Skip to main content
Log in

Adsorption and diffusion of Xenon in a granulated nano-NaY zeolite

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Henry’s law constant and crystal diffusivity of xenon in the granulated nano-NaY zeolite were measured by the pulse gas chromatography method. For this purpose the moments of response peaks of xenon were analyzed. The effect of extra column parts of the utilized chromatographic system was also considered by analyzing the moments of the response peak which was obtained by pulse injection of inert gas of helium into the carrier gas of nitrogen. In addition, the measurement of average velocity of the carrier gas regarding the pressure drop in the extra column parts of the system attributed to precise results. By carrying out the experiments at various temperatures in the range of 30–110 °C the heat of adsorption and activation energy of crystal diffusivity were estimated. In order to find the binder effect on the adsorption of and diffusion into granules, the aforementioned parameters were also measured for the binderless granules of macron sized NaY zeolite. Results revealed that although the adsorption of xenon on the binder of bentonite was negligible, the diffusion resistance created by this binder was significant such that the effective crystal diffusivity in the granules with 25 % binder was determined to be 96 percent lower than the granules with no binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

D AB :

Molecular diffusivity (m2/s)

D ax :

The axial dispersion coefficient (m2/s)

D p :

Diffusion coefficient in pores of granules (m2/s)

D μ :

The effective diffusivities (m2/s)

D μ0 :

Crystal diffusivity constant (m2/s)

E μ :

The activation energy of crystal diffusivity (kJ/mol)

K :

Dimensionless Henry’s law constant based upon the crystal volume

K 0 :

Adsorption constant

K m :

External mass transfer coefficient (m/s)

L :

Length of packed column (m)

Q 0 :

The heat of adsorption (kJ/mol)

R :

Radius of granules (m)

Re :

Reynolds number (ρV⋅2R)/μ

R μ :

Radius of zeolitic crystal (m)

Sc :

Schmidt number (μ/ρD AB)

Sh :

Sherwood number (K m 2R/D AB)

T :

Temperature (K)

V :

Superficial velocity (m/s) under non-isobaric conditions

ε b :

The bed porosity

ε p :

Granule porosity

μ :

Fluid viscosity (kg/m s)

μ 1 :

The first normalized moment (s)

\(\mu_{2}'\) :

The second central moment (s2)

ρ :

Density (kg/m3)

σ :

Standard deviation

τ :

Tortuosity factor

References

  • Armatas, G.S., Petrakis, D.E., Pomonis, P.J.: Estimation of diffusion parameters in functionalized silicas with modulated porosity. Part I. Chromatographic studies. J. Chromatogr. A 1074, 53–59 (2005)

    Article  CAS  Google Scholar 

  • Breck, D.W.: Zeolite Molecular Sieves. Wiley, New York (1974)

    Google Scholar 

  • Charkhi, A., Kazemeini, M., Ahmadi, S.J., Kazemian, H.: Granulation of nano-zeolites utilizing sodium alginate as an external template. In: 2nd International Iranin Zeolite Congress, Tehran, Iran (2010)

    Google Scholar 

  • Cejka, J., Bekkum, H.V., Corma, A., Schuth, F.: Introduction to Zeolite Science and Particle. Studies in Surface Science and Catalysis vol. 168. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Delmas, M.P.F., Ruthven, D.M.: Measurement of intracrystalline diffusion in NaX zeolite by capillary column gas chromatography. Microporous Mater. 3, 581–592 (1995)

    Article  CAS  Google Scholar 

  • Denayer, J.F.M., Baro, G.V.: Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY. Adsorption 3, 251–265 (1997)

    Article  CAS  Google Scholar 

  • Dıaz, E., Ordonez, S., Auroux, A.: Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography. J. Chromatogr. A 1095, 131–137 (2005)

    Article  Google Scholar 

  • Dıaz, E., Ordonez, S., Vega, A., Coca, J.: Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. J. Chromatogr. A 1049, 139–146 (2004)

    Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperical College Press, London (1998)

    Book  Google Scholar 

  • Giddings, J.C., Keller, R.A.: Dynamics of Chromatography. Part I. Principle and Theory. Dekker, New York (1965)

    Google Scholar 

  • Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.M.: Fundamentals of Preparative and Nonlinear Chromatography, 2nd edn. Elsevier, Netherlands (2006)

    Google Scholar 

  • Heink, W., Kaerger, J., Pfeifer, H., Stallmach, F.: Measurement of the intracrystalline self-diffusion of xenon in zeolites by the NMR pulsed field gradient technique. J. Am. Chem. Soc. 112, 2175–2178 (1990)

    Article  CAS  Google Scholar 

  • Inel, O., Topaloglu, D., Askın, A., Tümsek, F.: Evaluation of the thermodynamic parameters for the adsorption of some hydrocarbons on 4A and 13X zeolites by inverse gas chromatography. Chem. Eng. J. 88, 255–262 (2002)

    Article  CAS  Google Scholar 

  • Kang, Y., Shan, W., Wu, J., Zhang, Y., Wang, X., Yang, W., Tang, Y.: Uniform nano-zeolite microspheres with large secondary pore architecture. Chem. Mater. 18, 1861–1866 (2006)

    Article  CAS  Google Scholar 

  • Karger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids. Wiley, New York (1992)

    Google Scholar 

  • Mosell, T., Schrimpf, G., Brickmann, J.: Xenon diffusion in zeolite NaY:transition-state theory with dynamical corrections. J. Phys. Chem. 100, 4582–4590 (1996)

    Article  CAS  Google Scholar 

  • Perry, R.H., Green, D.W.: Perry’s Chemical Engineer’s Handbook. McGraw-Hill, New York (1999)

    Google Scholar 

  • Pfeifer, H., Freude, D., Kaerger, J.: Catalysis and Adsorption by Zeolites. Studies in Surface Science and Catalysis vol. 65. Elsevier, Amsterdam (1990)

    Google Scholar 

  • Schmidt-Traub, H.: Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents. Wiley-VCH, Mühlenbach (2005)

    Book  Google Scholar 

  • Tosheva, L., Valtchev, V., Sterte, J.: Silicalite-1 containing microspheres prepared using shape-directing macro-templates. Microporous Mesoporous Mater. 35–36, 621–629 (2000)

    Article  Google Scholar 

  • Valtchev, V., Mintova, S.: Layer-by-layer preparation of zeolite coating of nanosized crystals. Microporous Mesoporous Mater. 43, 41–49 (2001)

    Article  CAS  Google Scholar 

  • Zhang, J., Zhao, Z., Duan, A., Jiang, G., Liu, J., Zhang, D.: Chromatographic study on the adsorption and diffusion of light hydrocarbons in ZSM-5 and USY zeolites. Energy Fuels 23, 617–623 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemeini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charkhi, A., Kazemeini, M., Ahmadi, S.J. et al. Adsorption and diffusion of Xenon in a granulated nano-NaY zeolite. Adsorption 18, 75–86 (2012). https://doi.org/10.1007/s10450-012-9383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9383-5

Keywords

Navigation