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Abstract
The aimof thiswork is to introduce a thermo-electromagneticmodel for calculating the
temperature and the power dissipated in cylindrical pieces whose geometry varies with
time and undergoes large deformations; the motion will be a known data. The work
will be a first step towards building a complete thermo-electromagnetic-mechanical
model suitable for simulating electrically assisted forming processes, which is the
main motivation of the work. The electromagnetic model will be obtained from the
time-harmonic eddy current problemwith an in-plane current; the source will be given
in terms of currents or voltages defined at some parts of the boundary. Finite element
methods based on a Lagrangian weak formulation will be used for the numerical
solution. This approach will avoid the need to compute and remesh the thermo-
electromagnetic domain along the time. The numerical tools will be implemented
in FEniCS and validated by using a suitable test also solved in Eulerian coordinates.

Keywords Lagrangian methods · Eddy currents · Thermo-electromagnetic ·
Time dependent domain · Axisymmetric

Mathematics Subject Classification 65N30 · 65M22 · 35Q74 · 35Q60

1 Introduction

The aim of this work is to describe mathematical models and numerical tools to sim-
ulate the thermo-electromagetic behaviour of cylindrical ferromagnetic pieces whose
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Fig. 1 Enlarging the diameter at the end of a steel bar submitted to electric upsetting

geometry can vary over time. The study is motivated by a particular type of Elec-
trically Assisted Forming process for preforming cylindrical bars that undergo large
deformations in short time.

Electrically Assisted Forming (EAF) is a processing technique which applies elec-
tricity during the plastic deformation of materials. This technology has gained large
interest in the industry for manufacturing pieces in automotive or aeroplane sectors.
We are interested in one of these techniques, known as electric upsetting, which is
a preforming process able to create a local enlarged diameter at one end of a bar
to be later forged without further heating. In this process, a cold bar is placed in an
horizontal upsetter machine and clamped by gripper jaws. The electric current passes
through the bar by contact between one of its ends and the gripper jaws. The bar end
is heated up and it acquires a plastic behaviour. When it reaches enough temperature,
the bar is pushed against the anvil with the help of a force applied by a pusher located
at the opposite end and the diameter at the hot end is enlarged. Figure 1 shows the
evolution of the piece during the upsetting and Fig. 2 shows a simple sketch and the
main elements involved in the process.

Fig. 2 Sketch of the electric upsetting process
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Deformation and heating occur simultaneously and it is essential to control both
the electrical input signal and the upsetting force at the same time to achieve the
desired shape and quality [24]. The full simulation involves a thermo-electromagnetic-
mechanical model and the proposals in the literature [2, 24] are usually based on
a sequential multiphysics approach where the electromagnetic model is restricted
to a steady linear case due to the consideration of a direct current source. How-
ever, if the industrial process is powered by alternating current and the material
is ferromagnetic, a non-linear eddy current model is required. Our aim is to con-
struct a fully thermo-electromagnetic-mechanical model allowing the consideration
of eddy currents and non-linear magnetic materials. To achieve this goal, in this paper
we make a first step focusing on building a thermo-electromagnetic model which
assumes that the deformation is known. We will adopt a Lagrangian approach, which
avoids computing and remeshing the computational domain along time. Although
this approach is widely used in structural mechanics, it is more unusual in coupled
electromagnetic-mechanical systems with large deformations. We refer the reader
to [21] for a Lagrangian approach to medical EAF problems; see also in [25] a work
focused on electromagnetic forming which deals with a Lagrangian approach by using
a least-action variational principle. A detailed description of Maxwell’s equations in
material form can be found in [18] (see also [6]). It is worth mentioning that the
Lagrangian formalism has been exploited byBossavit to compute forces in deformable
bodies [10, 11]. On the other hand, the authors of the present paper have recently made
the first steps to consider the Lagrangian approach to solve thermo-electro-mechanical
problems by using a direct current source and assuming small deformations [16].

The thermo-electromagnetic problem that arises whenmodelling the electric upset-
ting process requires to solve an eddy current model to determine the power dissipated
at the different parts of the domain that are heated up and a transient heat transfermodel
to determine the temperature along the time. As mentioned earlier, in this paper we
will assume that the deformation is a data of the problem. The coupling between the
thermal and the electromagnetic problems is due to the temperature dependence of the
electromagnetic properties and to the heat source provided by the solution of the elec-
tromagnetic model. We will study the coupled model in an axisymmetric framework,
considering that the current source is usually given in terms of either the total current
at some electrical ports of the electro upsetter which are connected to a transformer,
or the potential drops between such ports. The eddy current model with this kind of
boundary conditions is referred to in the literature as the eddy current model with elec-
trical ports or with non-local boundary conditions and has been extensively studied
in 3D domains. A pioneering work is due to A. Bossavit [14] which was the starting
point for many authors who later studied the problem using different formulations
([1, 6]) often based on the ideas introduced by Bossavit [9, 12, 13, 15], consisting in
the use of different unknown fields in the eddy current model (electric field, magnetic
field or combining these with scalar potentials).

On the other hand, the axisymmetric eddy current model with electrical ports and
with an in-plane current has recently been studied from a mathematical and numerical
point of view in a linear framework [7]. An interesting feature of this model is that
it can be written in terms of the azimuthal component of the magnetic field and can
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be formulated in the conducting domain by defining suitable boundary conditions
without the need to consider the surrounding air. Now, with a time-dependent domain,
the Eulerian formulation of the eddy current model will be presented and then the
Lagrangian formulation will be derived using tools from continuum mechanics. To
attain this goal, the 3D formulation will be first established and then written in the
axisymetric case. In this paper, materials with non-linear and temperature-dependent
magnetic laws will also be considered.

The paper is structured as follows: Section2 introduces some notations and defi-
nitions concerning the motion of a continuum body, which are needed for the later
description of the Lagrangian approaches; this section also introduces the main tools
for describing the models in an axisymmetric setting. In Section3 we describe the
electromagnetic model for a bounded domain with cylindrical symmetry and elec-
trical ports, first in Eulerian coordinates and then in the reference configuration.
In Section4 we follow the same steps to introduce the thermal model. Finally, in
Section5 we describe the discretization tools used to solve the coupled problem and
present an academic test to validate the numerical tools; in particular, we solve the
thermo-electromagnetic model in a cylinder with a known displacement field that
emulates the real deformation of an electric upsetting process.

2 Preliminary tools and notation

Let � be a bounded domain in R
3 with Lipschitz boundary �. Let X : �̄ × R → R

3

be a motion in the sense of Gurtin [17]. In particular, X ∈ C3(�̄ × R) and, for each
fixed t ∈ R, X(·, t) is a one-to-one function satisfying

det F > 0, in �̄ × R, (1)

being F(:, t) = Grad X(:, t) the deformation gradient tensor. Notice that �̄(t) :=
X(�̄, t) is a closed region for all t . In practice, a bounded time interval is considered,
namely, [0, T ].

For a material point p ∈ �, its position at time t is given by x = X(p, t) and its
velocity in the material configuration is given by the time derivative of the motion,
that is Ẋ(p, t).

Let us introduce the trajectory of the motion

T := {(x, t) : x ∈ �̄(t), t ∈ [0, T ]}. (2)

We remark that fields defined in T (respectively, in �̄ × [0, T ]) are called spa-
tial fields (respectively, material fields). If φ is a spatial field we define its material
description φm by

φm(p, t) := φ(X(p, t), t). (3)

The spatial description of the velocity is v(x, t) = Ẋ(P(x, t), t), being P : T → �̄

the so-called referencemap of themotion, that is the inverse of the one-to-onemapping
X(:, t), defined by

p = P(x, t) ⇔ x = X(p, t). (4)
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Thus, p = P(x, t) is the position on the reference configuration of the point that
occupies the place x at time t .

By following the same ideas, we can define the material acceleration, Ẍ(p, t), and
the spatial description of the acceleration, a(x, t) = Ẍ(P(x, t), t).

Let us denote by u(p, t) the material displacement of point p at time t , namely,

u(p, t) = X(p, t) − p. (5)

Notice that the material description of the velocity, vm(p, t), and the material dis-
placement are related as

vm(p, t) = Ẋ(p, t) = u̇(p, t). (6)

On the other hand, for a smooth scalar spatial field φ(x, t), thematerial time deriva-
tive is given by

φ̇(x, t) = ∂φ

∂t
(x, t) + v(x, t) · gradφ(x, t). (7)

Table 1 collects the notation used for the Eulerian (spatial) and Lagrangian (mate-
rial) descriptions in the paper.

We will also need the following identities to transform integrals defined in the
Eulerian description to the Lagrangian one. Let φ(x, t) be a scalar spatial field and
ϑ(x, t) a spatial vector field. Then

∫
�(t)

φ(x, t)dAx =
∫

�

φm(p, t) det F(p, t)|F−t (p, t)np| dAp, (8)

∫
�(t)

φ(x, t)dVx =
∫

�

φm(p, t) det F(p, t) dVp, (9)

∫
�(t)

ϑ(x, t) · nxdAx =
∫

�

ϑm(p, t) · det F(p, t)F−t (p, t)np dAp, (10)

Table 1 Notation for the
Eulerian and Lagrangian
descriptions

Element Eulerian Lagrangian

Domain �(t) �

Domain boundary �(t) �

Normal unit vector nx np
Tangent unit vector τ x τp

Differential line element dlx dlp

Differential surface element dAx dAp

Differential volume element dVx dVp

Magnitude L(x, t) Lm (p, t)

Differential gradient operator grad Grad

Differential curl operator curl Curl
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where np (respect. nx) is an outward unit normal vector to the boundary of � at point
p (respect. to the boundary of �(t) at point x).

Next, we introduce some notation related to problems with cylindrical symmetry.
Let us assume that the reference domain � can be obtained by rotating a bounded
domain �̂, with boundary ∂�̂ = �̂D ∪ �̂, around the axis of symmetry:

� := {(rm, θm, zm) : θm ∈ [0, 2π), (rm, zm) ∈ �̂}, (11)

and
� := ∂� = {(rm, θm, zm) : θm ∈ [0, 2π), (rm, zm) ∈ �̂}. (12)

Notice that �̂D is defined by

�̂D := {(rm, zm) ∈ ∂�̂ : rm = 0}. (13)

Let us consider φm(p, t), a material scalar field, ϑm(p, t), a material vector field,
and �m(p, t), a material tensor field, all of them with cylindrical symmetry. Notice
that p is a point of the reference configuration � with radial and axial coordinates
given by p̂ := (rm, zm) ∈ �̂. Let us define

φ̂m (̂p, t) := φm(p, t), (14)

and ϑ̂m (̂p, t) and �̂m (̂p, t) defined by their coordinates in the basis {er , eθ , ez} as
follows

ϑ̂m (̂p, t) =

⎛
⎜⎜⎜⎜⎝

ϑ̂r (̂p, t)

0

ϑ̂z (̂p, t)

⎞
⎟⎟⎟⎟⎠ := ϑm(p, t), (15)

�̂m (̂p, t) =

⎛
⎜⎜⎜⎜⎝

	̂rr (̂p, t) 0 	̂r z (̂p, t)

0 	̂θθ (̂p, t) 0

	̂zr (̂p, t) 0 	̂zz (̂p, t)

⎞
⎟⎟⎟⎟⎠ := �m(p, t). (16)

Moreover, let us introduce the material tensor field ̂̂�m (̂p, t) defined by

̂̂�m (̂p, t) =
⎛
⎝ 	̂rr (̂p, t) 	̂r z (̂p, t)

	̂zr (̂p, t) 	̂zz (̂p, t)

⎞
⎠ . (17)

Notice that the previous relations can be defined in a similar way for spatial fields with
cylindrical symmetry.
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Therefore, if û(̂p, t) = ûr (̂p, t )̂er + ûz (̂p, t )̂ez is the displacement field associated
to point p̂ at time t , the position of p̂ in the current configuration (i.e., in the Eulerian
configuration) will be x̂ = (r , z) with components

r = rm + ûr (̂p, t), (18)

z = zm + ûz (̂p, t). (19)

For a problem with cylindrical symmetry, the deformation gradient tensor F(p, t)
has the form

F(p, t) = I3 + Grad u(p, t) := F̂(̂p, t)

=

⎛
⎜⎜⎜⎜⎜⎝

1 + ∂ ûr (̂p, t)

∂rm
0

∂ ûr (̂p, t)

∂zm

0 1 + ûr (̂p, t)

rm
0

∂ ûz (̂p, t)

∂rm
0 1 + ∂ ûz (̂p, t)

∂zm

⎞
⎟⎟⎟⎟⎟⎠

.

Let us introduce the material differential operator Ĝrad which applied to a scalar
material field with cylindrical symmetry φ̂m (̂p, t) is defined by

Ĝrad φ̂m (̂p, t) =

⎛
⎜⎜⎜⎝

∂φ̂m (̂p, t)

∂rm

∂φ̂m (̂p, t)

∂zm

⎞
⎟⎟⎟⎠ , (20)

and, applied to a vector field with cylindrical symmetry, ϑ̂m (̂p, t), provides

Ĝrad ϑ̂m (̂p, t) =

⎛
⎜⎜⎜⎝

∂ϑ̂r (̂p, t)

∂rm

∂ϑ̂r (̂p, t)

∂zm

∂ϑ̂z (̂p, t)

∂rm

∂ϑ̂z (̂p, t)

∂zm

⎞
⎟⎟⎟⎠ . (21)

In a similar way, it is possible to define the spatial operator ĝrad.
The definition (21) leads to the introduction of the tensor ̂̂F(̂p, t), defined by

̂̂F(̂p, t) = I2 + Ĝrad û(̂p, t) =

⎛
⎜⎜⎝
1 + ∂ ûr (̂p, t)

∂rm

∂ ûr (̂p, t)

∂zm

∂ ûz (̂p, t)

∂rm
1 + ∂ ûz (̂p, t)

∂zm

⎞
⎟⎟⎠ , (22)
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which verifies the relation

det F(p, t) =
(
1 + ûr (̂p, t)

rm

)
det ̂̂F(̂p, t). (23)

3 The electromagnetic model

In this section we describe the electromagnetic model which allows us to compute the
electromagnetic fields in a piece which is deformed during a time interval, assuming
that the deformation is known. The electrical source will be provided in terms of
voltages and currents through some parts of the boundary. In particular, this model
will be suitable for computing the electromagnetic fields in a cylindrical piece which
is deformed by using an electric upsetting machine operating with alternating current.
We will introduce, in a first step, a 3D model with electric ports to obtain later the
axisymmetric model with its corresponding Lagrangian formulation. An interesting
feature is that the cylindrical symmetry allows us to state the problem only in the
conducting part,whichwill be denoted by�(t), by using suitable boundary conditions.

3.1 The electromagnetic model in Eulerian coordinates

Let us assume that the motion is given and, consequently, �(t) is known during the
time interval [0, T ]. �(t) will be composed by the main conducting elements present
in the electric upsetting process: the cylindrical bar, the gripper jaws and the anvil (see
Fig. 3). Let us assume that �(t) is cylindrically symmetric, namely

�(t) := {
(r , θ, z) : θ ∈ [0, 2π), (r , z) ∈ �̂(t)

}
,

for some bounded subset �̂(t) ⊂ R
2. Let nx = n̂rer + n̂zez be the outward unit

normal vector to ∂�(t). We restrict our attention to a simply connected set �(t) that

Fig. 3 Sketch of the elements considered in the thermo-electromagnetic model: cylindrical 3D domain and
meridional section
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intersects the axis r = 0 in a set of positive one-dimensional measure, so that �̂(t) is
also simply connected.

Let us further assume that the physical properties are independent on θ and that the
current sources are such that the current density in the conducting part is of the form

J := Ĵrer + Ĵzez in �(t).

Under these assumptions it is possible to define an eddy current model restricted
to the conducting domain �(t) by using suitable boundary conditions. Firstly, we
notice that if the current source is alternating and the materials have a linear magnetic
behaviour, a time-harmonic approximation is often a suitable solution to avoid to
work with time-scales which can be very different for thermal and electromagnetic
phenomena; see, for instance, [4, 5]. However, even considering materials with a non-
linear magnetic behaviour, this time-harmonic approximation is sometimes used to
avoid long transient simulations which would be needed to reach a steady state in
a genuine transient electromagnetic model; we refer the reader to [22] for further
details in the complex representations of the ferromagnetic behaviour in non-linear
time-harmonic problems. In this work, we adopt a time-harmonic approximation and
consider the following eddy current model restricted to �(t):

iωB + curl E = 0 in �(t), (24a)

curl H = J in �(t), (24b)

divB = 0 in �(t), (24c)

B = μ̌(|H|,�)H, (24d)

J = σ̌ (�)E, (24e)

where B, H, E are the complex amplitudes associated to the magnetic induction, the
magnetic field and the electric field, respectively; ω is the angular frequency, i.e.,
ω = 2π f with f the electric current frequency; μ̌ is the magnetic permeability which
can be dependent on the temperature � and the modulus of the magnetic field |H|; σ̌
is the electrical conductivity, a function of temperature. Notice that μ̌ and σ̌ are given
data for all the formulations of the electromagnetic problem that will follow. We refer
the reader to the book by Bossavit [13] for a discussion of the range of parameters
for which the eddy current (or quasi-static) approximation is valid. This assumption is
usually reasonable for low frequencies, as it happens in the electric upsetting process.

In the case of a fixed domain, the complex amplitudes do not depend on time.
However, in the present case, since � changes with time, it is needed to consider the
time-dependence in all the complex fields.

Next, we follow similar arguments as those developed in [7] to describe the problem
in a bounded conducting domain under axisymmetric assumptions. Thus, by assuming
that none of the components of the fields depends on θ , we can look for a solution of
the previous equations satisfying

E(x, t) := Êr (̂x, t)er + Êz (̂x, t)ez in �(t),

H(x, t) := Ĥθ (̂x, t)eθ in �(t).
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Consequently, the following boundary condition can be imposed on the whole bound-
ary of the conducting domain:

μ̌H · nx = 0 on ∂�(t). (25)

This property will allow us to set boundary conditions on ∂�(t) that impose currents
and/or potential drops on electric ports. Indeed, let us assume that the boundary of
�(t) splits as follows:

∂�(t) := �N(t) ∪ �J(t) ∪ �E(t),

where �J(t) and �E(t) are the parts of the boundary connected to an electric source
with known potential drops or currents, while �N(t) is the isolated part, i.e., there is no
current flux through this boundary. In eddy current models with electric ports it is usual
to assume that currents enter and exit the domain perpendicularly and, consequently,
we will assume

E × nx = 0 on �J(t) ∪ �E(t), (26)

while the isolation condition means

J · nx = curl H · nx = 0 on �N(t). (27)

From condition (25) we can deduce that there exists a sufficiently smooth function
U(t) defined in �(t) up to a constant, such that U|∂�(t) is a surface potential of the
tangential component of E, namely, E × nx = − gradU × nx on ∂�(t). On the
other hand, (26) implies that U must be constant on each connected component of
�J(t) ∪ �E(t) to be called a port. We assume that the whole �E(t) is a port and denote
the ports of �J(t) as �k

J
(t), k being its number. We can assume that U = 0 on �E(t)

and then the complex number Uk := U|�k
J
(t) − U|�E (t) is the potential drop between

�k
J
(t) and �E(t); consequently, Uk := U|�k

J
(t).

According to the previous discussion, for each surface �k
J
(t), we will assume that

one of the following is known:

– potential drop (or voltage) Uk := U|�k
J
(t),

– current intensity through �k
J
(t), i.e.,

∫
�k
J
(t)

J · nx dAx =
∫

�k
J
(t)

curl H · nx dAx = Ik .
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To obtain a weak formulation of this problem, let us multiply the Faraday’s equa-
tion (24a) defined in �(t) by a smooth test vector field G such that curl G · nx = 0
on �N(t). From Ampère’s and Ohm’s laws and using a Green’s formula we obtain

0 =
∫

�(t)
iωB · Ḡ dVx +

∫
�(t)

curl E · Ḡ dVx

=
∫

�(t)
iωμ̌H · Ḡ dVx +

∫
�(t)

E · curl Ḡ dVx −
∫

∂�(t)
E × nx · Ḡ dAx

=
∫

�(t)
iωμ̌H ·Ḡ dVx+

∫
�(t)

1

σ̌
curl H ·curl Ḡ dVx+

∫
∂�(t)

Ḡ×gradU ·nx dAx,

and using the appropriate Green’s formulas

∫
�(t)

iωμ̌H · Ḡ dVx +
∫

�(t)

1

σ̌
curl H · curl Ḡ dVx = −

∫
�(t)

gradU · curl Ḡ dVx

= −
∫

∂�(t)
U curl Ḡ · nx dAx = −

∫
�J (t)

U curl Ḡ · nx dAx, (28)

where in the last equality we have used that U = 0 on �E(t) and curl G · nx = 0 on
�N(t).

We will distinguish between ports in �J(t) where we know the currents and those
where the voltages are given; more precisely, the set of N indices corresponding to
the connected components of �J(t) is divided into two disjoint subsets: {1, . . . , N } =
NI ∪ NV , where

– For k ∈ NV , voltage Vk(t) ∈ C is given.

Fig. 4 Sketch of the conducting parts in an upsettingmachine: 3D domain (above) and its meridional section
(below). In general, either current or voltage are imposed on �̂1

J
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– For k ∈ NI , current Ik(t) ∈ C is given.

Figure 4 shows the different parts of the boundary for a typical configuration of
an upsetting machine. The electric ports connected to the source are �1

J
on the lateral

surface of the gripper and �E at the bottom of the anvil.
Thus, the weak formulation of the electromagnetic problem can be written as fol-

lows:
Given the displacement vector field u(p, t), the temperature �(x, t), and complex

functions of time Ik(t) for k ∈ NI and Vk(t) for k ∈ NV , find complex fields H(x, t),
λ(x, t) defined on �N(t), and Vk(t) for k ∈ NI such that,

∫
�(t)

iωμ̌(|H|,�)H · G dVx +
∫

�(t)

1

σ̌ (�)
curlH · curlG dVx

+
∫

�N (t)
λcurlG · nxdAx +

∑
k∈NI

∫
�k
J
(t)

VkcurlG · nxdAx

= −
∑
k∈NV

∫
�k
J
(t)

VkcurlG · nxdAx ∀G,

∫
�k
J
(t)

curlH · nxdAx = Ik ∀k ∈ NI ,

∫
�N (t)

ηcurlH · nxdAx = 0 ∀η.

Function λ is defined on �N(t) and it is the Lagrange multiplier associated to the
constraint of null current flux through the isolated boundaries.

Remark 1 In order to highlight themixed nature of theweak formulation, the equations
for imposing the currents through �k

J
(t), k ∈ NI , could be equivalently written as

∑
k∈NI

∫
�k
J
(t)

WkcurlH · nxdAx =
∑
k∈NI

WkIk ∀Wk, k ∈ NI ,

where Wk ∈ C is the spatially constant test function associated to Vk , k ∈ NI . The
mixed formulation of the axisymmetric problem is actually the one implemented in the
code for numerical purposes, in an analogous way as it is done for Problem 4 in [7].
Notice that Vk , k ∈ NI , are the Lagrange multipliers associated to the constraints
imposing the currents in some electric ports.

Notice that, in general, for 3D domains it is not possible to restrict the model to
conducting domains. In that case, a useful approach consists in using a magnetic field
in the conducting parts and a scalar potential in the dielectric ones; see, for instance,
[15] for a reference work by using these unknowns, applied later to the case of electric
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ports as in the present work, both in harmonic and transient regime (see, respectively
[3, 8]).

Next, wewill rewrite thisweak formulation in cylindrical coordinates. Let us denote
by ∂�̂(t) the boundary of �̂(t)which can be decomposed as ∂�̂(t) := �̂D(t)∪�̂J(t)∪
�̂N(t) ∪ �̂E(t) where we recall that �̂D(t) is the part corresponding to the axis of
symmetry r = 0.

We consider a vector test function G(x, t) = Ĝθ (̂x, t)eθ . Notice that

curlG · nx = 1

r
ĝrad(r Ĝθ ) · τ̂ x = 1

r

∂(r Ĝθ )

∂ τ̂ x
. (29)

Let us assume that �̂J(t) has N connected components such that �̂J (t) :=
N⋃

k=1

�̂k
J
(t).

For k = 1, . . . , N , we have,

∫
�k
J
(t)

curl H · nx dAx = Ik = 2π
∫

�̂k
J
(t)

1

r

∂(r Ĥθ )

∂ τ̂ x
r d̂lx

= 2π
∫

�̂k
J
(t)

∂(r Ĥθ )

∂ τ̂ x
d̂lx.

It is useful to make the change of variable H̃θ := r Ĥθ and G̃θ := r Ĝθ . This leads
to the following weak formulation written in the meridional section �̂(t):

Given the displacement vector field û(̂p, t), the temperature �̂(̂x, t), and the
complex-valued functions Ik(t) for k ∈ NI and Vk(t) for k ∈ NV , find complex
fields H̃θ (̂x, t) being H̃θ = 0 on �̂D(t), λ(t) and Vk(t) for k ∈ NI , such that

∫
�̂(t)

iωμ̌(|H̃θ /r |, �̂)

r
H̃θ G̃θ drdz +

∫
�̂(t)

1

σ̌ (�̂)r

(∂ H̃θ

∂z

∂G̃θ

∂z
+ ∂ H̃θ

∂r

∂G̃θ

∂r

)
drdz

+
∫

�̂N (t)
λ

∂G̃θ

∂ τ̂ x
d̂lx +

∑
k∈NI

∫
�̂k
J
(t)

Vk
∂G̃θ

∂ τ̂ x
d̂lx

= −
∑
k∈NV

∫
�̂k
J
(t)

Vk
∂G̃θ

∂ τ̂ x
d̂lx ∀G̃θ with G̃θ = 0 on �̂D(t),

∫
�̂k
J
(t)

∂ H̃θ

∂ τ̂ x
d̂lx = Ik

2π
∀k ∈ NI ,

∫
�̂N (t)

η
∂ H̃θ

∂ τ̂ x
d̂lx = 0 ∀η.
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3.2 A Lagrangian approach to the eddy current model

From the weak formulation in Eulerian coordinates presented above, we will obtain a
weak formulation in Lagrangian coordinates. First, we will perform the computations
in the 3D case to later obtain the axisymmetric formulation.

First, notice that the curl operator for an Eulerian vector field, �(x, t), can be
written in Lagrangian coordinates as (see [20] for further details)

curl�(x, t) = 1

detF(p, t)
F(p, t)Curl

(
Ft (p, t)�m(p, t)

)∣∣∣∣
p=P(x,t)

, (30)

being �m the material description of the vector field �.
This property leads us to introduce a new field H(p, t) which is related to the

material description of the unknown H, Hm(p, t), as follows:

H(p, t) = Ft (p, t)Hm(p, t). (31)

In a similar way, a new function G(p, t) associated with the test functionG will be
introduced, satisfying a similar relation to (31).

By using (30) and (31) and identities (9)-(10), we obtain a 3D weak formulation
written in Lagrangian coordinates:

Given the displacement vector field u(p, t), the temperature �m(p, t), and the
complex-valued functions Ik(t) for k ∈ NI and Vk(t) for k ∈ NV , find complex fields
H(p, t), λ(t) and Vk(t) for k ∈ NI such that

∫
�

iωμ̌(|F−tH|,�m)F−tH · F−tGdetF dVp

+
∫

�

1

σ̌ (�m)detF
FCurlH · FCurlG dVp +

∫
�N

λCurlG · np dAp

+
∑
k∈NI

∫
�k
J

VkCurlG · np dAp = −
∑
k∈NV

∫
�k
J

VkCurlG · np dAp ∀G,

∫
�k
J

CurlH · npdAp = Ik ∀k ∈ NI ,

∫
�N

ηCurlH · np dAp = 0 ∀η.

By taking into account the cylindrical symmetry, as we did in the Eulerian case, we
consider

H(p, t) = Ĥθ (̂p, t)eθ in �,

G(p, t) = Ĝθ (̂p, t)eθ in �.
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Thus, by introducing the change of variable H̃θ = rmĤθ and G̃θ = rm Ĝθ , we
get the following relations which will be used to obtain the weak formulation in the
axisymmetric case:

F−t (p, t)H(p, t) · F−t (p, t)G(p, t) = 1

(rm + ûr (̂p, t))2
H̃θ (̂p, t)G̃θ (̂p, t),

F(p, t)CurlH(p, t) · F(p, t)CurlG(p, t) =
1

r2m

̂̂N(̂p, t) ĜradH̃θ (̂p, t) · ̂̂N(̂p, t) ĜradG̃θ (̂p, t),

being ̂̂N the tensor field

̂̂N(̂p, t) =

⎛
⎜⎜⎝

∂ ûr (̂p, t)

∂zm
−1 − ∂ ûr (̂p, t)

∂rm

1 + ∂ ûz (̂p, t)

∂zm
−∂ ûz (̂p, t)

∂rm

⎞
⎟⎟⎠ . (32)

Finally, by using (22), the Lagrangian weak formulation defined in the meridional
section �̂ reads as follows:

Given the displacement vector field û(̂p, t), the temperature �̂m (̂p, t),and complex-
valued functions Ik(t) for k ∈ NI and Vk(t) for k ∈ NV , find complex fields H̃θ (̂p, t),
with H̃θ = 0 on �̂D, λ(t) and Vk(t) for k ∈ NI such that

∫
�̂

iωμ̌(|H̃θ /(rm + ûr )|, �̂m)

rm + ûr
H̃θ G̃θ det

̂̂F drmdzm

+
∫

�̂

̂̂N ĜradH̃θ · ̂̂N ĜradG̃θ

σ̌ (�̂m) (rm + ûr ) det
̂̂F drmdzm +

∫
�̂N

λ
∂G̃θ

∂ τ̂p
d̂lp +

∑
k∈NI

∫
�̂k
J

Vk
∂G̃θ

∂ τ̂p
d̂lp

= −
∑
k∈NV

∫
�̂k
J

Vk
∂G̃θ

∂ τ̂p
d̂lp ∀G̃θ with G̃θ = 0 on �̂D ,

∫
�̂k
J

∂H̃θ

∂ τ̂p
d̂lp = Ik

2π
∀k ∈ NI ,

∫
�̂N

η
∂H̃θ

∂ τ̂p
d̂lp = 0 ∀η.

4 The thermal model

In this section we introduce the thermal model which allows us to compute the temper-
ature in ameridional section of the cylindrical domain�(t) due to the power dissipated
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by Joule effect in the electromagnetic model. We follow the same scheme as in the
electromagnetic case: first, we introduce the problem in 3D and Eulerian coordinates
to finally get the Lagrangian formulation in the axisymmetric setting.

4.1 The thermal model in Eulerian coordinates

Let us consider the same domain �(t) of the electromagnetic model. In this case,
the boundary �(t) is decomposed in a part �DT(t) where the temperature is known,
and a part �CR (t) where convection-radiation boundary conditions are imposed. Thus,
∂�(t) = �DT(t) ∪ �CR (t). The heat transfer problem in transient state and Eulerian
coordinates consists in finding a temperature field �(x, t) satisfying

ρčp(�)

(
∂�

∂t
+ v · grad�

)
− div(ǩ(�)grad�) = |J|2

2σ̌ (�)
in �(t), (33)

� = �DT on �DT(t), (34)

ǩ(�)
∂�

∂nx
= h(�C − �) + σSBε(�

4
R − �4) on �CR (t), (35)

�(:, 0) = �0 in �̄, (36)

where čp and ǩ are, respectively, the specific heat and the thermal conductivity as
functions of temperature; ρ is the mass density; h is the heat transfer coefficient;
σSB = 5.67× 10−8 Wm−2K−4 is the Stefan-Boltzmann constant; ε is the emissivity;
�C is the convection temperature, �R is the radiation temperature and�0 is the initial
temperature field. The source term is the Joule effect which is computed from the
electromagnetic solution and couples the thermal and the electromagnetic models.
Notice that σ̌ , ρ, čp, ǩ, h, σSB , ε, �C , �R , �DT and �0 are given data for all the weak
formulations concerning the thermal problem.

The weak formulation of this problem is standard:

Given the displacement vector field u(p, t), the temperature field at initial time,
�0(p), the temperature �DT(x, t) on �DT(t) and the modulus of the current density,
|J(x, t)|, find a scalar field �(x, t) such that �(x, t) = �DT(x, t) on �DT(t) and
�(:, 0) = �0 in �̄ satisfying

∫
�(t)

ρ čp(�)

(
∂�

∂t
+ v · grad�

)
ψ dVx +

∫
�(t)

ǩ(�) grad� · gradψ dVx

−
∫

�CR (t)

[
h(�C − �) + σSBε(�

4
R − �4)

]
ψ dAx

=
∫

�(t)

|J|2
2σ̌ (�)

ψ dVx ∀ψ null on �DT(t),

where the velocity vector field v(x, t) = u̇(P(x, t), t).
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Now, we assume that none of the fields depends on the azimuthal coordinate, and
consider the boundaries �̂D(t), �̂DT(t) and �̂CR (t), where �̂D(t) denotes the symmetry
axis as in the previous section; notice that the heat flux will be null through �̂D(t).

Thus, by using the notation in Section2 applied to the thermal problem, and intro-
ducing

v̂(̂x, t) = v̂r (̂x, t )̂er + v̂z (̂x, t )̂ez in �̂(t), (37)

we obtain its axisymmetric Eulerian weak formulation:
Given the displacement vector field û(̂p, t), the temperature field at initial time,

�̂0(̂p), the temperature �̂DT (̂x, t) on �̂DT(t) and the modulus of the current density,
|̂J(̂x, t)|, find a scalar field, �̂(̂x, t)with �̂(̂x, t) = �̂DT (̂x, t) on �̂DT(t) and �̂(:, 0) =
�̂0 in ¯̂� such that

∫
�̂(t)

ρ̂ čp(�̂)

(
∂�̂

∂t
+ v̂ · ĝrad�̂

)
ψ̂r drdz +

∫
�̂(t)

ǩ(�̂) ĝrad�̂ · ĝradψ̂r drdz

−
∫

�̂CR (t)

[
h(�̂C − �̂) + σSBε(�̂

4
R − �̂4)

]
ψ̂r d̂lx

=
∫

�̂(t)

|̂J|2
2σ̌ (�̂)

ψ̂r drdz ∀ψ̂ null on �̂DT(t),

where the velocity vector field v̂( x̂, t) = ˙̂u(P( x̂, t), t).

4.2 A Lagrangian approach to the thermal model

By using the relation:

gradφ(x, t) = F−t (p, t)Gradφm(p, t)
∣∣
p=P(x,t) , (38)

and the identities (7)-(9), we obtain the standard weak formulation of (33)-(36) in 3D
Lagrangian coordinates:

Given the displacement vector field u(p, t), the initial field temperature, �0(p),
the temperature�DT,m(p, t) on �DT and the modulus of the current density, |Jm(p, t)|,
find a scalar field �m(p, t) with �m(p, t) = �DT,m(p, t) on �DT and �m(:, 0) = �0
in �̄ such that

∫
�

ρ0 čp(�m)�̇mψm dVp +
∫

�

ǩ(�m)F−tGrad�m · F−tGradψm det F dVp

−
∫

�CR

[
h(�C − �m) + σSBε(�

4
R − �4

m)
]
ψm |F−tnp| det F dAp

=
∫

�

|Jm |2
2σ̌ (�m)

ψm det F dVp ∀ψm null on �DT .
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Notice that we have used the mass conservation principle which states

ρm(p, t) det F(p, t) = ρ0(p), (39)

being ρ0(p) the mass density in the reference configuration.

In the case of cylindrical symmetry, we use the notation given in Section2 to reach
the following axisymmetric Lagrangian weak formulation for the thermal model:

Given the displacement vector field û(̂p, t), the initial field temperature, �̂0(̂p), the
temperature �̂DT,m (̂p, t) on �̂DT and the modulus of the current density, |̂Jm (̂p, t)|,
find a scalar field, �̂m (̂p, t) with �̂m (̂p, t) = �̂DT,m (̂p, t) on �̂DT and �̂m(:, 0) = �̂0

in ¯̂� such that

∫
�̂

ρ̂0čp(�̂m)
˙̂
�mψ̂mrm drmdzm

+
∫

�̂

ǩ(�̂m)̂̂F−t
Ĝrad�̂m · ̂̂F−t

Ĝradψ̂m

(
1 + ûr

rm

)
det̂̂Frm drmdzm

−
∫

�̂CR

[
h(�̂C − �̂m) + σSBε(�̂

4
R − �̂4

m)
]
ψ̂m |̂̂F−t

n̂p|
(
1 + ûr

rm

)
det̂̂Frm d̂lp

=
∫

�̂

|̂Jm |2
2σ̌ (�̂m)

ψ̂m

(
1 + ûr

rm

)
det̂̂Frm drmdzm ∀ψ̂m null on �̂DT .

5 Numerical solution of the coupled problem

The electromagnetic and thermal axisymmetric problems in Lagrangian coordinates
have been discretized by using a time discretization and a finite element spatial dis-
cretization, and then implemented in Python-FEniCS [19]. For the time discretization
we have used an implicit Euler method. Concerning the spatial discretization, the tem-
perature and the electromagnetic variable H̃θ have been approximated by piecewise
linear elements, and the unknown λ by piecewise constant elements defined on the
edges of the boundary �̂N .

To solve the coupled thermo-electromagnetic problem, we have used a monolithic
scheme, i.e. a fully-coupled scheme inwhich the governing equations are solved simul-
taneously. Thus, at each time step, a non-linear problem involving the electromagnetic
and thermal unknowns is solved using a Newton–Raphson method.

The numerical procedure has been validated by solving a thermo-electromagnetic
test stated in a conducting cylinder of length L = 0.165m and radius R = 0.02875m
that is deformed by a given displacement field that tries to emulate a typical electric
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upsetting. Let us consider a displacement vector field with a zero axial component and
a radial component, ûr (rm, zm), given by

ûr (rm, zm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

103rm (−188.2593zm + 6.1464) z2m if zm ≤ 0.02,

rm

[
1.0793 exp

(
−

(
zm − 0.0293

0.03104

)2
)

+

− 18.4974 exp

(
−

(
zm + 0.03324

0.01705

)2
)

+

+1.0779 exp

(
−

(
zm − 0.4363

1.263

)2
)

− 1

]
if zm > 0.02.

An alternating current flows through the cylinder from top to bottom. The lateral
surface of the cylinder is isolated, that is, the current flux is null. The input current is
provided at the top of the cylinder, while the ground �E is at the bottom, i.e., NI = {1}
and NV = ∅. The amplitude of the current is equal to 35000A and the electrical
frequency is 500Hz, so the supplied current is I1 = 35000ei1000π t . The current enters
and exits normal to the electric ports as we stated in the model presented previously.

The electromagnetic and thermal physical properties are temperature-dependent
functions (with temperature � in ◦C) that are provided to the solver. These functions
are detailed below and have been obtained by fitting tables of data corresponding to a
typical steel. Figures 5a and b show each property vs. temperature.

More specifically, the expressions for σ̌ , ǩ and čp are the following:

σ̌ (�) = 1

−4.3306 × 10−13�2 + 1.0839 × 10−9� + 2.0170 × 10−7 ,

ǩ(�) = −2.7834 × 10−11�4 + 1.1045 × 10−7�3 − 1.3658 × 10−4�2+
+ 0.04639� + 34.0140,

čp(�) = 660.9 exp

(
−

(
� − 723.3

23.93

)2
)

+ 288.9 exp

(
−

(
� − 697.6

133.5

)2
)

+

+ 657.1 exp

(
−

(
� − 908.1

1497.0

)2
)

.

On the other hand, the magnetic permeability is a function of the temperature and
also of the magnetic field, and is given by amodified version of the so-called Fröhlich–
Kennelly model, described in [23]. More precisely, μ̌ in terms of the modulus of the
magnetic field |H| and the temperature � is given by

μ̌(|H|,�) = μ0 + f (�)

a + b|H| ,
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where μ0 = 4π × 10−7 Hm−1 is the vacuum permeability, b = 0.49T−1 and a =
2532.35T−1Am−1; f (�) is a temperature-dependent factor given by

f (�) =

⎧⎪⎪⎨
⎪⎪⎩

(
(�C + 273.15)2 − (� + 273.15)2

(�C + 273.15)2 − (�0 + 273.15)2

) 1
4

if � < �C ,

0 if � ≥ �C ,

where �C = 748.69 ◦C is the Curie temperature of the material and �0 = 23.5 ◦C
is the room temperature. The relationship between Hθ and Bθ is shown in Fig. 5a-left
for different values of temperature.

The mass density is constant and equal to ρm = 7799 kgm−3. Finally, the initial
temperature of the cylinder is equal to 20 ◦C and there is null convective and radiative
heat flux through the boundaries, so h = 0 and ε = 0.

To validate the code in Lagrangian coordinates, we also solved the problem in
Eulerian coordinates with a similar discretization and compared the results. The cou-
pled problem was solved during 20s of simulation and results are presented both
for a time when the temperature is below the Curie temperature and for a later time
when the Curie temperature has been reached in certain parts and the skin effect
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Fig. 5 Material properties
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Fig. 6 Modulus of the field H̃θ at t = 2 s: Eulerian approach (left) and Lagrangian approach (right)

has therefore been attenuated. Notice that all the following results concerning the
Lagrangian approach have been transferred from the reference configuration, where
this formulation is solved, by composition with P(x, t) and are shown in the deformed
configuration.

Figures 6 and 7 show the modulus of the field H̃θ in Eulerian and Lagrangian
approaches after 2 and 20s, respectively.

Fig. 7 Modulus of the field H̃θ at t = 20 s: Eulerian approach (left) and Lagrangian approach (right)
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Fig. 8 Current density at t = 2 s: Eulerian approach (left) and Lagrangian approach (right)

On the other hand, the modulus of the electrical current density at different times
is shown in Figs. 8 and 9.

The comparison of the voltage between the electric ports (top and bottom of the
cylinder) is presented in Fig. 10.

Fig. 9 Current density at t = 20 s: Eulerian approach (left) and Lagrangian approach (right)
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Fig. 10 Comparison of potential drop between the electric ports vs. time

Finally, concerning the thermal part, the temperature field at different times is
presented in Figs. 11 and 12.

Note that there is a good agreement between the results in Eulerian and Lagrangian
coordinates.

Fig. 11 Temperature field at t = 2 s: Eulerian approach (left) and Lagrangian approach (right)
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Fig. 12 Temperature field at t = 20 s: Eulerian approach (left) and Lagrangian approach (right)

6 Conclusions

A thermo-electromagnetic model for calculating the dissipated power and the tem-
perature in cylindrical pieces undergoing large deformations has been introduced. A
fully coupled problem is addressed, where a time-harmonic eddy current model with
in-plane currents and electric ports is considered for the electromagnetic part, and a
heat transfer transient model is used to describe the thermal part. Both models are
approached from a Lagrangian point of view, with appropriate weak formulations
that are later implemented in Python-FEniCS based on finite element methods. This
approach is validated through numerical simulation by performing a suitable test also
solved in Eulerian coordinates.

The forthcoming work, now in progress, is to couple the thermo-electromagnetic
model to a non-linear mechanical model, which will allow us to consider large defor-
mations and calculate the displacement field at each time step. This model will provide
a powerful tool to simulate processes such as electric upsetting with an alternating
source for cylindrical pieces. The methodology can be extended to deal with other
forming processes involving large deformations, such as electromagnetic forming.

Acknowledgements Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature.

Financial disclosure Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature. The research has been developed in collaboration with CIE Galfor through a project granted by
the Centre for the Development of Industrial Technology (CDTI) and signed between the company CIE
Galfor and Itmati (nowadays, integrated in CITMAga). This work has been partially supported by FEDER,
Ministerio de Economía, Industria y Competitividad-AEI research project PID2021-122625OBI00 and by
Xunta de Galicia (Spain) research project GRC GI-1563 ED431C 2021/15.

123



Lagrangian approach to a thermo-electromagnetic problem Page 25 of 26    45 

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alonso-Rodríguez, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory. Algo-
rithms and Applications. Springer, Milan (2010)

2. Alves, J., Acevedo, S., Marie, S., Adams, B., Mocellin, K., Bay, F.: Numerical modeling of electrical
upsetting manufacturing processes based on Forge® environment. AIP Conf. Proc. 1896, 120003
(2017). https://doi.org/10.1063/1.5008141

3. Bermúdez, A., Rodríguez, R., Salgado, P.: Numerical solution of eddy current problems in bounded
domains using realistic boundary conditions. Comput. Methods Appl. Mech. Eng. 194(2), 411–426
(2005)

4. Bermúdez, A., Bullón, J., Pena, F., Salgado, P.: A numerical method for transient simulation of metal-
lurgical compound electrodes. Finite Elem.Anal. Des. 39, 283–299 (2003). https://api.semanticscholar.
org/CorpusID:121553921

5. Bermúdez, A., Gómez, D., Muñiz, M.C., Salgado, P.: Transient numerical simulation of a thermoelec-
trical problem in cylindrical induction heating furnaces. Adv. Comput. Math. 26(1–3), 39–62 (2007).
https://doi.org/10.1007/s10444-005-7470-9

6. Bermúdez, A., Gómez, D., Salgado, P.: Mathematical Models and Numerical Simulation in Electro-
magnetism,UNITEXT, vol. 74. Springer,NewYork (2014). https://doi.org/10.1007/978-3-319-02949-
8

7. Bermúdez, A., López-Rodríguez, B., Pena, F.J., Rodríguez, R., Salgado, P., Venegas, P.: Numerical
solution of an axisymmetric eddy current model with current and voltage excitations. J. Sci. Comput.
91(1), Paper No. 8, 26 (2022). https://doi.org/10.1007/s10915-022-01780-4

8. Bermúdez, A., López-Rodríguez, B., Rodríguez, R., Salgado, P.: Numerical solution of transient eddy
current problems with input current intensities as boundary data. IMA J. Numer. Anal. 32(3), 1001–
1029 (2012). https://doi.org/10.1093/imanum/drr028

9. Bossavit, A.: Two dual formulations of the 3D eddy currents problem. COMPEL - Int. J. Comput.
Math. Electr. Electron. Eng. 4, 103–116 (1985)

10. Bossavit, A.: Forces in magnetostatics and their computation. J. Appl. Phys. 67(9), 5812–5814 (1990).
https://doi.org/10.1063/1.345972

11. Bossavit, A.: Differential forms and the computation of fields and forces in Electromagnetism. Eur. J.
Mech. B Fluids 10, 474–488 (1991). https://api.semanticscholar.org/CorpusID:123083223

12. Bossavit, A.: On “Hybrid” Electric-MagneticMethods, pp. 237–240. Springer US, Boston,MA (1995).
https://doi.org/10.1007/978-1-4615-1961-4_54

13. Bossavit,A.:Computational Electromagnetism.Variational Formulations,Complementarity, EdgeEle-
ments. Variational Formulations, Complementarity, Edge Elements. Academic Press Inc., San Diego,
CA, (1998)

14. Bossavit, A.: Most general “non-local” boundary conditions for the Maxwell equation in a bounded
region. COMPEL - Int J Comput Math Electr Electron Eng 19, (2000)

15. Bossavit, A., Verite, J.: The “TRIFOU” Code: solving the 3-D eddy-currents problem by using H
as state variable. IEEE Trans. Magn. 19(6), 2465–2470 (1983). https://doi.org/10.1109/TMAG.1983.
1062817

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5008141
https://api.semanticscholar.org/CorpusID:121553921
https://api.semanticscholar.org/CorpusID:121553921
https://doi.org/10.1007/s10444-005-7470-9
https://doi.org/10.1007/978-3-319-02949-8
https://doi.org/10.1007/978-3-319-02949-8
https://doi.org/10.1007/s10915-022-01780-4
https://doi.org/10.1093/imanum/drr028
https://doi.org/10.1063/1.345972
https://api.semanticscholar.org/CorpusID:123083223
https://doi.org/10.1007/978-1-4615-1961-4_54
https://doi.org/10.1109/TMAG.1983.1062817
https://doi.org/10.1109/TMAG.1983.1062817


   45 Page 26 of 26 M. Benítez et al.

16. Fontán, P.:Mathematical analysis and numerical simulationwith pure Lagrangian and semi-Lagrangian
methods of problems in continuum mechanics. Ph.D. thesis (2021)

17. Gurtin, M.E.: An introduction to continuum mechanics, vol. 158. Academic Press, San Diego (2003)
18. Lax, M., Nelson, D.F.: Maxwell equations in material form. Phys. Rev. B. 13(4), 1777–1784 (1976).

https://doi.org/10.1103/PhysRevB.13.1777
19. Logg, A.,Mardal, K.A.,Wells, G. N.: Automated solution of differential equations by the finite element

method. TheFEniCSbook,LectureNotes inComputational Science andEngineering, vol. 84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8

20. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scien-
tific Computation. Oxford University Press, New York (2003). https://doi.org/10.1093/acprof:oso/
9780198508885.001.0001

21. Niyonzima, I., Jiao, Y., Fish, J.: Modeling and simulation of nonlinear electro-thermo-mechanical
continua with application to shapememory polymeric medical devices. Comput.Methods Appl. Mech.
Eng 350, 511–534 (2019). https://doi.org/10.1016/j.cma.2019.03.003

22. Paoli, G., Biro, O., Buchgraber, G: Complex representation in nonlinear time harmonic Eddy current
problems. In: Proceedingof the 11thCOMPUMAGConference on theComputation ofElectromagnetic
Fields. pp. 647–648, COMPUMAG, Rio de Janeiro (1997)

23. Petzold, T.: Modelling, Analysis and Simulation of Multifrequency Induction Hardening. Ph.D. thesis
(2014). https://doi.org/10.14279/depositonce-4118

24. Quan, Guo-Zheng., Zou, Zhen-Yu., Zhang, Zhi-Hua., Pan, Jia: A study on formation process of sec-
ondary upsetting defect in electric upsetting and optimization of processing parameters based on
multi-field coupling FEM. Mater. Res. 19, 856–864 (2016)

25. Thomas, J., Triantafyllidis, N.: On electromagnetic forming processes in finitely strained solids: theory
and examples. J. Mech. Phys. Solids 57(8), 1391–1416 (2009). https://doi.org/10.1016/j.jmps.2009.
04.004

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Marta Benítez1,2 · Alfredo Bermúdez1,3 · Pedro Fontán4 · Iván Martínez1,3 ·
Pilar Salgado1,3

Marta Benítez
marta.benitez@udc.es

Alfredo Bermúdez
alfredo.bermudez@usc.es

Pedro Fontán
pedro.fontan@repsol.com

Iván Martínez
ivanmartinez.suarez@usc.es

1 Galician Centre for Mathematical Research and Technology (CITMAga), Campus Vida,
Santiago de Compostela E-15782, Spain

2 Department of Mathematics, University of A Coruña, Elviña s/n, A Coruña E-15071, Spain

3 Department of Applied Mathematics, University of Santiago de Compostela, Campus Vida,
Santiago de Compostela E-15782, Spain

4 REPSOL Technology Lab, Autovía de Extremadura s/n, Móstoles, Madrid 28935, Spain

123

https://doi.org/10.1103/PhysRevB.13.1777
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
https://doi.org/10.1016/j.cma.2019.03.003
https://doi.org/10.14279/depositonce-4118
https://doi.org/10.1016/j.jmps.2009.04.004
https://doi.org/10.1016/j.jmps.2009.04.004

	A Lagrangian approach for solving an axisymmetric thermo-electromagnetic problem. Application  to time-varying geometry processes
	Abstract
	1 Introduction
	2 Preliminary tools and notation
	3 The electromagnetic model
	3.1 The electromagnetic model in Eulerian coordinates
	3.2 A Lagrangian approach to the eddy current model

	4 The thermal model
	4.1 The thermal model in Eulerian coordinates
	4.2 A Lagrangian approach to the thermal model

	5 Numerical solution of the coupled problem
	6 Conclusions
	Acknowledgements
	References


