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Abstract
Finding a geodesic joining two given points in a complete path-connected Riemann-
ian manifold requires much more effort than determining a geodesic from initial 
data. This is because it is much harder to solve boundary value problems than ini-
tial value problems. Shooting methods attempt to solve boundary value problems by 
solving a sequence of initial value problems, and usually need a good initial guess 
to succeed. The present paper finds a geodesic � ∶ [0, 1] → M on the Riemannian 
manifold M with γ(0) = x0 and γ(1) = x1 by dividing the interval [0,1] into several 
sub-intervals, preferably just enough to enable a good initial guess for the boundary 
value problem on each subinterval. Then a geodesic joining consecutive endpoints 
(local junctions) is found by single shooting. Our algorithm then adjusts the junc-
tions, either (1) by minimizing the total squared norm of the differences between 
associated geodesic velocities using Riemannian gradient descent, or (2) by solving 
a nonlinear system of equations using Newton’s method. Our algorithm is compared 
with the known leapfrog algorithm by numerical experiments on a 2-dimensional 
ellipsoid Ell(2) and on a left-invariant 3-dimensional special orthogonal group 
SO(3). We find Newton’s method (2) converges much faster than leapfrog when 
more junctions are needed, and that a good initial guess can be found for (2) by 
starting with Riemannian gradient descent method (1).
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1  Introduction

Geodesics on Riemannian manifolds are generalizations of straight lines in Euclid-
ean space, and are fundamental in many areas of mathematics, engineering, and 
computer science, to name a few. For instance, geodesic regression is used to relate 
a real-valued independent variable and a manifold-valued dependent data variable 
[1, 2]. Another example is an extension of principal component analysis namely 
principal geodesic analysis, which is used to study variability of data on a Riemann-
ian manifold [3, 4]. A third example is the detection of object boundaries, where 
geodesic active contours are used to explore relationships between active contours 
and geodesics via curve evolution theory [5].

Let M be a p-dimensional (1 ⩽ p < ∞) smooth path-connected manifold with a 
Riemannian metric g. When M is complete with respect to the Riemannian met-
ric, the Hopf-Rinow theorem says that any two points x0,x1 ∈ M can be joined by a 
minimal geodesic, namely, a constant-speed curve � ∶ [0, 1] → M of minimal length 
with γ(0) = x0 and γ(1) = x1. For some well-studied examples of Riemannian mani-
folds, geodesics can be found in closed form, but such cases are rare and in practice 
numerical methods are usually needed. Even in cases where closed form expressions 
for geodesics are known, it may be difficult to use these expressions to find geo-
desics joining two given points. We refer to [31–33] for background in differential 
geometry.

By the fundamental theorem of Riemannian geometry, every Riemannian mani-
fold (M,g) admits a unique Levi-Civita connection ∇, which relates to g by the 
Koszul formula [6],

where X,Y,Z are vector fields on M and [⋅,⋅] is the Lie bracket of vector fields. It 
turns out that a geodesic joining two given endpoints is precisely a zero-acceleration 
curve with respect to the Levi-Civita connection ∇, namely the solution of the fol-
lowing 2-point boundary value problem for a system of ODEs

For any system of ODEs it is usually much harder to solve a 2-point boundary value 
problem than an initial value problem. Solutions (often non-unique) to boundary 
value problems can sometimes be found using shooting methods [7]. In single shoot-
ing an unknown initial quantity is guessed, then improved using the terminal error 
of a solution to an initial value problem. In multiple shooting, multiple initial data 
are estimated on some range, and then improved. The quality of an initial guess is 
crucial to the performance of both single and multiple shooting.

In our Riemannian situation a good initial guess can be made when the endpoints 
x0 and x1 are reasonably close. In such cases, the 2-point boundary value problem 
(2) is solved efficiently using single shooting. In more general nonlocal cases, where 
x0 and x1 are distant, one possible strategy is to divide the interval [0,1] into small 
subintervals [ti− 1,ti] and update on each subinterval. In [8] the so-called leapfrog 

(1)
2g(∇XY , Z) =X(g(Y , Z)) + Y(g(Z,X)) − Z(g(X, Y))

+ g([X, Y], Z) − g([Y , Z],X) − g([X, Z], Y),

(2)∇
𝛾̇(t)𝛾̇(t) = 0, s.t. 𝛾(0) = x0, 𝛾(1) = x1.
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algorithm1 is used to find geodesics joining given points (the method has also been 
used for optimal control problems [9, 10]). The basic idea is to treat the local prob-
lem as effectively solved, then update the junctions yi := γ(ti) using a minimal geo-
desic from yi− 1 to yi+ 1. Leapfrog always converges to a geodesic (Theorem 5.1 in 
[8]) and generally performs well in the first few iterations, but convergence can be 
slow if many iterations are needed. The present paper achieves fast convergence by 
using single shooting to update junctions in a different way, as follows.

Recall that for the first variation of the energy E ∶=
1

2
∫ 1

0
g (𝛾̇ , 𝛾̇)dt , we have

assuming that (for the second equality) each �|[ti,ti+1] is a geodesic. So, for piecewise 
geodesic γ, �E vanishes for all variations precisely when all differences 𝛾̇(t+

i
) − 𝛾̇(t−

i
) 

are zero for 1 ≤ i ≤ n − 1. This reduces our infinite-dimensional boundary value 
problem to the following finite dimensional problem.

Setting ti := i/n, we denote by v+
i
 the right-side velocity tangent to M at yi deter-

mined by the geodesic �i ∶ [0, 1] → M from yi to yi+ 1. Similarly v−
i
 is the left-side 

velocity determined by the geodesic from yi− 1 to yi. We may write v+
i
= logyi yi+1 and 

v−
i
= − logyi yi−1 , found by solving (2) with boundary conditions γ(0) = yi,γ(1) = yi+ 1 

and γ(0) = yi− 1,γ(1) = yi respectively. The numerical values of these Riemannian 
logarithms are usually not available from closed form expressions.

Then, for the corresponding piecewise geodesic γ we have 𝛾̇(t+
i
) = nv+

i
 , 

𝛾̇(t−
i
) = nv−

i
 , and �E vanishes precisely when (y1,y2,…,yn− 1) is a singularity of the 

vector field F on M × M ×… × M given locally by

Note that (y1,y2,…,yn− 1) is also the global minimizer of f(y1,y2,…,yn) for

whose minimum value is 0. In the present paper we exploit the fast convergence of 
Newton’s method to find the singularity of the vector field (4). When a good ini-
tialization for Newton’s method is needed, we use Riemannian gradient descent to 
minimize the cost function (5). Other variants of gradient descent method, such as 
Nesterov’s accelerated gradient descent [11, 12] and accelerated higher-order gradi-
ent methods [13] might also be used to minimize (5).

The paper is organized as follows. In Section 2 we review the general frame-
work, of finding a singularity of (4) by Newton’s method and minimizing (5) by 

(3)

𝛿E =

n−1∑
i=0

(
g(𝛾̇ , 𝛿𝛾)|ti+1ti

− ∫
ti+1

ti

g(∇t𝛾̇ , 𝛿𝛾)dt

)

=

n−1∑
i=0

g(𝛾̇ , 𝛿𝛾)|ti+1ti

(4)F(y1, y2,⋯ , yn−1) ∶=
(
v+
1
− v−

1
, v+

2
− v−

2
,⋯ , v+

n−1
− v−

n−1

)
.

(5)f (y1, y2,⋯ , yn−1) ∶=
1

2

n−1∑
i=1

‖v+
i
− v−

i
‖2

1  Refer to I for the algorithm.
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Riemannian gradient descent. In Section 3 the derivatives of the Riemannian loga-
rithms are related to solutions of the Jacobi equation. For a general Riemannian 
manifold M, the Jacobi equation is rewritten in terms of Christoffel symbols and 
local coordinates. Alternatively, when M is isometrically embedded in a Euclid-
ean space of one dimension higher, the Jacobi equation is rewritten in terms of 
the embedding. If instead M is a left-invariant Lie group, we rewrite the Jacobi 
equation in terms of bilinear transformations of the Lie algebra. Numerical cal-
culations of derivatives of Riemannian logarithms are given by Algorithms 4, 7 
and 10. To demonstrate the effectiveness of our method, we describe numerical 
experiments on the 2-dimensional ellipsoid Ell(2) using the first fundamental form 
of the standard Euclidean metric, and on the special orthogonal group SO(3) with 
a left-invariant metric.

2 � General framework for finding geodesics

There may be multiple geodesics joining points x0,x1 in a general Riemannian mani-
fold M, and the geodesic found by our method may depend on an initial choice for 
the junctions y1,y2,…,yn− 1 ∈ M. Consecutive junctions should be reasonably close, 
namely yi,yi+ 1 should be joined by a unique minimal geodesic with an easy initial 
guess for single shooting. Because single shooting performs well with a good initial 
guess, we should not take n to be extremely large: consecutive junctions should be 
close enough to enable a good initial guess, but no closer.

2.1 � Riemannian gradient descent for finding geodesics

To use Riemannian gradient descent we need to evaluate the Riemanian gradient of 
the cost function (5) with respect to all yi’s. Throughout this paper, we denote2 �yi f  , 
�
R
yi
f  the standard Euclidean gradient and the Riemannian gradient of f with respect to 

yi respectively, which are related by

where ⟨⋅, ⋅⟩� is the Euclidean metric for a coordinate chart containing yi, ⟨⋅, ⋅⟩yi is 
the Riemannian metric at yi, and v is an arbitrary tangent vector at yi. As usual 
when g ∶ M → N is a smooth map, we denote its derivative by dg ∶ TM → TN , 
where TM and TN are the tangent bundles. The derivative at x ∈ M is denoted by 
dxg ∶ TxM → Tg(x)N.

Given junctions y1,y2,…,yn− 1 we set y0 := x0, yn := x1, y := (y1,y2,⋯ ,yn− 1), 
v−
0
∶= 0 , v+

n
∶= 0 and v+

i
∶= logyi yi+1 , v

−

i
∶= − logyi yi−1 , 1 ⩽ i ⩽ n − 1 . We have

(6)⟨�yi f , v⟩� = ⟨�R
yi
f , v⟩yi ,

(7)��f = (�y1
f , �y2 f ,⋯ , �yn−1 f )

2  We avoid the notation ∇yf, reserving ∇ for the Levi-Civita connection.
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with

where the Riemannian adjoint of the logarithm map derivative is defined by

Since only v+
i−1

 , v+
i
 , v−

i
 and v−

i+1
 contain yi, (8) follows from the fact that

 In the next section we develop strategies to calculate the derivatives and adjoints 
of derivatives of logarithm maps in the setting of general Riemannian manifolds, 
codimension-one embedded submanifolds and Lie groups.

The Riemannian gradient method for finding a geodesic joining given points x0,x1 
is summarized as Algorithm 1.

In general, the step size η is chosen to make the algorithm converge at a suitable rate. 
There is usually some trial and error. Many iterations are needed when η is too small, 

(8)
�yi

f =(dyi(v
+

i
− v−

i
))†(v+

i
− v−

i
) + (dyiv

+

i−1
)†(v+

i−1
− v−

i−1
)

− (dyiv
−

i+1
)†(v+

i+1
− v−

i+1
),

(9)⟨(dx logx y)(u),w⟩ = ⟨u, (dx logx y)†(w)⟩.

⟨�yi f ,w⟩ =⟨v+i − v−
i
, dyi(v

+

i
− v−

i
)(w)⟩ + ⟨v+

i−1
− v−

i−1
, dyi(v

+

i−1
− v−

i−1
)(w)⟩

+ ⟨v+
i+1

− v−
i+1

, dyi (v
+

i+1
− v−

i+1
)(w)⟩

=⟨(dyi(v+i − v−
i
))†(v+

i
− v−

i
) + (dyiv

+

i−1
)†(v+

i−1
− v−

i−1
)

− (dyiv
−

i+1
)†(v+

i+1
− v−

i+1
),w⟩.
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but when η is large there can be problems with overshooting. For a general Riemannian 
manifold where x0,x1 are in the same coordinate chart, a reasonable choice for the initial 
curve 𝛾̃ would be a line segment in chart coordinates. Alternatively, when M is embed-
ded in Euclidean space, 𝛾̃ could be the orthogonal projection of the Euclidean line seg-
ment from x0 to x1.

To implement the shooting method we use either MATLAB’s function bvp4c/
bvp5c or Mathematica’s function NDSolve with method shooting in Lines 2 and 10 of 
Algorithm 1.

In Line 7, yi is updated via the exponential map exp as follows

where different forms of geodesics equations are needed to solve when it comes 
to Riemannian manifolds with local coordinates available, or of codimension one in 
Euclidean space, or left-invariant Lie groups.

2.2 � Newton’s method for finding geodesics

Newton’s method is a powerful tool for finding the zeros of nonlinear functions in 
Euclidean spaces, which has a wide range of applications in mathematics and other 
subjects. This has motivated studies of the generalization of Newton’s method from the 
Euclidean setting to Riemannian manifolds [23–26]. For a smooth vector field defined 
on a Riemannian manifold, Fernandes et al. [19] showed that in a suitable neighbor-
hood of the singularity of the vector field, the sequence generated by Newton’s method 
converges quadratically when the covariant derivative of the vector field is invertible 
in a convex neighborhood containing the intial guess. However, Newton’s method may 
diverge if the initial guess is not sufficiently close to the solution. Many strategies have 
been proposed to overcome this drawback, such as incorporating the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, the Levenberg-Marquardt algorithm, the trust 
region algorithm [27, 28], by introducing a merit function, which is the squared norm 
of the vector field, to replace a divergent iteration generated by Newton’s method or 
make up a failed iteration in Newton’s method [20, 21]. For simplicity, throughout this 
paper, we consider the basic Newton’s method and leave other variants and improve-
ments for future study. In our experience, the Riemannian gradient descent of Sec-
tion 2.1 gives a suitable initial guess for Newton’s method.

We calculate the derivative ∂F(y) of the vector field F, in terms of derivatives of 
logarithm maps in Section 2.1 as follows, ∂F(y) =

where we have arranged F as a column vector. Then the covariant derivative ∇F(y) 
is related to ∂F(y) by (6).

yi ← expyi (−��
R
yi
f ),

(10)

⎡⎢⎢⎢⎢⎢⎣

dy1 (v
+

1
− v−

1
) dy2v

+

1

−dy1v
−

2
dy2 (v

+

2
− v−

2
) dy3v

+

2

⋱ ⋱ ⋱

−dyn−3v
−

n−2
dyn−2(v

+

n−2
− v−

n−2
) dyn−1v

+

n−2

−dyn−2v
−

n−1
dyn−1 (v

+

n−1
− v−

n−1
)

⎤
⎥⎥⎥⎥⎥⎦

,
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Newton’s method for finding the singularity of the vector field F is to update yi by

where exp is the exponential map on manifold M and w = (w1,w2,⋯ ,wn− 1) is the 
solution of

Then Newton’s method for finding a geodesic joining given points x0 and x1 by look-
ing for a singularity of (4) is summarized as Algorithm 2.

3 � The derivative of the logarithm map

In Algorithms 1 and 2 a key task is to find the derivatives of v+
i
 and v−

i
 , namely deriva-

tives of Riemannian logarithms. We write Log(x, y) ∶= logx y . Let v := Log(x,y), then 
Exp(x, v) ∶= expx(v) = y is the inverse of Log.

Differentiating y = Exp(x,v) with respect to y along the direction w yields

then

(11)yi ← expyi (wi),

(12)F(�) + ∇F(�)w = �.

w = (dxExp)x,v(0) + (dvExp)x,v(dyv(w)),

(13)(dyLog)x,y(w) = (dvExp)
−1
x,v
(w).

Finding geodesics joining given points  Page 7 of 27 50
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Differentiating y = Exp(x,v) with respect to x along the direction w gives

then

So derivatives of the logarithm map are found from derivatives of the exponential, 
using (13) and (14). When x = y,

In practice, when x is extremely close to y (though not exactly the same), using (13) 
and (14) may cause some numerical issues, and we use (15) instead.

To calculate derivatives of the exponential map, we first consider a variation of 
the geodesic γ(t) = Exp(x,v) given by γ1(t,s) := Exp(Exp(x,su1),tv(s)), where u1 ∈ 
TxM defines a variation of the initial point along the geodesic Exp(x,su1). We extend 
v ∈ TxM as a vector field v(s) along Exp(x,su1) via parallel translation. We also con-
sider a variation of γ(t) given by γ2(t,s) := Exp(x,tv + su2), where u2 ∈ Tv(TxM) = 
TxM. These variations determine Jacobi fields, which are solutions J of the second-
order linear dynamical system [2, 6, 22]

where ∇ is the Levi-Civita connection for the Riemannian metric g on M, and R is 
the Riemannian curvature tensor. Then

where the field J1 is found by numerically solving (16) with the initial conditions 
J1(0) = u1, J̇1(0) = 0 . We also have

where J2 is found by numerically solving (16) with the initial conditions J2(0) = 0, 
J̇2(0) = u2.

Next we consider in more detail how to solve the Jacobi equation (16) where M is 
a general Riemannian manifold, and in the important special case when M is a left-
invariant Lie group (a specialized technique can then be applied).

3.1 � M is a Riemannian manifold with local coordinates available

Let M be a p-dimensional (1 ⩽ p < ∞) Riemannian manifold with a Riemann-
ian metric g, then g induces a Levi-Civita connection ∇ by the Koszul formula (1). 
Given a local coordinate system {xi} on an open set U ⊂ M, {�i ∶=

�

�xi
} is a basis for 

vector fields defined on U. Suppose we have two vector fields X = Xi∂i and Y = Yj∂j, 
then the expression for the connection ∇ in local coordinates {xi} on U is given by

0 = (dxExp)x,v(w) + (dvExp)x,v(dxv(w)),

(14)(dxLog)x,y(w) = −(dvExp)
−1
x,v
(dxExp)x,v(w).

(15)(dyLog)x,y(w) = w, (dxLog)x,y(w) = −w.

(16)∇2
𝛾̇(t)

J(t) + R(J(t), 𝛾̇(t))𝛾̇(t) = 0,

(17)(dxExp)x,v(u1) = J1(1)

(18)(dvExp)x,v(u2) = J2(1)
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The Christoffel symbols are defined as the functions Γk
ij
∶ U → ℝ given by

where 1 ⩽ i, j, k ⩽ p . By the fundamental theorem of Riemannian geometry, Christ-
offel symbols have the following form with respect to the metric gij = g(∂i,∂j) [6],

where the matrix 
(
gkl

)
 is the inverse of the symmetric p × p matrix 

(
gkl

)
.

We define the symmetric bilinear Christoffel form Γx ∶ ℝp ×ℝp
→ ℝp by 

Γx(v,w)k ∶=
∑p

i,j=1
Γk
ij
viwj.

Example 1  Given a,b,c > 0, we define Ell(2) ⊂ ℝ3 to be the 2-dimensional ellipsoid given by

with Riemannian metric defined as the restriction of the standard Euclidean inner 
product. This manifold admits the following parameterization

where 𝜃 ∈ [0,2π), φ ∈ [0,π] act as global coordinates of Ell(2). We can take advan-
tage of the coordinate system {𝜃,φ} to choose the initial junctions yi in Algorithms 
1 and 2.

With respect to the restriction of the Euclidean metric, we have

If a = b, then by (21), non-vanishing Christoffel symbols are given by

Example 2  Let SO(3) be the special orthogonal group composed by all positively-
oriented 3 × 3 orthogonal matrices, endowed with a bi-invariant metric

where V1,V2 ∈ TXSO(3) and X ∈ SO(3).
By considering the following variation

(19)∇XY = ∇Xi�i
Yj
�j = Xi �Y

j

�xi
�j + XiYj∇

�i
�j.

(20)∇
�i
�j = Γk

ij
�k,

(21)Γk
ij
=

1

2
gkl(�igjl + �jgil − �lgij),

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 1

(22)Ell(�,�) = (a sin� cos �, b sin� sin �, c cos�),

(23)

g =

�⟨�
�
Ell, �

�
Ell⟩ ⟨�

�
Ell, �

�
Ell⟩

⟨�
�
Ell, �

�
Ell⟩ ⟨�

�
Ell, �

�
Ell⟩

�

=

�
sin2 �(a2 sin2 � + b2 cos2 �) (b2 − a2) sin� cos� sin � cos �

(b2 − a2) sin� cos� sin � cos � cos2 �(a2 cos2 � + b2 sin2 �) + c2 sin2 �

�
.

Γ�

��
= Γ�

��
= cot�, Γ

�

��
= −

a2 tan�

a2+c2 tan2 �
, Γ

�

�� =
(c2−a2) tan�

a2+c2 tan2 �
.

⟨V1,V2⟩X ∶= −
1

2
tr(X−1V1X

−1V2),

Finding geodesics joining given points  Page 9 of 27 50



1 3

we find ΓX(V,V ) = −V X− 1V. Then, because the Christoffel form is symmetric 
and bilinear,

for any U,V ∈ TXSO(3).

Now we rewrite the Jacobi equation (16) in terms of Christoffel symbols and their 
derivatives. Then

where we used the fact that ∇
𝛾̇(t)𝛾̇(t) = 𝛾̈(t) + Γ

𝛾(t)(𝛾̇(t), 𝛾̇(t)) = 0 . Combining with 
the result

we have

Proposition 1  The Jacobi equation (16) is equivalent to

𝛿
1

2
∫ 1

0
⟨Ẋ, Ẋ⟩dt = tr(X−1ẊX−1

𝛿X)�1
t=0

− ∫ 1

0
tr(X−1(Ẍ − ẊX−1Ẋ)X−1

𝛿X)dt,

ΓX(U,V) = −
1

2
(UX−1V + VX−1U)

∇
𝛾̇(t)J(t) = J̇(t) + Γ

𝛾(t)(J(t), 𝛾̇(t)),

∇2
𝛾̇(t)

J(t) =
d

dt

(
J̇(t) + Γ

𝛾(t)(J(t), 𝛾̇(t))
)
+ Γ

𝛾(t)(J̇(t) + Γ
𝛾(t)(J(t), 𝛾̇(t)), 𝛾̇(t))

= J̈(t) + dΓ
𝛾(t)(𝛾̇(t))(J(t), 𝛾̇(t)) + 2Γ

𝛾(t)(J̇(t), 𝛾̇(t))

−Γ
𝛾(t)(J(t),Γ𝛾(t)(𝛾̇(t), 𝛾̇(t))) + Γ

𝛾(t)(𝛾̇(t),Γ𝛾(t)(J(t), 𝛾̇(t))),

R(J(t), 𝛾̇(t))𝛾̇(t) = dΓ
𝛾(t)(J(t))(𝛾̇(t), 𝛾̇(t)) − dΓ

𝛾(t)(𝛾̇(t))(𝛾̇(t), J(t))

+Γ
𝛾(t)(J(t),Γ𝛾(t)(𝛾̇(t), 𝛾̇(t))) − Γ

𝛾(t)(𝛾̇(t),Γ𝛾(t)(𝛾̇(t), J(t))),

(24)J̈(t) + 2Γ
𝛾(t)(J̇(t), 𝛾̇(t)) + dΓ

𝛾(t)(J(t))(𝛾̇(t), 𝛾̇(t)) = 0.
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1 3

In summary, Algorithm 3 finds the geodesic joining two consecutive points yi,yi+ 1 
and the logarithm map v+

i
 . Algorithm 4 finds the derivatives of the logarithm maps 

dyiv
+

i
, dyi+1v

+

i
 . Algorithm 5 finds the exponential map on M.

Note that in Algorithm 4 (similar for Algorithms 7 and 10), since the p-dimen-
sional tangent space TyiM = ℝp , we need to solve the (24) 2p times with the stand-
ard Euclidean basis vectors {e

�
}
p

�=1
 , where eα is a zero column except 1 in α-th posi-

tion. All solutions for the type of initial conditions J(0) = eα, J̇ = 0 is arranged as 
a matrix J1(1), and those for the other type is arranged as a matrix J2(1). Then, the 
derivative (dyiLog)yi,yi+1(w) = −J2(1)

−1J1(1)w and (dyi+1Log)yi,yi+1 (w) = J2(1)
−1w.

The relationship between Algorithm 1 and Algorithm 4 is that Algorithm 4 is a sig-
nificant sub-algorithm of Algorithm 1 that calculate the derivatives dyiv

+

i
 , dyi+1v

+

i
 , which 

will be used in calculating the Riemannian gradient of the cost function (see (8)).

3.2 � Riemannian manifolds of codimension one in Euclidean space

Let M be a p-dimensional Riemannian manifold isometrically embedded in (p 
+ 1)-dimensional Euclidean space �p+1 . Then M is a level set of some smooth func-
tion h ∶ M ⊂ 𝔼p+1

→ ℝ , that is, M = h− 1(c) for some constant c ∈ ℝ . The benefit 
of writing geodesic and Jacobi equations in terms of h is to represent the geodesic 
as a curve in Euclidean space and use standard Euclidean derivatives as illustrated 
below.

Let �
�
∶=

grad h(�)

‖grad h(�)‖ be the unit normal to the manifold M, where grad h 

is the Euclidean gradient of h and ∥⋅∥ is the norm induced by standard 
Euclidean metric. Then, the covariant derivative ∇

𝛾̇(t)𝛾̇(t) is nothing more 
than the Euclidean projection of the vector 𝛾̈(t) onto the tangent space Tγ(t)M, 
namely
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Since νγ(t) is normal to M at γ(t), ⟨𝛾̇(t), 𝜈
𝛾
(t)⟩ = 0 , by differentiating, we have 

⟨𝛾̈(t), 𝜈
𝛾
(t)⟩ = −⟨𝛾̇(t), 𝜈̇

𝛾
(t)⟩ , where 𝜈̇

𝛾
(t) = d𝜈

𝛾
(𝛾̇(t)) . Therefore, the geodesic equa-

tion ∇
𝛾̇(t)𝛾̇(t) = 0 can now be rewritten as

Although now � ∶ [0, 1] → �p+1 is viewed as a curve in Euclidean space, the bound-
ary conditions γ(0),γ(1) ∈ M will force the solution of (26) to stay on the manifold 
M.

In order to represent the Jacobi equation (16) in terms of the function h or the unit 
normal ν, we consider a variation �s ∶ (−�, �) × [0, 1] → �p+1 of � ∶ [0, 1] → �p+1 
for a small ε > 0. Then,

 where �(t) = d

ds
|s=0�s(t) is the variational vector field along γ(t). Therefore, we have

Proposition 2  The Jacobi equation (16) is equivalent to

As with the geodesic equation, the initial conditions 𝜉(0), 𝜉̇(0) ∈ T
𝛾(0)M force 

the solution of (27) to stay on the tangent space of M, although � ∶ [0, 1] → �p+1 
is viewed as a curve in Euclidean space.

In summary, Algorithm  63 finds the geodesic joining two consecutive 
junctions yi,yi+ 1 and the logarithm map v+

i
 . Algorithm  7 finds the deriva-

tives of the logarithm maps dyiv
+

i
, dyi+1v

+

i
 . Algorithm 8 finds the exponential 

map on M.

(25)∇
𝛾̇(t)𝛾̇(t) = 𝛾̈(t) − ⟨𝛾̈(t), 𝜈

𝛾
(t)⟩𝜈

𝛾
(t).

(26)𝛾̈(t) + ⟨𝛾̇(t), 𝜈̇
𝛾
(t)⟩𝜈

𝛾
(t) = 0.

d

ds
�s=0

�
𝛾̈s(t) + ⟨𝛾̇s(t), 𝜈̇𝛾s(t)⟩𝜈𝛾s(t)

�

=𝜉(t) + ⟨𝜉̇(t), 𝜈̇
𝛾
(t)⟩𝜈

𝛾
(t) + ⟨𝛾̇(t), d2𝜈

𝛾
(𝛾̇(t), 𝜉(t))⟩𝜈

𝛾
(t) + ⟨𝛾̇(t), 𝜈̇

𝛾
(t)⟩d𝜈

𝛾
(𝜉(t)),

(27)
𝜉(t) + ⟨𝜉̇(t), 𝜈̇

𝛾
(t)⟩𝜈

𝛾
(t) + ⟨𝛾̇(t), d2𝜈

𝛾
(𝛾̇(t), 𝜉(t))⟩𝜈

𝛾
(t)

+⟨𝛾̇(t), 𝜈̇
𝛾
(t)⟩d𝜈

𝛾
(𝜉(t)) = 0.

3  The geodesic is denoted by some discrete points on M.
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3.3 � M is a left‑invariant Lie group

Given an inner product on the Lie algebra of a Lie group G, a left-invariant Rie-
mannian metric on G is defined by left-translation:

where (dLg)h ∶ ThG → TghG is the derivative of Lg at h ∈ G, w1,w2 ∈ TgG. To 
shorten notation we may drop subscripts in the metric 〈⋅,⋅〉 if there is no ambiguity. 
The Lie group G equipped with this Riemannian metric is said to be left-invariant.

To simplify the second-order system (16), we use the technique of left Lie 
reduction [15]. Given a C∞ curve x ∶ [0, 1] → G , let F be any C∞ vector field 
along x. Then the left Lie reduction F̂ of F is defined as

where t ∈ [0,1]. We refer to [16–18, 29, 30] and references for applications of left 
Lie reduction in reducing high order nonlinear dynamical systems on Lie groups and 
Riemannian homogeneous spaces.

Now introduce a bilinear operator B ∶ � × � → � defined by

where � is the Lie algebra TGe, w1,w2,w3 ∈ � , and [⋅,⋅] is the Lie bracket. If G is a 
bi-invariant Lie group, then 〈[X,Y ],Z〉 = 〈Y,[Z,X]〉, which gives B(X,Y ) = [X,Y ].

(28)⟨w1,w2⟩g = ⟨h ⋅ w1, h ⋅ w2⟩h⋅g = ⟨(dLg−1)g(w1), (dLg−1)g(w2)⟩�,

(29)F̂(t) ∶= (dLx(t)−1)x(t)F(t),

(30)⟨B(w1,w2),w3⟩ ∶= ⟨[w2,w3],w1⟩,
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Let {Ei} be an orthonormal basis of � at the identity e, then {Ẽi ∶= (dLg)e(Ei)} 
forms an orthonormal basis at g ∈ G. By the Koszul formula (1), the constant ⟨Ẽi, Ẽj⟩ 
and the left invariance of the metric and vectors, we have (see page 118 in [14])

from which

Further, we find (dLg−1)gR(Ẽi, Ẽj)Ẽk =

where we have used the Jacobi identity in the last equality.

Lemma 3  Let x ∶ [0, 1] → G be a C∞ curve, V the left Lie reduction of the velocity 
vector field ẋ of x, W0 any C∞ vector field along x and W its left Lie reduction. Then

2⟨∇Ẽi
Ẽj, Ẽk⟩ =⟨Ẽi, [Ẽk, Ẽj]⟩ + ⟨Ẽj, [Ẽk, Ẽi]⟩ + ⟨Ẽk, [Ẽi, Ẽj]⟩

=⟨Ei, [Ek,Ej]⟩ + ⟨Ej, [Ek,Ei]⟩ + ⟨Ek, [Ei,Ej]⟩
=⟨[Ei,Ej] − B(Ei,Ej) − B(Ej,Ei),Ek⟩,

(31)(dLg−1)g∇Ẽi
Ẽj =

1

2

(
[Ei,Ej] − B(Ei,Ej) − B(Ej,Ei)

)
.

(32)

∇Ei
∇Ej

Ek − ∇Ej
∇Ei

Ek − ∇[Ei,Ej]
Ek

=
1

2
∇Ei

(
[Ej,Ek] − B(Ej,Ek) − B(Ek,Ej)

)

−
1

2
∇Ej

(
[Ei,Ek] − B(Ei,Ek) − B(Ek,Ei)

)

−
1

2

(
[[Ei,Ej],Ek] − B([Ei,Ej],Ek) − B(Ek, [Ei,Ej])

)

=
1

4
[Ek, [Ei,Ej]] +

1

2
B([Ei,Ej],Ek) +

1

2
B(Ek, [Ei,Ej])

−
1

4
[Ei,B(Ej,Ek) + B(Ek,Ej)] +

1

4
[Ej,B(Ei,Ek) + B(Ek,Ei)]

−
1

4
B(Ei, [Ej,Ek] − B(Ej,Ek) − B(Ek,Ej))

−
1

4
B([Ej,Ek] − B(Ej,Ek) − B(Ek,Ej),Ei)

+
1

4
B(Ej, [Ei,Ek] − B(Ei,Ek) − B(Ek,Ei))

+
1

4
B([Ei,Ek] − B(Ei,Ek) − B(Ek,Ei),Ej),

(33)(dLx−1)x∇ẋW0 = Ẇ +
1

2
([V ,W] − B(V ,W) − B(W,V)),
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Proof  Denote V(t) = (dLx(t)−1)x(t)ẋ(t) = Vi(t)Ei , W(t) = (dLx(t)−1)x(t)W0(t) = Wi(t)Ei , 
where {Ei} is orthonormal basis of � . Then, ẋ(t) = Vi(t)(dLx(t))eEi and W0(t) = Wi(t)
(dLx(t))eEi. By (31) and the properties of ∇, we have

and

which results in (34). Finally, (35) is directly from (32). □

Applying Lemma 3 to the system (16) and using ∇
𝛾̇
𝛾̇ = 0 , we derive

Proposition 4  The Jacobi equation (16) is equivalent to

where W = (dL
�−1

)
�
J and V = (dL

𝛾−1
)
𝛾
𝛾̇.

(34)

(dL
x−1

)x∇
2

ẋ
W0 =Ẅ + [V , Ẇ] +

1

2
[V̇ ,W] +

1

4
[V , [V ,W]] −

1

4
[V ,B(V ,W)]

−
1

4
[V ,B(W,V)] −

1

2
B(V̇ ,W) −

1

2
B(W, V̇) − B(V , Ẇ) − B(Ẇ,V)

−
1

4
B(V , [V ,W]) +

1

4
B(V ,B(V ,W)) +

1

4
B(V ,B(W,V))

−
1

4
B([V ,W],V) +

1

4
B(B(V ,W),V) +

1

4
B(B(W,V),V),

(35)

(dL
x−1

)
x
R(W0, ẋ)ẋ =

1

4
[V , [W,V]] −

1

2
[W,B(V ,V)] +

1

4
[V ,B(W,V)] +

1

4
[V ,B(V ,W)]

+
3

4
B([W,V],V) +

3

4
B(V , [W,V]) +

1

2
B(W,B(V ,V))

+
1

2
B(B(V ,V),W) −

1

4
B(V ,B(W,V)) −

1

4
B(V ,B(V ,W))

−
1

4
B(B(W,V),V) −

1

4
B(B(V ,W),V).

(dLx−1)x∇ẋW0 =Ẇ
iEi +WiVj∇Ej

Ei

=ẆiEi +
1

2
WiVj([Ej,Ei] − B(Ej,Ei) − B(Ei,Ej))

=Ẇ +
1

2
([V ,W] − B(V ,W) − B(W,V))

(dL
x−1

)
x
∇2

ẋ
W0 =

d

dt

(
Ẇ +

1

2
([V ,W] − B(V ,W) − B(W,V))

)

+
1

2
([V , Ẇ +

1

2
([V ,W] − B(V ,W) − B(W,V))]

− B(V , Ẇ +
1

2
([V ,W] − B(V ,W) − B(W,V)))

− B(Ẇ +
1

2
([V ,W] − B(V ,W) − B(W,V)),V)),

(36)
Ẅ + [V , Ẇ] − B(V , Ẇ) − B(Ẇ,V) − [W,B(V ,V)]

+B([W,V],V) + B(V , [W,V]) = 0,
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By (33), the geodesic equation ∇
𝛾̇
𝛾̇ = 0 reduces to V̇ = B(V ,V) with 𝛾̇ = 𝛾V  . 

Now we summarize the procedure of finding the geodesic joining two consecutive 
yi, the velocity v+

i
 and the derivatives of the logarithm map, the exponential map on 

G as Algorithms 9, 10, and 11.
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4 � Numerical experiments

Next we illustrate our algorithms by numerical experiments on the ellipsoid Ell(2) 
and on a left-invariant special orthogonal group SO(3). All experiments were exe-
cuted in MATLAB 2020b on a computer with Intel Core i7-8700K CPU, 32 GB 
RAM and Windows 10 Enterprise. MATLAB codes are available on github https://​
github.​com/​beili​ren/​Endpo​int-​geode​sic-​probl​ems.

4.1 � The ellipsoid

Let Ell(2) be the 2-dimensional ellipsoid defined in Example 1. Define the diagonal 
matrix A ∶= diag{

1

a2
,
1

b2
,
1

c2
} , then Ell(2) = {x ∈ ℝ3|xTAx = 1} , whose tangent 

space is given by TxEll(2) = {v ∈ ℝ3|vTAx = 0} . The normal space 

Fig. 1   Two given points x0 and x1 are denoted by black points. The magenta points represent the initial 
junctions and the green curve represents the initial piecewise geodesic joining x0 and x1. The blue points 
represent the final junctions and the red curve represents the final geodesic generated by Algorithm 2

Table 1   Comparison of runtime 
of different methods for finding 
geodesics

n Algorithm 1 Leapfrog Algorithm 2

4 31.8635 0.6673 0.9469
5 > 100 1.1787 1.1267
6 > 100 1.8055 1.3032
7 > 100 2.7095 1.4747
8 > 100 3.8182 1.6749
9 > 100 5.4586 2.0041
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NxEll(2) = {r0Ax ∈ ℝ3|r0 ∈ ℝ} is the orthogonal complement of the tangent space 
with respect to the Euclidean metric.

According to Section 3.2, Ell(2) is equivalent to g(1)− 1, where g(x) = xTAx. Then, 
straightforward calculations give �x =

Ax

‖Ax‖ and 𝜈̇x =
Aẋ

‖Ax‖ −
⟨Ax,Aẋ⟩
‖Ax‖3 Ax , by (26), the 

geodesic equation is

Further, we have d�x(�) =
A�

‖Ax‖ −
⟨Ax,A�⟩
‖Ax‖3 Ax and

By (27), the Jacobi equation is

where x is a solution of (37).
For two points x,y on Ell(2), let TProj(y − x) be the projection of the vector y − x 

to the tangent space TxEll(2). Then, TProj(y − x) = y − x − r0Ax for some r0 ∈ ℝ . 

By requiring that ∥TProj(y − x)∥2 + ∥r0Ax∥2 = ∥y − x∥2, we have r0 =
yTAx − 1

‖Ax‖2  , 

which implies

Example 3  On a ellipsoid Ell(2) with semi-axes a = 6,b = 2,c = 1, we choose two 
points x0 = (0,0,1)T and x1 = (

9

2
,

√
3

2
,−

1

2
)T , which correspond to the coordinates 

(
�

2
, 0) and ( �

6
,
2�

3
) in (22), respectively. The initial curve 𝛾̃ in Algorithms 1 and 2 cor-

responds to the line segment in local coordinates.
Solving the geodesic (37) with linear initial guess by shooting is unsuccessful 

(as warned by MATLAB that the maximum residual at endpoint is very large with 
affordable mesh points), which indicates the necessity of dividing the interval [0,1] 
into several sub-intervals. In this experiment, we find when the number of sub-inter-
vals n ≥ 4, shooting with the initial guess (39) is able to find the geodesic on each 
sub-interval. Figure 1 shows the geodesic joining x0 and x1 generated by Newton’s 
method (Algorithm 2) with n = 5 and 𝜖 = 10− 4, where magenta and blue points rep-
resent initial and final junctions respectively, green and red curves represent initial 
and final piecewise geodesics respectively.

To compare Riemannian gradient descent (Algorithm  1) and Newton’s method 
with the leapfrog algorithm (Algorithm 12), we vary the number of sub-intervals n 
from 4 to 9, set the step size η = 0.001 in Algorithm 1 and the time limitation for all 

(37)ẍ +
⟨ẋ,Aẋ⟩
‖Ax‖2Ax = 0.

d2𝜈x(ẋ, 𝜉) = −
⟨Ax,A𝜉⟩
‖Ax‖3 Aẋ −

⟨Aẋ,A𝜉⟩
‖Ax‖3 Ax −

⟨Ax,Aẋ⟩
‖Ax‖3 A𝜉

+3
⟨Ax,Aẋ⟩⟨Ax,A𝜉⟩

‖Ax‖5 Ax.

(38)
𝜉 + ⟨𝜉̇,Aẋ⟩ Ax

‖Ax‖2 + ⟨ẋ,Aẋ⟩ A𝜉

‖Ax‖2
− 2(⟨Ax,Aẋ⟩⟨𝜉̇,Ax⟩ + ⟨ẋ,Aẋ⟩⟨Ax,A𝜉⟩) Ax

‖Ax‖4 = 0,

(39)TProj(y − x) = y − x −
yTAx−1

‖Ax‖2 Ax.
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algorithms is 100 seconds. The runtime for different methods is reported in Table 1, 
from which we find Riemannian gradient descent is the slowest, leapfrog method is 
getting slower and slower as n increases, and Newton’s method is the most efficient 
one in general.

Note that for a function f defined on Ell(2), its Riemannian gradient �R
x
f  is related 

to its Euclidean gradient ∂xf by �R
x
f = (I3 − xxTA)�xf  . If we denote the opera-

tor (dxLog)x,y and (dyLog)x,y on Ell(2) by matrices, then their adjoints are given by 
matrix transposes.

4.2 � The special orthogonal group

Let SO(3) ∶= {X ∈ ℝ3×3|XTX = I3, det(X) = 1} be the 3-dimensional Lie group of 
positively-oriented 3 × 3 orthogonal matrices, with left-invariant metric given by

(40)⟨V1,V2⟩X ∶= −
1

2
tr(XTV1AX

TV2).

Fig. 2   The red and black frame 
represent rotation matrix X0 and 
X1 respectively. Geodesic or 
junctions on the manifold SO(3) 
are represented by endpoints of 
frames rotated by elements in 
SO(3). Magenta and blue points 
denote initial and final junctions 
respectively and green curve 
denotes the final piecewise 
geodesic

Table 2   Comparison of runtime 
of different methods for finding 
geodesics

n Algorithm 1 Leapfrog Algorithm 2

4 42.0618 5.3832 1.2795
5 > 100 7.3309 1.3795
6 > 100 11.4557 1.5282
7 > 100 40.3261 1.8242
8 > 100 92.5328 1.9546
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Here V1,V2 ∈ TXSO(3), X ∈ SO(3), and A is a fixed symmetric positive-definite matrix. 
The tangent space of SO(3) at X is given by TXSO(3) = {V ∈ ℝ3|VTX + XTV = 0} . 
The Lie algebra is the tangent space at the identity, namely the space 
��(3) = {V ∈ ℝ3×3|VT = −V} of skew-symmetric 3 × 3 matrices.

Note that Euclidean 3-space �3 is also a 3-dimensional Lie algebra, with respect to 
the cross-product ×, and there is a Lie isomorphism w ∈ �3

↦ ŵ ∈ ��(3) given by 

ŵv ∶= w × v for w, v ∈ �3 . Here ŵ =

⎛
⎜⎜⎝

0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞
⎟⎟⎠
 , where w = (w1,w2,w3)

T ∈ �3

.
The normal space is given by NXSO(3) = {XS|S ∈ ℝ3×3, ST = S} , which can be 

verified by the fact

for any V ∈ TXSO(3) and XS ∈ NXSO(3).
By the Lie isomorphism between �3 and ��(3) , the bilinear form B defined in (30) 

with respect to the metric (40) can now be rewritten as

Then the geodesic equation is

and the Jacobi equation is

where J = xŵ and v is from the geodesic equation.
Given two nearby points X,Y ∈ SO(3), the initial guess of the velocity of the geo-

desic from X to Y can be chosen as Log(XTY ), where Log is the matrix logarithm.
For a function f defined on SO(3), by the relationship between Riemannian gradient 

and Euclidean gradient (6), we find tr((XAXT∂Xf − ∂Xf)TV ) = 0 for any V ∈ TXSO(3), 
which means XAXT

�
R
X
f − �Xf ∈ NXSO(3) . Suppose

then left multiplying (43) by XT gives S = AXT
�
R
X
f − XT

�Xf  . Since S is symmetric, 
we have

Substituting (44) into (43) returns

⟨V ,XS⟩ = tr(VTXS) = −tr(XTVS) = −tr(SVTX) = −tr(VTXS) = 0

(41)B(v̂, ŵ) = A−1((Av) × w), ∀ v,w ∈ �3.

(42)

{
ẋ = xv̂,

v̇ = A−1((Av) × v),

ẅ + v × ẇ − A−1((Av) × ẇ + (Aẇ) × v) −
1

2
w × (A−1((Av) × v))

+
1

2
A−1((Aw) × (A−1((Av) × v)) + ((Av) × v) × w)

+ A−1((Av) × (w × v) + (A(w × v)) × v) = 0,

(43)XAXT
�
R
X
f − �Xf = XS,

(44)S =
1

2
(AXT

�
R
X
f + (�R

X
f )TXA − XT

�Xf − (�Xf )
TX).
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from which

where Sy(A,B,C) is the solution of the Sylvester equation AX + XB = C. Note that 
MATLAB’s function sylvester or Mathematica’s function LyapunovSolve can solve 
this algebraic equation efficiently.

Example 4  On a left-invariant special orthogonal group SO(3) with A = diag{1,2,4}, 
we choose X0 as the identity I3 and X1 an orthogonal matrix Ry(45)Rx(80), where 

Rx(�) =

⎡
⎢⎢⎣

1 0 0

0 cos � − sin �

0 sin � cos �

⎤
⎥⎥⎦
 , Ry(�) =

⎡
⎢⎢⎣

cos � 0 sin �

0 1 0

− sin � 0 cos �

⎤
⎥⎥⎦
 are counterclockwise rota-

tions around x-axis and y-axis by α and β degrees, respectively. As seen by experi-
ment, solving the geodesic (42) with linear initial guess without choosing any junc-
tions is unsuccessful. Then, 4 initial junctions are chosen on SO(3), where magenta 
points in Fig. 2 represent endpoints of frame rotated by orthogonal matrices. After 3 
iterations in Algorithm 2, the cost function (5) is less than 10− 4.

Similar to the experiment on ellipsoid, we compare the efficiency of three 
different methods, where runtime is shown in Table 2. The step size in Algo-
rithm 1 is chosen to be 0.01,0.006,0.002,0.002,0.002 for n = 4,⋯ ,8. The stop 
criteria for all algorithms is set to 𝜖 = 10− 4. As seen from Table 2, Newton’s 
method is very efficient when initial guess is sufficiently close to the opti-
mal solution and the efficiency of leapfrog method drops quickly as number of 
sub-intervals increases.

5 � Conclusions

Geodesics are fundamental in mathematics and in many applications, but find-
ing a geodesic joining two given points is not easy, except in some very special 
cases. This paper proposes two new methods to tackle the problem using numer-
ical methods. To find a geodesic � ∶ [0, 1] → M on a finite dimensional path-
connected Riemannian manifold M joining x0 and x1, we divide the interval [0,1] 
into subintervals and choose a small number of junctions in M, each moderately 
close to the next. On each subinterval we solve the geodesic equation between 
junctions via the shooting method. The purpose of having moderately close 
junctions is to provide good initial guesses for shooting. By (1) minimizing the 
difference between geodesic velocities associated with the junctions using the 
method of Riemannian gradient descent or (2) finding the singularity of the vec-
tor field associated with the junctions using Newton’s method, we update all 
junctions until the total difference is relatively small. To find the Riemannian 
gradient of our cost function f or the covariant derivative of our vector field F, 

(45)AXT
�
R
X
f + XT

�
R
X
fA = XT

�Xf − (�Xf )
TX,

(46)�
R
X
f = XSy(A,A,XT

�Xf − (�Xf )
TX),
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it is necessary to solve the Jacobi equation. On a general Riemannian manifold: 
this equation can be rewritten in terms of Christoffel symbols if local coordi-
nates are available or a embedding function if the codimension of the manifold 
is one. On a Lie group, the Jacobi equation can be reduced to a simpler differen-
tial equation in terms of a bilinear transformation of the Lie algebra. Finally, we 
test the effectiveness of the proposed methods by finding geodesics joining two 
given points in the 2-dimensional ellipsoid Ell(2) with Euclidean metric and in 
the special orthogonal group SO(3) with a left-invariant metric.

Appendix: Leapfrog algorithm for finding geodesics

The following algorithm is adapted from [8].
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