Skip to main content

Advertisement

Log in

Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Acknowledgement

This work is supported by the Major Program of National Natural Science Foundation of China under Grant Numbers 61690210 and 61690213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zhang.

Appendices

Appendix 1

This appendix gives the calculation of gravity gradient tensors that take into account the \(J_{2}\) perturbation. The tensor is defined as

$$ {{\boldsymbol{G}}_{i}} = \frac{{\partial {{{\dot{\boldsymbol{v}}}}_{i}}}}{{\partial {\boldsymbol{r_{i}}}}} = \left [ { \textstyle\begin{array}{c@{\quad }c@{\quad }c} {{g_{11}}}&{{g_{12}}}&{{g_{13}}} \\ {{g_{21}}}&{{g_{22}}}&{{g_{23}}} \\ {{g_{31}}}&{{g_{32}}}&{{g_{33}}} \end{array}\displaystyle } \right ] . $$
(1)

Each element of the tensor is given as

$$ \begin{aligned} {g_{11}} &= \frac{{\mu 3\mu ( {4{x^{4}} - {y^{4}} + 3{y^{2}}{z ^{2}} + 4{z^{2}} + 3{x^{2}} ( {{y^{2}} - 9{z^{2}}} ) } ) {J_{2}}R_{e}^{2}}}{{2{r^{9}}}} \\ &\quad {} + \frac{{\mu ( {3{x^{2}} - {r^{2}}} ) }}{ {{r^{5}}}}, \\ {g_{12}} &= \frac{{3xy\mu ( {2{r^{4}} + 5 ( {{r^{2}} - 7{z ^{2}}} ) {J_{2}}R_{e}^{2}} ) }}{{2{r^{9}}}}, \\ {g_{13}} &= \frac{{3xz\mu ( {2{r^{4}} + 5 ( {3{r^{2}} - 7 {z^{2}}} ) {J_{2}}R_{e}^{2}} ) }}{{2{r^{9}}}}, \\ {g_{22}} &= - \frac{{3\mu ( {{x^{4}} - 4{y^{4}} + 27{y^{2}}{z^{2}} - 4{z^{4}} - 3 ( {{r^{2}} - {x^{2}}} ) } ) {J_{2}}R_{e} ^{2}}}{{2{r^{9}}}} \\ &\quad {} + \frac{{\mu ( {{r^{2}} - 3{y^{2}}} ) }}{ {{r^{5}}}}, \\ {g_{23}} &= \frac{{3yz\mu ( {2{r^{4}} + 5 ( {3{r^{2}} - 7 {z^{2}}} ) {J_{2}}R_{e}^{2}} ) }}{{2{r^{9}}}}, \\ {g_{33}} &= - \frac{{15\mu ( {3{x^{4}} + 3{y^{4}} - 24{y^{2}} {z^{2}} + 8{z^{4}} + 6{x^{2}} ( {{y^{2}} - 4{z^{2}}} ) } ) {J_{2}}R_{e}^{2}}}{{2{r^{9}}}} \\ &\quad {} - \frac{{\mu ( {{r^{2}} - 3{z^{2}}} ) }}{ {{r^{5}}}}, \\ {g_{21}} &= {g_{12}}, \\ {g_{31}} &= {g_{13}}, \\ {g_{32}} & = {g_{23}} . \end{aligned} $$
(2)

Appendix 2

$$\begin{aligned} {{\boldsymbol{Q}}_{k}} = \int _{{t_{k}}}^{{t_{k + 1}}} {\boldsymbol{\varPhi }} ( {{t_{k + 1}},\tau } ) {\boldsymbol{Q}} ( \tau ) {\boldsymbol{\varPhi }} { ( {{t_{k + 1}},\tau } ) ^{T}}d\tau = \int _{{t_{k}}}^{{t_{k + 1}}} {\left [ { \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {{\boldsymbol{\varPhi }}_{1rv}^{2}{q^{2}}}&{{{\boldsymbol{\varPhi }}_{1rv}}{{\boldsymbol{\varPhi }} _{1vv}}{q^{2}}}&{{{\boldsymbol{0}}_{3 \times 3}}}&{{{\boldsymbol{0}}_{3 \times 3}}} \\ {{{\boldsymbol{\varPhi }}_{1vv}}{{\boldsymbol{\varPhi }}_{1rv}}{q^{2}}}&{{\boldsymbol{\varPhi }}_{1vv} ^{2}{q^{2}}}&{{{\boldsymbol{0}}_{3 \times 3}}}&{{{\boldsymbol{0}}_{3 \times 3}}} \\ {{{\boldsymbol{0}}_{3 \times 3}}}&{{{\boldsymbol{0}}_{3 \times 3}}}&{{\boldsymbol{\varPhi }}_{2rv} ^{2}{q^{2}}}&{{{\boldsymbol{\varPhi }}_{2rv}}{{\boldsymbol{\varPhi }}_{2vv}}{q^{2}}} \\ {{{\boldsymbol{0}}_{3 \times 3}}}&{{{\boldsymbol{0}}_{3 \times 3}}}&{{{\boldsymbol{\varPhi }} _{2vv}}{{\boldsymbol{\varPhi }}_{2rv}}{q^{2}}}&{{\boldsymbol{\varPhi }}_{2vv}^{2}{q^{2}}} \end{array}\displaystyle } \right ] } d\tau . \end{aligned}$$
(3)

The integrations are computed as

$$\begin{aligned} &{ \int _{{t_{k}}}^{{t_{k + 1}}} {{\boldsymbol{\varPhi }}_{\mathit{irr}}^{2} ( {{t_{k + 1}}, \tau } ) {q^{2}} ( \tau ) } d\tau} \\ &{ \quad = {{\boldsymbol{I}}_{1 \times 3}}{{ \cdot {T^{3}}} /3} + ( {{{\boldsymbol{G}}_{i0}} + {{\boldsymbol{G}} _{i}}} ) {{{T^{5}}} /{30}}} \\ &{ \qquad {}+ { ( {{{\boldsymbol{G}}_{i0}} + {{\boldsymbol{G}}_{i}}} ) ^{2}}{{{T^{7}}} /{1008,}}} \end{aligned}$$
(4)
$$\begin{aligned} &{ \int _{{t_{k}}}^{{t_{k + 1}}} {{{\boldsymbol{\varPhi }}_{\mathit{irv}}} ( {{t_{k + 1}}, \tau } ) {{\boldsymbol{\varPhi }}_{\mathit{ivv}}} ( {{t_{k + 1}},\tau } ) {q^{2}} ( \tau ) } d\tau} \\ &{ \quad = {{\boldsymbol{I}}_{1 \times 3}}{{ \cdot {T^{2}}} / 2} + ( {3{{\boldsymbol{G}}_{i0}} + 5{{\boldsymbol{G}} _{i}}} ) {{{T^{4}}} /2}} \\ &{ \qquad {}+ ( {{{\boldsymbol{G}}_{i0}} + {{\boldsymbol{G}}_{i}}} ) ( {{{\boldsymbol{G}} _{i0}} + 2{{\boldsymbol{G}}_{i}}} ) {{T^{6}}} /432,} \end{aligned}$$
(5)
$$\begin{aligned} &{ \int _{{t_{k}}}^{{t_{k + 1}}} {{{\boldsymbol{\varPhi }}_{\mathit{ivv}}} ( {{t_{k + 1}}, \tau } ) {{\boldsymbol{\varPhi }}_{\mathit{irv}}} ( {{t_{k + 1}},\tau } ) {q^{2}} ( \tau ) } d\tau } \\ &{ \quad = {{\boldsymbol{I}}_{1 \times 3}}{{ \cdot {T^{2}}} /2} + ( {3{{\boldsymbol{G}}_{i0}} + 5{{\boldsymbol{G}} _{i}}} ) {{{T^{4}}} /2}} \\ &{ \qquad {} + ( {{{\boldsymbol{G}}_{i0}} + 2{{\boldsymbol{G}}_{i}}} ) ( {{{\boldsymbol{G}} _{i0}} + {{\boldsymbol{G}}_{i}}} ) {{{T^{6}}} / {432}},} \end{aligned}$$
(6)
$$\begin{aligned} &{ \int _{{t_{k}}}^{{t_{k + 1}}} {{\boldsymbol{\varPhi }}_{2vv}^{2} ( {{t_{k + 1}}, \tau } ) {q^{2}} ( \tau ) } d\tau } \\ &{ \quad = {{\boldsymbol{I}}_{1 \times 3}} \cdot T + 2 ( {{{\boldsymbol{G}}_{i0}} + 2{{\boldsymbol{G}}_{i}}} ) {{{T^{3}}} /{18}}} \\ &{ \qquad {} + { ( {{{\boldsymbol{G}}_{i0}} + 2{{\boldsymbol{G}}_{i}}} ) ^{2}}{{{T^{5}}} / {180.}}} \end{aligned}$$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Zhang, H. & Li, B. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft. Astrophys Space Sci 363, 76 (2018). https://doi.org/10.1007/s10509-018-3293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3293-2

Keywords

Navigation