Skip to main content
Log in

Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol)

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hyperbranched poly(3-methyl-3-oxetanemethanol) (HBPO) was directly grafted from the surface of cellulose fibers (CF) through a surface hydroxyl group-initiated ring-opening polymerization of 3-methyl-3-oxetanemethanol (MOM). TOF–SIMS, XPS, AFM, ATR-FTIR, and TGA were utilized for characterizing the resultant HBPO-grafted cellulose fibers. The content of grafted HBPO is easily adjustable by controlling feeding dosage of the MOM. To verify the reactivity of hydroxyl groups in the grafted HBPO, poly(ε-caprolactone) (PCL) was further grafted from the HBPO-grafted cellulose surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527

    Article  CAS  Google Scholar 

  • Barsbay M, Guven G, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20):7140–7147

    Article  CAS  Google Scholar 

  • Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124(6):900–901

    Article  CAS  Google Scholar 

  • Carlmark A, Malmstrom EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interf Sci 301(1):205–209

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mat Chem 18(41):5002–5010

    Article  CAS  Google Scholar 

  • Hassan ML (2006) Preparation and thermal stability of new cellulose-based poly(propylene imine) and poly(amido amine) hyperbranched derivatives. J Appl Polym Sci 101(3):2079–2087

    Google Scholar 

  • Hassan ML, Moorefield CN, Newkome GR (2004) Regioselective dendritic functionalization of cellulose. Macromol Rapid Commun 25(24):1999–2002

    Article  CAS  Google Scholar 

  • Hassan ML, Moorefield CN, Kotta K, Newkome GR (2005) Regioselective combinatorial-type synthesis, characterization, and physical properties of dendronized cellulose. Polymer 46(21):8947–8955

    Article  CAS  Google Scholar 

  • Heinze T, Pohl M, Schaller J, Meister F (2007) Novel bulky esters of cellulose. Macromol Biosci 7(11):1225–1231

    Article  CAS  Google Scholar 

  • Heinze T, Schobitz M, Pohl M, Meister F (2008) Interactions of ionic liquids with polysaccharides. IV. Dendronization of 6-azido-6-deoxy cellulose. J Polym Sci Part a-Polym Chem 46(11):3853–3859

    Google Scholar 

  • Hou J, Yan DY (2002) Synthesis of a star-shaped copolymer with a hyperbranched poly(3-methyl-3-oxetanemethanol) core and tetrahydrofuran arms by one-pot copolymerization. Macromol Rapid Commun 23(8):456–459

    Article  CAS  Google Scholar 

  • Hwang SH, Moorefield CN, Wang PS, Jeong KU, Cheng SZD, Kotta KK, Newkome GR (2006) Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template. Chem Commun (33):3495–3497

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie-Int Edn 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Lindqvist J, Nystrom D, Ostmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmstrom E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9(8):2139–2145

    Article  CAS  Google Scholar 

  • Lonnberg H, Zhou Q, Brumer H, Teeri TT, Malmstrom E, Hult A (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185

    Article  Google Scholar 

  • Montañez MI, Hed Y, Utsel S, Ropponen J, Malmström E, Wågberg L, Hult A, Malkoch M (2011) Bifunctional dendronized cellulose surfaces as biosensors. Biomacromolecules 12(6):2114–2125

    Google Scholar 

  • Mori H, Böker A, Krausch G, Müller AHE (2001) Surface-grafted hyperbranched polymers via self-condensing atom transfer radical polymerization from silicon surfaces. Macromolecules 34(20):6871–6882

    Google Scholar 

  • Nystrom D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594–3596

    Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428

    Article  CAS  Google Scholar 

  • Pohl M, Michaelis N, Meister F, Heinze T (2009) Biofunctional surfaces based on dendronized cellulose. Biomacromolecules 10(2):382–389

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  • Van Royen P, Taranu A, Van Vaeck L (2005) Comparison of primary monoatomic with primary polyatomic ions for the characterisation of polyesters with static secondary ion mass spectrometry. Rapid Commun Mass Spectrom 19(4):552–560

    Article  Google Scholar 

  • Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973

    Article  CAS  Google Scholar 

  • Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2009) Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment. Adv Funct Mat 19(16):2615–2622

    Article  CAS  Google Scholar 

  • Westlund R, Carlmark A, Hult A, Malmstrom E, Saez IM (2007) Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Mat 3(7):866–871

    Article  CAS  Google Scholar 

  • Xu YY, Gao C, Kong H, Yan DY, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37(24):8846–8853

    Article  CAS  Google Scholar 

  • Yang Q, Wang L, Xiang WD, Zhou JF, Jiang GH (2007) Modification of carbon black through grafting multihydroxyl hyperbranched polyether onto its surface. J Appl Polym Sci 103(4):2086–2092

    Article  CAS  Google Scholar 

  • Zeng FW, Zimmerman SC (1997) Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 97(5):1681–1712

    Article  CAS  Google Scholar 

  • Zhang F, Chen YY, Lin H, Lu YH (2007) Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary. Colorat Technol 123(6):351–357

    Article  CAS  Google Scholar 

  • Zhang F, Zhang D, Chen Y, Lin H (2009) The antimicrobial activity of the cotton fabric grafted with an amino-terminated hyperbranched polymer. Cellulose 16(2):281–288

    Article  CAS  Google Scholar 

  • Zhou L, Gao C, Xu WJ (2009) Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phy 210(12):1011–1018

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by USDA McIntire-Stennis Fund (WIS01243). The authors thank Dr. Hoon Kim for collecting 2D HSQC NMR spectrum of HBPO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Pan, X., Huang, F. et al. Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol). Cellulose 18, 1611–1621 (2011). https://doi.org/10.1007/s10570-011-9587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9587-y

Keywords

Navigation