Skip to main content
Log in

Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional (fractional-order) derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic (FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly. The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature (KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Time-dependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894 (2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FREDERICK, C. O. and ARMSTRONG, P. J. A mathematical representation of the multiaxial Bauschinger effect. Materials at High Temperatures, 24(1), 1–26 (1966)

    Article  Google Scholar 

  2. CHABOCHE, J. L., VAN DANG, K., and CORDIER, G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. The 5th International Conference on Structural Mechanics in Reactor Technology, IASMiRT, Berlin, 1–10 (1979)

    Google Scholar 

  3. CHABOCHE, J. L. and ROUSSELIER, G. On the plastic and viscoplastic constitutive equations, part I: rules developed with internal variable concept. Journal of Pressure Vessel Technology, 105(2), 153–164 (1983)

    Article  Google Scholar 

  4. CHABOCHE, J. L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5(3), 247–302 (1989)

    Article  MATH  Google Scholar 

  5. CHABOCHE, J. L. and NOUAILHAS, D. Constitutive modeling of ratchetting effects part I: experimental facts and properties of the classical models. Journal of Materials Science & Technology, 111(4), 384–392 (1989)

    Google Scholar 

  6. CHABOCHE, J. L. and NOUAILHAS, D. Constitutive modeling of ratchetting effects part II: possibilities of some additional kinematic rules. Journal of Materials Science & Technology, 111(4), 409–416 (1989)

    Google Scholar 

  7. CHABOCHE, J. L. On some modifications of kinematic hardening to improve the description of ratcheting effect. International Journal of Plasticity, 7(7), 661–678 (1991)

    Article  Google Scholar 

  8. OHNO, N. and WANG, J. D. Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratcheting behavior. International Journal of Plasticity, 9(3), 375–390 (1993)

    Article  MATH  Google Scholar 

  9. OHNO, N. and WANG, J. D. Kinematic hardening rules with critical state of dynamic recovery, part II: application to experiment of ratcheting behavior. International Journal of Plasticity, 9(3), 391–403 (1993)

    Article  Google Scholar 

  10. JIANG, Y. and SEHITOGLU, H. Modeling of cyclic ratcheting plasticity, part I: development of constitutive relations. Journal of Applied Mechanics, 63(3), 720–725 (1996)

    Article  MATH  Google Scholar 

  11. JIANG, Y. and SEHITOGLU, H. Modeling of cyclic ratcheting plasticity, part II: comparison of model simulations with experiments. Journal of Applied Mechanics, 63(3), 726–733 (1996)

    Article  Google Scholar 

  12. KANG, G. Z., OHNO, N., and NEBU, A. Constitutive modeling of strain range dependent cyclic hardening. International Journal of Plasticity, 19(10), 1801–1819 (2003)

    Article  MATH  Google Scholar 

  13. OHNO, N. and ABDEL-KARIM, M. Uniaxial ratcheting of 316FR steel at room temperature, part II: constitutive modeling and simulation. Journal of Engineering Materials and Technology, 122(1), 35–41 (2000)

    Article  Google Scholar 

  14. ABDEL-KARIM, M. and OHNO, N. Kinematic hardening model suitable for ratcheting with steady-state. International Journal of Plasticity, 16 (3-4), 225–240 (2000)

    Article  MATH  Google Scholar 

  15. KOBAYASHI, M. and OHNO, N. Implementation of cyclic plasticity models based on a general form of kinematic hardening. International Journal for Numerical Methods in Engineering, 53(9), 2217–2238 (2002)

    Article  MATH  Google Scholar 

  16. KANG, G. Z. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mechanics of Materials, 36(4), 299–312 (2004)

    Article  MathSciNet  Google Scholar 

  17. ABDEL-KARIM, M. An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratcheting. International Journal of Plasticity, 26(5), 711–730 (2010)

    Article  MATH  Google Scholar 

  18. GUO, S. J., KANG, G. Z., and ZHANG, J. Meso-mechanical constitutive model for ratcheting of particle-reinforced metal matrix composites. International Journal of Plasticity, 27(12), 1986–1915 (2011)

    Article  Google Scholar 

  19. WU, D. L., XUAN, F. Z., GUO, S. J., and ZHAO, P. Uniaxial mean stress relaxation of 9–12% Cr steel at high temperature: experiments and viscoplastic constitutive modeling. International Journal of Plasticity, 77, 156–173 (2016)

    Article  Google Scholar 

  20. CHABOCHE, J. L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24(10), 1642–1693 (2008)

    Article  MATH  Google Scholar 

  21. SIMO, J. C. and HUGHES, T. J. R. Computational Inelasticity, Springer-Verlag, New York, 113–122 (1998)

    MATH  Google Scholar 

  22. ROSSIKHIN, Y. A. and SHITIKOVA, M. V. Application of fractional calculus for dynamic problems of solid mechanis: novel trends and recent results. Applied Mechanics Reviews, 63(1), 010801 (2010)

    Article  Google Scholar 

  23. LUNDSTROM, B. N., HIGGS, M. H., SPAIN, W. J., and FAIRHALL, A. L. Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience, 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  24. YANG, S. P. and SHEN, Y. J. Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Solitons & Fractals, 40(4), 1808–1822 (2009)

    Article  Google Scholar 

  25. DU, M. L., WANG, Z. H., and HU, H. Y. Measuring memory with the order of fractional derivative. Scientific Reports, 3, 1–3 (2013)

    Google Scholar 

  26. NIU, J. C., SHEN, Y. J., YANG, S. P., and LI, S. J. Analysis of Duffing oscillator with time-delayed fractional-order PID controller. International Journal of Non-Linear Mechanics, 92, 66–75 (2017)

    Article  Google Scholar 

  27. SHEN, Y. J., YANG, S. P., XING, H. J., and MA, H. X. Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. International Journal of Non-Linear Mechanics, 47(9), 975–983 (2012)

    Article  Google Scholar 

  28. MAINARDI, F. Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 57–74 (2010)

    Book  MATH  Google Scholar 

  29. BAGLEY, R. L. and TORVIK, P. J. Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA Journal, 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  30. SUMELKA, W. Fractional viscoplasticity. Mechanics Research Communications, 56(2), 31–36 (2014)

    Article  MATH  Google Scholar 

  31. PERZYNA, P. The constitutive equations for rate sensitive plastic materials. Quarterly of Applied Mathematics, 20, 321–332 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. SUN, Y. F., INDRARATNA, B., CARTER, J. P., and MARCHANT, T. Application of fractional calculus in modeling ballast deformation under cyclic loading. Computers and Geotechnics, 82, 16–30 (2017)

    Article  Google Scholar 

  33. KRASNOBRIZHA, A., ROZYCKI, P., GORNET, L., and COSSON, P. Hysteresis behavior modeling of woven composite using a collaborative elastoplastic damage model with fractional derivatives. Composite Structures, 158, 101–111 (2016)

    Article  Google Scholar 

  34. KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Time-dependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894 (2006)

    Article  Google Scholar 

  35. CAPUTO, M. Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal Royal Astronomical Society, 13, 529–539 (1967)

    Article  Google Scholar 

  36. PODLUBNY, I. Fractional Differetial Equations, Academic Press, San Diego, 78–81 (1999)

    Google Scholar 

  37. MURA, T., NOVAKOVIC, A., and MESHII, M. A mathematical model of cyclic creep acceleration. Materials Science & Engineering, 17(2), 221–225 (1975)

    Article  Google Scholar 

  38. HU, J. N., CHEN, B., SMITH, D. J., FLEWITT, P. E. J., and COCKS, A. C. F. On the evaluation of the Bauschinger effect in an austenitic stainless steel—the role of multi-scale residual stresses. International Journal of Plasticity, 84, 203–223 (2016)

    Article  Google Scholar 

  39. ZHU, D., ZHANG, H., and LI, D. Y. Effects of nano-scale grain boundaries in Cu on its Bauschinger’s effect and response to cyclic deformation. Materials Science and Engineering A, 583, 140–150 (2013)

    Article  Google Scholar 

  40. MARINELLI, M. C., ALVAREZ-ARMAS, I., and KRUPP, U. Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel. Materials Science and Engineering A, 684, 254–260 (2017)

    Article  Google Scholar 

  41. KRIEG, R. D. and KRIEG, D. B. Accuracies of numerical solution methods for the elasticperfectly plastic model. Journal of Pressure Vessel Technology, 99(4), 510–515 (1977)

    Article  Google Scholar 

  42. HARTMANN, S. and HAUPT, P. Stress computation and consistent tangent operator using nonlinear kinematic hardening models. International Journal for Numerical Methods in Engineering, 36(22), 3801–3814 (1993)

    Article  MATH  Google Scholar 

  43. HARTMANN, S., LUHRS, G., and HAUPT, P. An efficient stress algorithm with applications in viscoplasticity and plasticity. International Journal for Numerical Methods in Engineering, 40(6), 991–1013 (1997)

    Article  MATH  Google Scholar 

  44. JIANG, Y. and KURATH, P. Characteristics of the Armstrong-Frederick type plasticity models. International Journal of Plasticity, 12(3), 387–415 (1996)

    Article  MATH  Google Scholar 

  45. KANG, G. Z., GAO, Q., and YANG, X. J. A visco-plastic constitutive model incorporate with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature. Mechanics of Materials, 34(2), 521–531 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopu Yang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11790282, U1534204, and 11472179) and the Natural Science Foundation of Hebei Province of China (No. A2016210099)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Yang, S., Wen, G. et al. Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors. Appl. Math. Mech.-Engl. Ed. 40, 49–62 (2019). https://doi.org/10.1007/s10483-019-2413-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2413-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation