Skip to main content
Log in

Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res. 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W, (2000) Naphthalene degradation and incorporation of naphthalene derived carbon into biomass by the thermophile Bacillus thermoleovoransAppl. Environ. Microbiol. 66: 518–523

    Article  PubMed  CAS  Google Scholar 

  • Balashova NV, Kosheleva IA, Golovchenko NP, Boronin AM, (1999) Phenanthrene metabolism by Pseudomonas and Burkholderia strains Process Biochem. 35: 291–296

    Article  CAS  Google Scholar 

  • Balashova NV, Stolz A, Knackmuss H-J, Kosheleva IA, Naumov AV, Boronin AM, (2001) Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1 Biodegradation 12: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L, (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers Appl. Environ. Microbiol. 66: 1834–1843

    Article  PubMed  CAS  Google Scholar 

  • Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M, (2004) From PCBs to high toxic metabolites by the biphenyl pathway Environ. Microbiol. 6: 842–850

    Article  PubMed  CAS  Google Scholar 

  • Canada KA, Iwashita S, Shim H, Wood TK, (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethane degradation J. Bacteriol. 183: 344–349

    Article  CAS  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE, (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment FEMS Microbiol. Ecol. 41: 1–7

    Article  CAS  Google Scholar 

  • Eaton RW, Chapman PJ, (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study cleavage of 1,2-dihydroxynaphthalene and subsequent reactions J. Bacteriol. 174: 7542–7554

    PubMed  CAS  Google Scholar 

  • Gibson DT, Parales RE, (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology Curr. Opin. Biotechnol. 11: 236–243

    Article  PubMed  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H, (2005) Principles of microbial PAH-degradation in soil Environ. Pollut. 133: 71–84

    Article  PubMed  CAS  Google Scholar 

  • Johnson GR, Jain RK, Spain JC, (2000) Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: extradiol dioxygenase from the 2,4-dinitrotoluene pathwayArch. Microbiol. 173: 86–90

    Article  PubMed  CAS  Google Scholar 

  • Juhasz AL, Britz ML, Stanley GA, (1997) Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepaciaJ. Appl. Microbiol. 83: 189–198

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML, (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003 Lett. Appl. Microbiol. 30: 396–401

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Hwang SY, Kim YM, Kim E, Kim YS, Kim SK, Kim SW, Cerniglia CE, Shuttleworth KL, Zylstra GJ, (2003) Degradation of phenanthrene and naphthalene by a Burkholderia species strain Can. J. Microbiol. 49: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Keum YS, Seo JS, Li QX, (2005) Synthesis of bacterial metabolites of polycyclic aromatic hydrocarbons: Benzochromenones, o-carboxyvinylnaphthoates, and o-substituted aryl-α-oxobutenoates Synth. Commun. 35: 2685–2693

    Article  CAS  Google Scholar 

  • Keum YS, Seo JS, Hu Y & Li QX (2006 in press) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl. Microbiol. Biotechnol. (DOI 10.1007/s00253–005–0219-z)

  • Kim TJ, Lee EY, Kim YJ, Cho KS, Ryu HW, (2003) Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12 World J. Microbiol. Biotechnol. 19: 411–417

    Article  CAS  Google Scholar 

  • Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE, (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1 Appl. Microbiol. Biotechnol, 67: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y, (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylation dioxygenases J. Bacteriol. 185: 3828–3841

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, (1991) 16S/23S rRNA sequencing. In: Stackebrant E., Goodfellow M., (Ed) Nucleic Acid Techniques in Bacterial Systematics John Wiley & Sons, Chichester (pp 115–175)

    Google Scholar 

  • Marmur J, (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms J. Mol. Biol. 3: 208–218

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE, (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1 Appl. Environ. Microbiol. 67: 1476–1483

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Mesnick SM, Yu CL, Boyd DR, Sharma ND, Gibson DT, (2000) Regiospecificity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: Control by phenylalanine 352 in the α subunit J. Bacteriol. 182: 5495–5504

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T, (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2 FEMS Microbiol. Lett. 191: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Prabhu Y, Phale PS, (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation Appl. Microbiol. Biotechnol. 61: 342–351

    PubMed  CAS  Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK, (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol Appl. Microbiol. Biotechnol. 53: 98–107

    Article  PubMed  CAS  Google Scholar 

  • Stingley RL, Khan AA, Cerniglia CE, (2004) Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1 Biochem. Biophys. Res. Commun. 322: 133–146

    Article  PubMed  CAS  Google Scholar 

  • van Herwijnen R, van de Sande BF, van der Wielen FWM, Springael D, Govers HAJ, Parsons JR, (2003) Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB126 in chemostat cultures FEMS Microbiol Ecol 46: 105–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US-EPA award no. 989512-01-1 and USDA-TSTAR Grants 00-34135-9576, 2001-34135-11295, and 2002-34135-12724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing X. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, JS., Keum, YS., Hu, Y. et al. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18, 123–131 (2007). https://doi.org/10.1007/s10532-006-9048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9048-8

Keywords

Navigation