Skip to main content

Advertisement

Log in

Habitat quality of source patches and connectivity in fragmented landscapes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Armstrong DP (2005) Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv Biol 19:1402–1410

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landsc Ecol 14:493–507

    Article  Google Scholar 

  • Bender DJ, Tischendorf L, Fahrig L (2003) Using patch isolation metrics to predict animal movement in binary landscapes. Landsc Ecol 18:17–39

    Article  Google Scholar 

  • Birkenholz DE (1963) A study of the life history and ecology of the round-tailed muskrat (Neofiber alleni True) in north-central Florida. Ecol Monogr 33:255–280

    Article  Google Scholar 

  • Brooks CP, Antanovics J, Keitt TH (2008) Spatial and temporal heterogeneity explain disease dynamics in a spatially explicit network model. Am Nat 172:149–159

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 10:529–536

    Article  Google Scholar 

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18:561–573

    Article  Google Scholar 

  • Cosentino BJ, Schooley RL, Phillips CA (2010) Wetland hydrology, area, and isolation influence occupancy and spatial turnover of the painted turtle, Chrysemys picta. Landsc Ecol 25:1589–1600

    Article  Google Scholar 

  • Doak P (2000) Habitat patchiness and the distribution, abundance, and population dynamics of an insect herbivore. Ecology 81:1842–1857

    Article  Google Scholar 

  • Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106

    Article  PubMed  Google Scholar 

  • Facon B, David P (2006) Metapopulation dynamics and biological invasions: a spatially explicit model applied to a freshwater snail. Am Nat 168:769–783

    Article  PubMed  Google Scholar 

  • Fagan WF, Calabrese JM (2006) Quantifying connectivity: balancing metric performance with data requirements. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 297–317

    Chapter  Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716

    Article  Google Scholar 

  • Foppen RPB, Chardon JP, Liefveld W (2000) Understanding the role of sink patches in source-sink metapopulations: reed warbler in an agricultural landscape. Conserv Biol 14:1881–1892

    Article  Google Scholar 

  • Franken RJ, Hik DS (2004) Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas Ochotona collaris. J Anim Ecol 73:889–896

    Article  Google Scholar 

  • González-Varo JP, López-Bao JV, Guitián J (2008) Presence and abundance of the Eurasian nuthatch Sitta europaea in relation to size, isolation and the intensity of management of chestnut woodlands in the NW Iberian Peninsula. Landsc Ecol 23:78–89

    Article  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hanski I (1998) Connecting the parameters of local extinction and metapopulation dynamics. Oikos 83:390–396

    Article  Google Scholar 

  • Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219

    Article  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Metapopulation biology: past, present, and future. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, Amsterdam, pp 3–22

    Chapter  Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of migration and survival for individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Hokit DG, Stith BM, Branch LC (1999) Effects of landscape structure in Florida scrub: a population perspective. Ecol Appl 9:124–134

    Article  Google Scholar 

  • Hokit DG, Stith BM, Branch LC (2001) Comparison of two types of metapopulation models in real and artificial landscapes. Conserv Biol 15:1102–1113

    Article  Google Scholar 

  • Jaquiéry J, Guélat J, Broquet T, Berset-Brändli L, Pellegrini E, Moresi R, Hirzel AH, Perrin N (2008) Habitat-quality effects on metapopulation dynamics in greater white-toothed shrews, Crocidura russula. Ecology 89:2777–2785

    Article  PubMed  Google Scholar 

  • Johnson DM (2005) Metapopulation models: an empirical test of model assumptions and evaluation methods. Ecology 86:3088–3098

    Article  Google Scholar 

  • Johnson DM, Horvitz CC (2005) Estimating postnatal dispersal: tracking the unseen dispersers. Ecology 86:1185–1190

    Article  Google Scholar 

  • Kadoya T (2009) Assessing functional connectivity using empirical data. Popul Ecol 51:5–15

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kuussaari MI, Saccheri I, Camara M, Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82:384–392

    Article  Google Scholar 

  • Laaksonen M, Peuhu E, Várkonyi G, Siitonen J (2008) Effects of habitat quality and landscape structure on saproxylic species dwelling in boreal spruce-swamp forests. Oikos 117:1098–1110

    Article  Google Scholar 

  • Lefebvre LW, Tilmant JT (1992) Round-tailed muskrat (Neofiber alleni). In: Humphrey SR (ed) Rare and endangered biota of Florida. Volume I. Mammals. University Press of Florida, Gainesville, pp 276–286

    Google Scholar 

  • Lei G, Hanski I (1998) Spatial dynamics of two competing specialist parasitoids in a host metapopulation. J Anim Ecol 67:422–433

    Article  Google Scholar 

  • Lindenmayer DB, McCarthy MA, Pope ML (1999) Arboreal marsupial incidence in eucalypt patches in southeastern Australia: a test of Hanski’s incidence function metapopulation model for patch occupancy. Oikos 84:99–109

    Article  Google Scholar 

  • MacKenzie DI, Nichols LD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • Matter SF, Roslin T, Roland J (2005) Predicting immigration of two species in contrasting landscapes: effects of scale, patch size, and isolation. Oikos 111:359–367

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Menéndez R, Thomas CD (2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J Anim Ecol 69:935–951

    Article  Google Scholar 

  • Moilanen A (1999) Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology 80:1031–1043

    Article  Google Scholar 

  • Moilanen A (2000) The equilibrium assumption in estimating the parameters of metapopulation models. J Anim Ecol 69:143–153

    Article  Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat patch area and isolation, habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Moilanen A, Hanski I (2001) On the use of connectivity measures in spatial ecology. Oikos 95:147–151

    Article  Google Scholar 

  • Moilanen A, Hanski I (2006) Connectivity and metapopulation dynamics in highly fragmented landscapes. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 44–71

    Chapter  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Moilanen A, Smith AT, Hanski I (1998) Long-term dynamics in a metapopulation of the American pika. Am Nat 152:530–542

    Article  PubMed  CAS  Google Scholar 

  • Mortelliti A, Boitani L (2008) Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landsc Ecol 23:285–298

    Article  Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

    Article  PubMed  Google Scholar 

  • Nekola JC (1999) Paleorefugia and neorefugia: the influence of colonization history on community pattern and process. Ecology 80:2459–2473

    Article  Google Scholar 

  • Pellet J, Fleishman E, Dobkin DS, Gander A, Murphy DD (2007) An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biol Conserv 136:483–495

    Article  Google Scholar 

  • Price SJ, Marks DR, Howe RW, Hanowski JM, Niemi GJ (2005) The importance of spatial scale for conservation and assessment of anuran populations in coastal wetlands of the western Great Lakes, USA. Landsc Ecol 20:441–454

    Article  Google Scholar 

  • Prugh LR (2009) An evaluation of patch connectivity measures. Ecol Appl 19:1300–1310

    Article  PubMed  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775

    Article  PubMed  CAS  Google Scholar 

  • Rabasa SG, Gutiérrez D, Escudero A (2007) Metapopulation structure and habitat quality in modeling dispersal in the butterfly Iolana iolas. Oikos 116:793–806

    Article  Google Scholar 

  • Ranius T, Kindvall O (2006) Extinction risk of wood-living model species in forest landscapes as related to forest history and conservation strategy. Landsc Ecol 21:687–698

    Article  Google Scholar 

  • Renfrew RB, Ribic CA (2008) Multi-scale models of grassland passerine abundance in a fragmented system in Wisconsin. Landsc Ecol 23:181–193

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • SAS (2002) SAS for Windows, Version 9.0. SAS Institute Inc, Cary

    Google Scholar 

  • Schooley RL, Branch LC (2005) Survey techniques for determining occupancy of isolated wetlands by round-tailed muskrats. Southeast Nat 4:745–756

    Article  Google Scholar 

  • Schooley RL, Branch LC (2007) Spatial heterogeneity in habitat quality and cross-scale interactions in metapopulations. Ecosystems 10:846–853

    Article  Google Scholar 

  • Schooley RL, Branch LC (2009) Enhancing the area-isolation paradigm: habitat heterogeneity and metapopulation dynamics of a rare wetland mammal. Ecol Appl 19:1708–1722

    Article  PubMed  Google Scholar 

  • Schooley RL, Wiens JA (2005) Spatial ecology of cactus bugs: area constraints and patch connectivity. Ecology 86:1627–1639

    Article  Google Scholar 

  • Schtickzelle N, Wallis de Vries MF, Baguette M (2005) Using surrogate data in population viability analysis: the case of the critically endangered cranberry fritillary butterfly. Oikos 109:89–100

    Article  Google Scholar 

  • Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87:1057–1065

    Article  PubMed  Google Scholar 

  • Schultz CB, Crone EE (2005) Patch size and connectivity thresholds for butterfly habitat restoration. Conserv Biol 19:887–896

    Article  Google Scholar 

  • Snäll T, O’Hara RB, Ray C, Collinge SK (2008) Climate-driven spatial dynamics of plague among prairie dog colonies. Am Nat 171:238–248

    Article  PubMed  Google Scholar 

  • Steffan-Dewenter I, Schiele S (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats? Ecology 89:1375–1387

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thiele J, Schuckert U, Otte A (2008) Cultural landscapes of Germany are patch-corridor-matrix mosaics for an invasive megaforb. Landsc Ecol 23:453–465

    Article  Google Scholar 

  • Thomas CD (1994) Extinction, colonization, and metapopulations: environmental tracking by rare species. Conserv Biol 8:373–378

    Article  Google Scholar 

  • Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657

    Article  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2011) The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landsc Ecol 26:7–18

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Tischendorf L, Bender DJ, Fahrig L (2003) Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landsc Ecol 18:41–50

    Article  Google Scholar 

  • Tremlová K, Münzbergová Z (2007) Importance of species traits for species distributions in fragmented landscapes. Ecology 88:965–977

    Article  PubMed  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Urban MC, Phillips BC, Skelly DK, Shine R (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 171:E134–E138

    Article  PubMed  Google Scholar 

  • van Nouhuys S, Hanski I (1999) Host diet affects extinctions and colonizations in a parasitoid metapopulation. J Anim Ecol 68:1248–1258

    Article  Google Scholar 

  • Vellend M, Verheyen K, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Hermy M (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548

    Article  PubMed  Google Scholar 

  • Verbeylen G, De Bruyn L, Adriaensen F, Matthysen E (2003) Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc Ecol 18:791–805

    Article  Google Scholar 

  • Vergara PM, Marquet PA (2007) On the seasonal effect of landscape structure on a bird species: the thorn-tailed rayadito in a relict forest in northern Chile. Landsc Ecol 22:1059–1071

    Article  Google Scholar 

  • Verheyen K, Fastenaekels I, Vellend M, De Keersmaeker L, Hermy M (2006) Landscape factors and regional differences in recovery rates of herb layer richness in Flanders (Belgium). Landsc Ecol 21:1109–1118

    Article  Google Scholar 

  • Visconti P, Elkin C (2009) Using connectivity metrics in conservation planning—When does habitat quality matter? Divers Distrib 15:602–612

    Article  Google Scholar 

  • Winfree R, Dushoff J, Crone EE, Schultz CB, Budny RV, Williams NM, Kremen C (2005) Testing simple indices of habitat proximity. Am Nat 165:707–717

    Article  PubMed  Google Scholar 

  • With KA (2004) Metapopulation dynamics: perspectives from landscape ecology. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, Amsterdam, pp 23–44

    Chapter  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Cardiff, J. Christopoulos, R. Gilbreath, M. McDermott, A. Pries, L. Showen, M. Shumar, and C. Wolf for assistance with fieldwork. We also thank J. Bridges, P. Ebersbach, P. Margosian, S. Orzell, S. Penfield, and P. Walsh for facilitating our study at Avon Park Air Force Range. Our research on Neofiber was funded by a grant from the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Schooley.

Appendix

Appendix

See Table 3.

Table 3 Papers reviewed to examine how patch quality was treated in spatial ecology studies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schooley, R.L., Branch, L.C. Habitat quality of source patches and connectivity in fragmented landscapes. Biodivers Conserv 20, 1611–1623 (2011). https://doi.org/10.1007/s10531-011-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0049-5

Keywords

Navigation