) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50

    Article  CAS  PubMed  Google Scholar 

  • Helbert W, Sugiyama J, Kimura S, Itoh T (1998b) High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma 203:84–90

    Article  Google Scholar 

  • Hengstenberg J, Mark H (1928) Über Form und Grösse der Mizelle von Zellulose und Kautschuk. Z Kristallographie 69:271–284

    CAS  Google Scholar 

  • Herth W, Meyer Y (1977) Ultrastructural and chemical analysis of the wall fibrils synthesized by tobacco mesophyll protoplast. Biol Cell 30:33–40

    CAS  Google Scholar 

  • Herzog RO (1929) Zur Chemie und Physik der Kunsteide. Z Angew Chem 41:531–536

    Article  Google Scholar 

  • Herzog RO, Jancke W (1920) Röntgenspektrographische Beobachtungen an Zellulose. Z Phys 3:196–198

    Article  CAS  Google Scholar 

  • Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyn ANJ (1969) The elementary fibril and supermolecular structure of cellulose in soft wood fiber. J Ultrastruct Res 26:52–68

    Article  CAS  PubMed  Google Scholar 

  • Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810

    Article  CAS  Google Scholar 

  • Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151

    Article  CAS  Google Scholar 

  • Hock CW (1952) The fibrillate structure of natural cellulose. J Polym Sci 8:425–434

    Article  CAS  Google Scholar 

  • Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328

    Article  CAS  Google Scholar 

  • Husemann E, Carnap A (1943a) Übermikroskopische Untersuchungen an hydrolytisch abgebauten Fasern. Miteilung über makromolkulare Verbindungen.  J Makromol Chem 1:16–27

    CAS  Google Scholar 

  • Husemann E, Carnap A (1943b) Übermikroskopische Untersuchungen an gemahlenen Cellulosefasern. Miteilung über makromolekulare Verbindungen. J Makromol Chem 1:158–167

    Article  Google Scholar 

  • Husemann E, Keilich G (1969) Charakterisierung der Cellulose aus Quittenkernen. Cellul Chem Technol 3:445–453

    CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Imai T, Putaux J-L, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose. Polymer 44:1871–1879

    Article  CAS  Google Scholar 

  • Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils in Valonia macrophysa Kütz. Planta 160:372–381

    Article  CAS  PubMed  Google Scholar 

  • Kim N-H, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7:274–280

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Itoh T (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163

    Article  CAS  Google Scholar 

  • Kimura S, Itoh T (1997) Cellulose network of hemocoel in selected compound styleid ascidians. J Electron Microsc 46:327–335

    Article  CAS  Google Scholar 

  • Kimura S, Itoh T (2004) Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383

    Article  CAS  Google Scholar 

  • Kinsinger WG, Hock CW (1948) Electron microscopical studies of natural cellulose fibers. Ind Eng Chem 40:1711–1716

    Article  CAS  Google Scholar 

  • Knapek E (1982) Properties of organic specimens and their support at 4 K under irradiation in an electron microscope. Ultramicoscopy 10:71–86

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095

    Article  CAS  PubMed  Google Scholar 

  • Kuga S, Brown RM Jr (1987a) Lattice imaging of ramie cellulose. Polym Commun 28:311–314

    Article  CAS  Google Scholar 

  • Kuga S, Brown RM Jr (1987b) Practical aspects of lattice imaging of cellulose. J Electr Microsc Tech 6:349–356

    Article  Google Scholar 

  • Kuga S, Brown RM Jr (1989) Correlation between structure and the biogenic mechanisms of cellulose; new insights based on recent electron microscopic findings. In: Schuerch CS (ed) Cellulose and wood chemistry and technology. Wiley, New York, pp 677–688

    Google Scholar 

  • Lai-Kee-Him J, Chanzy H, Müller M, Putaux J-L, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939

    Article  CAS  PubMed  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri T (2003) The binding specificity and affinity determinant of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  CAS  PubMed  Google Scholar 

  • Macchi EM (1976) Supermolecular structure for cellulose I. An electron diffraction study on Valonia fibers. Appl Polym Symp 28:763–776

    CAS  Google Scholar 

  • Manley RStJ  (1964) Fine structure of native cellulose microfibrils. Nature 204:1155–1157

    Article  Google Scholar 

  • Manley RStJ  (1971) Molecular morphology of cellulose. J Polym Sci A-2 9:1025–1059

    Article  Google Scholar 

  • Mary M, Revol J-F, Goring DAI (1986) Mass loss of wood and its components during transmission electron microscopy. J Appl Polym Sci 31:957–963

    Article  CAS  Google Scholar 

  • Muggli R, Elias H-G, Mühlethaler K (1969) Zum Feinbau der Elementarfibrillen der Cellulose. Die Makromol Chem 121:290–294

    Article  CAS  Google Scholar 

  • Mühlethaler K (1949) Electron micrographs of plant fibers. Biochim Biophys Acta 3:15–25

    Article  Google Scholar 

  • Mühlethaler K (1950) The structure of plant slimes. Exp Cell Res 1:341–350

    Article  Google Scholar 

  • Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511

    Article  CAS  PubMed  Google Scholar 

  • Näslund P, Vuong R, Chanzy H, Jésior J-C (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417

    Article  Google Scholar 

  • Nishiyama J (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Ohad I, Danon D (1964) On the dimensions of cellulose microfibrils. J Cell Biol 22:302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohad I, Mejzler D (1965) On the ultrastructure of cellulose microfibrils. J Polym Sci A 3:399–406

    CAS  Google Scholar 

  • Paralikar KM, Betrabet SM (1977) Electron diffraction technique for the determination of cellulose crystallinity. J Appl Polym Sci 21:899–903

    Article  CAS  Google Scholar 

  • Paralikar KM, Betrabet SM, Bhat NV (1979) The crystal structure of cotton cellulose investigated by an electron diffraction technique. J Appl Cryst 12:589–591

    Article  CAS  Google Scholar 

  • Peterlin A, Ingram P (1970) Morphology of secondary wall fibrils in cotton. Text Res J 40:345–354

    Article  CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall Ltd., London

    Google Scholar 

  • Preston RD, Ripley GW (1954) Electron diffraction diagrams of cellulose microfibrils in Valonia. Nature 174:76–77

    Article  Google Scholar 

  • Preston RD, Nicolai E, Reed R, Millard A (1948) An electron microscope study of cellulose in the wall of Valonia ventricosa. Nature 162:665–667

    Article  CAS  PubMed  Google Scholar 

  • Rånby B (1952a) Physico-chemical investigations on animal cellulose (Tunicin). Arkiv for Kemi 4:241–248

    Google Scholar 

  • Rånby B (1952b) Physico-chemical investigations on bacterial cellulose. Arkiv for Kemi 4:249–255

    Google Scholar 

  • Rånby BG (1954) Über die Feinstruktur der nativen Cellulosefasern. Makromol Chemie 13:40–52

    Article  Google Scholar 

  • Rånby B, Ribi E (1950) Über den Feinbau der Zellulose. Experientia 6:12–14

    Article  PubMed  Google Scholar 

  • Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–124

    Article  CAS  Google Scholar 

  • Revol J-F (1985) Change of the d-spacing in cellulose crystals during lattice imaging. J Mat Sci Lett 4:1347–1349

    Article  CAS  Google Scholar 

  • Revol J-F, Goring DAI (1983) Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24:1547–1550

    Article  CAS  Google Scholar 

  • Revol J-F, Van Daele Y, Gaill F (1990) On the cross sectional shape of cellulose crystallites in the tunicate Halocynthia papillosa. In: Proceedings of the XIIth international congress of electron microscopy. San Francisco Press Inc., pp 566–567

  • Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206

    Article  CAS  Google Scholar 

  • Ruska H (1940) Über Strukturen von Zellulosefasern. Kolloid-Z 92:276–285

    Article  CAS  Google Scholar 

  • Ruska E (1944) Zur Enwicklung der Übermikroskopie und über ihre Beziehungen zur Kolloidsforschung. Kolloid-Z 107:2–16

    Article  CAS  Google Scholar 

  • Ruska E (1987) The development of the electron microscope and of electron microscopy. Rev Modern Phys 59:627–638

    Article  CAS  Google Scholar 

  • Ruska H, Kretschmer M (1940) Übermikroskopische Untersuchungen den Abbau von Zellulosefasern. Kolloid-Z 93:163–166

    Article  CAS  Google Scholar 

  • Sponsler OL (1925) X-ray diffraction patterns from plant fibers. J Gen Physiol 9:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985a) Lattice image from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985b) Observation of cellulose microfibrils in Valonia macrophysa by high resolution electron microscopy. Mokuzai Gakkaishi 31:61–67

    Google Scholar 

  • Sugiyama J, Harada H, Saiki H (1987) Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. Int J Biol Macromol 9:122–130

    Article  CAS  Google Scholar 

  • Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Sugiyama J, Chanzy H, Revol J-F (1994) On the polarity in the cell wall of Valonia. Planta 193:260–265

    Article  CAS  Google Scholar 

  • Svedberg T (1949) Cellulosans struktur och polymolekylaritet. Svensk Papperstidning 7:157–164

    Google Scholar 

  • Tsuji M, Roy SK, St. John Manley R (1985) Lattice imaging of radiation-sensitive polymer crystals. J Polym Sci Polym Phys Ed 23:1127–1137

    Article  CAS  Google Scholar 

  • Van Daele Y, Revol J-F, Gaill F, Goffinet G (1992) Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol Cell 76:87–96

    Article  Google Scholar 

  • von Borries B, Ruska E (1939) Ein Übermikroskop für Forschungsinstitute. Naturwiss 27:577–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ogawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, Y., Chanzy, H. & Putaux, JL. Transmission electron microscopy of cellulose. Part 1: historical perspective. Cellulose 26, 5–15 (2019). https://doi.org/10.1007/s10570-018-2076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2076-9

Keywords

Navigation