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Abstract
This paper is devoted to an optimal control problem of a coupled spin drift-diffusion
Landau–Lifshitz–Gilbert system describing the interplay of magnetization and spin
accumulation in magnetic-nonmagnetic multilayer structures, where the control is
given by the electric current density. A variational approach is used to prove the
existence of an optimal control. The first-order necessary optimality system for the
optimal solution is derived in one space-dimension via Lagrange multiplier method.
Numerical examples are reported to validate the theoretical findings.
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1 Introduction

The classical theory of micromagnetism describes the dynamics of ferromagnetic
materials occupying a domain in the absence of electric currents and for constant tem-
perature (below the Curie temperature). The process of magnetization is described
by so called Landau–Lifshitz–Gilbert (LLG) equation, see [13, 17]. A more general
approach is to consider the interactions between spin accumulation and the magneti-
zation on magnetic and nonmagnetic multilayer structures [12, 24, 25, 29, 30, 34]—
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which has wide applications in various magnetic devices, e.g., in magnetic tunnel
junctions and magnetic domain walls [26, 31]. Moreover, a number of technolog-
ical applications of these phenomena have been seen, e.g., in racetrack memories,
magnetic vortex oscillators [21, 23]. In this paper, we study the optimal control prob-
lem for a coupled spin drift-diffusion Landau–Lifshitz–Gilbert system on a magnetic
multilayer. A formal description of our problem is as follows.

Let D, D̃ ⊂ R
d (d = 1, 2, 3) be two bounded Lipschitz domains such that

D ⊂ D̃, and let ∂D and ∂D̃ be their boundaries, respectively. For any T > 0,
we denote DT := (0, T ) × D, D̃T := (0, T ) × D̃, ∂DT := (0, T ) × ∂D, and
∂D̃T := (0, T ) × ∂D̃. In the whole paper, we denote by ∂t the time derivative and ∂ν

the normal derivative.
Let m : DT → R

3 and s : D̃T → R
3 be, respectively, magnetization and spin

accumulation. We extend m by zero outside D. In this work, we want to control the
dynamics of m governed by the boundary value problem with the Landau–Lifshitz–
Gilbert (LLG) equation

⎧
⎪⎨

⎪⎩

∂tm = −γ0m × (Heff(m) + cs) + αm × ∂tm in DT ,

∂νm = 0 on ∂DT ,

m(0, ·) = m0(·) in D,

(1.1)

and the problem with the diffusion equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t s = −∇ · J − 2D0

λ1
s − 2D0

λ2
s × m in D̃T ,

∂νs = 0 on ∂D̃T ,

s(0, ·) = s0(·) in D̃,

(1.2)

where the spin current J is a 3 × 3 matrix defined by

J = β μβ

e
m ⊗ j − D0 ∇s − ββ m ⊗ (∇s · m) in D̃T (1.3)

with the given electric current density j : D̃T → R
3, which is the control variable of

the problem.
The physical meanings of the variables in (1.1)–(1.3) are given below.

• m denotes the magnetization.
• s denotes the spin accumulation.
• The effective field Heff reads

Heff(m) = −DE(m), (1.4)

which is deduced from the Landau–Lifshitz energy E(m). For simplicity, in this
work E(m) is the exchange energy

E(m) = 1

2 D

|∇m|2 dx.

In this case, Heff(m) = m.
• J denotes the spin current.
• j is the applied current density field.
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• γ0 and α are the gyromagnetic ratio and the nondimensional empiric Gilbert
damping parameter, respectively.

• D0 is the diffusion coefficient. The parameters λ1 and λ2 are the character-
istic length of the spin-flip relaxation and the mean free path of an electron,
respectively.

• The parameters β and β are the nondimensional spin polarization parameters of
the magnetic layers.

For notational simplicity we assume that the constants γ0, c, , e, μβ are equal to 1,
while λ1, λ2 are equal to 2 so that (1.1), (1.2), and (1.3) have simpler forms to write.
Moreover we choose β = 1 and 0 < β < 1 so that ββ ∈ (0, 1) in order that (1.2) is
parabolic; see [3, Lemma 5].

In case of j = 0, and s = 0, (1.1)–(1.3) reduces to the standard LLG equation, the
well-posedness of which is studied, e.g., in [6, 8, 16, 20, 33] and references therein.
In [12], the authors have employed a Galerkin approximation to prove the existence
of global weak solution of (1.1)–(1.3) in three space-dimensions. By using energy
methods, the authors in [14] established the existence of a global smooth solution
of spin-polarized transport equation in two space-dimensions; see also [25] for the
existence of a smooth solution in one dimensional case. Recently a decoupled time-
marching scheme was analyzed and its unconditional convergence of the integrator
towards a weak solution of the underlying problem was established in [3].

An optimal control problem subject to LLG equation has been studied by Dunst
et al. in [9]. The authors in [9] have shown the existence of an optimal solution
and derived its necessary first-order optimality system in the one space-dimension.
Moreover, they have shown convergence of the time semi-discrete optimality system
towards the optimality system of the original problem. We also refer to see [4, 5] for
optimal control type problems subject to LLG equation.

Our goal is to study an associated optimal control problem to (1.1)–(1.3). Let
m̄ : [0, T ] × D → S

2 be a given function and let

F(π) = κ

2

T

0
m − m̄ 2

L2 dt + 1

2

T

0
δ1 j 2

L2(D̃)
+ δ2 ∇j 2

L2(D̃)
+ δ3 j 2

L2(D̃)
dt

+ 1 − κ

2
(m(T )) (1.5)

for π = (m, s, j) with some nonnegative constants κ, δ1, δ2 and δ3. The term
(m(T )) represents the terminal payoff. In Definition 2.2 it is given as a Lipschitz

continuous function defined on L
2. In Section 5 for numerical simulations we choose

(u) = u − m̄(T ) 2
L2 .

We find an admissible weak solution π∗ = (m∗, s∗, j∗) which minimizes the cost
functional, i.e.,

F(π∗) = min
π

F (π) subject to (1.1)–(1.3). (1.6)

A minimizer π∗ of (1.6) is constructed via the variational method. For a minimiz-
ing sequence of admissible weak solutions πn = (mn, sn, jn), we employ uniform
bounds along with Fatou’s lemma to prove existence of a minimizer of (1.6). Once
a minimizer π∗ of (1.6) is obtained, we ask for its necessary optimality system —
which may be used for a gradient descent method to numerically approximate π∗. To
deduce necessary first-order optimality system of π∗, we need higher regularity of
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the solutions—which is why, we consider more regular control j in (1.6) and restrict
our study to one space-dimension, see, e.g., proof of Lemma 4.2. Due to the presence
of nonlinear non-Lipschitz drift in (1.1), the classical Pontryagin’s maximum princi-
ple is not immediate. We use the Lagrange multiplier method to deduce the necessary
first-order optimality system corresponding to minimizer π∗ in one space-dimension.
Due to the coupled system of state equations, it is more challenging to show that π∗
is a regular point of some appropriate function (cf. Lemma 4.4) — a crucial step for
applying the Lagrange multiplier theorem.

The remaining part of this paper is organized as follows. We detail the technical
framework, and state the main result in Section 2. Section 3 is devoted to show the
existence of an optimal solution of (1.6). In Section 4, we first deduce improved
stability properties of the weak solution in one space dimension and then use these
estimates to obtain a necessary first-order optimality system for the optimal solution
π∗ via the Lagrange multiplier method. Moreover, improved regularity properties of
the adjoint variables and the optimal control are obtained. Computational studies for
the switching dynamics are reported in the final section.

2 Technical framework and statement of themain results

Throughout this paper, we use the letter C to denote a generic positive constant,
which may take different values at different occurrences. In the sequel, we denote by
L

p the space Lp(D;R3), by L
p(D̃) the space Lp(D̃;R3), by H the Sobolev space

W ,2(D;R3), and by H (D̃) the Sobolev space W ,2(D̃;R3) for any integer ≥ 1
and real number p ≥ 1. We write H

−1(D̃) for the dual of H1
0(D̃). Moreover, for any

T > 0, let Lm(H ) := Lm(0, T ;H ) and Lm(H (D̃)) := Lm(0, T ;H (D̃)) denote
the standard Bochner spaces for any m, ≥ 1. The inner products in L

2(D) and
L

2(D̃) are denoted by (·, ·)D and (·, ·)
D̃

.
We now define notion of weak solution for the problem (1.1)–(1.3).

Definition 2.1 (Weak Solution) Let s0 ∈ H
1(D̃) and m0 ∈ H

1 with |m0| = 1 a.e. in
D. We say that (m, s) is a weak solution to the problem (1.1)–(1.3) if the following
hold:

i) m ∈ L∞(H1), ∂tm ∈ L
2(DT ), and |m| = 1 a.e.;

ii) s ∈ L∞(L2(D̃)) ∩ L2(H1(D̃)), ∂t s ∈ L2(H−1(D̃));
iii) For almost all t ∈ (0, T )

(∂tm, φ)D − α (m × ∂tm, φ)D = (m × ∇m, ∇φ)D − (m × s, φ)D , ∀φ ∈ H
1 ,

(∂t s, ψ)D̃ = (J, ∇ψ)D̃ − (D0s, ψ)D̃ − (D0 s × m, ψ)D̃ , ∀ψ ∈ H
1(D̃) ;

iv) m(0, ·) = m0 and s(0, ·) = s0 in the trace sense.

Note that it follows from the formulation of (1.1) that |m| is constant. (This is a
well-known property of magnetization which states that below the Curie temperature,
the magnitude of the magnetization is constant.) Hence we assume |m| = |m0| =
1. The existence of global weak solutions for (1.1)–(1.3) is detailed in [3, 12]. We
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assume in this paper that the given data are smooth enough, so that uniqueness holds;
see [7, Theorem 1.3]. The following theorem holds:

Theorem 2.1 Let s0 ∈ H
1(D̃) andm0 ∈ H

1 with |m0| = 1 a.e. in D, and D0 : D̃ →
R

+ be a measurable function such that

0 < D∗ ≤ D0(x) ≤ D∗, for almost all x ∈ D̃ (2.1)

for some positive constants D∗ and D∗. Then for any j ∈ L2(H1(D̃)), there exists
a weak solution (m, s) of (1.1)–(1.3) in the sense of Definition 2.1. Moreover, the
following estimates hold:

⎧
⎪⎪⎨

⎪⎪⎩

s 2
L∞(L2(D̃))

+ ∇s 2
L2(L2(D̃))

≤ C j 2
L2(L2(D̃))

,

∂tm 2
L2(L2)

+ ||∇m 2
L∞(L2)

≤ C(α) s 2
L2(L2(D̃))

+ m0
2
H1 ,

∂t s L2(H−1(D̃))
≤ C j

L2(H1(D̃))
+ s

L2(L2(D̃))
+ ∇s

L2(L2(D̃))
.

(2.2)

Thanks to the above theorem, the set Uad of all triplets π = (m, s, j), where j
belongs to L2(H2(D̃)) and (m, s) is the weak solution to the corresponding problem
(1.1)–(1.3), is non-empty. The reason to require more smoothness in j is to obtain
more smoothness in the solution (m, s), as will be explained later. With this at hand,
we rewrite the minimization problem (1.6) as follows.

Definition 2.2 Let the assumptions of Theorem 2.1 hold true. Let m̄ : [0, T ]×D →
S

2 be a given function, and be a given Lipschitz continuous function on L
2. A

tuple π∗ = (m∗, s∗, j∗) ∈ Uad is said to be a weak optimal solution of (1.6) if

F(π∗) = inf
π∈Uad

F(π).

We finish this section by stating the main results of this article, the proofs of which
will be presented in Sections 3 and 4.3. The first theorem states the existence of a
weak optimal solution π∗.

Theorem 2.2 There exists at least one weak optimal solution π∗ ∈ Uad of (1.6) in
the sense of Definition 2.2.

In case of one spatial dimension, optimal solution π∗ may satisfy first-order
optimality conditions. For d = 1, we consider the following equation for spin
accumulation s : D̃T → R

3, see [25],
⎧
⎪⎨

⎪⎩

∂t s = −∇J − D0s − D0s × m in D̃T ,

∂νs = 0 on ∂D̃T ,

s(0, ·) = s0 in D̃,

(2.3)

where the spin current J is a vector defined by

J = mj − D0 ∇s − βm ∇s,m in D̃T (2.4)
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with the given electric current density j : D̃T → R. Here, ·, · denotes the Euclidean
inner product in R

3.
The next theorem derives the first-order optimality system to be solved to simulate

the optimal solution (m∗, s∗,j∗) numerically. The second-order optimality system is
not easy to derive due to lack of regularity of the solution of the control problem.

Theorem 2.3 Let d = 1, m0 ∈ H
2, s0 ∈ H

2(D̃), and D0 ∈ H 2(D̃) with D∗ >

2βD∗. Let π∗ = (m∗, s∗, j∗) be a weak optimal solution of (1.6) subject to (1.1),
(2.3), and (2.4); see Theorem 2.2. Then there exists (z1, z2) ∈ L2(L2) × L2(L2(D̃))

such that for a.e. t ∈ [0, T ], there hold
0 = δ1j

∗ − δ2 j∗, δj
D̃

+ δ3 j∗, δj
D̃

− (∇z2,m∗δj)
D̃

∀ δj ∈ L2(H 2(D̃)) , (2.5)

0 = −(∂t z1, δm)D + κ(m∗ − m̄, δm)D − α1 z1, δm
D

− α1 z1, 2 ∇m∗, ∇δm m∗ + |∇m∗|2δm
D

+α2 z1,m∗ × δm + δm × m∗ + δm × s∗
D

+ α1 z1, δm m∗, s∗ + m∗ δm, s∗
D

− ∇z2, δmj∗
D

− β ∇z2, D0δm ∇s∗,m∗
D

+ z2, D0s∗ × δm
D

−β ∇z2, D0m∗ ∇s∗, δm
D

∀ δm ∈ L2(H2) ∩ H 1(L2) , (2.6)

0 = −(∂t z2, δs)D̃ + α2(z1,m∗ × δs)
D̃

− α1 z1, δs − m∗ m∗, δs
D̃

+ z2, D0δs + D0δs × m∗
D̃

− ∇z2, −D0∇ δs + βD0m∗ ∇δs,m∗
D̃

∀ δs ∈ L2(H2(D̃)) ∩ H 1(L2(D̃)) , (2.7)

z1(T ) = − 1 − κ

2
∇ (m∗(T )), z2(T ) = 0, (2.8)

where α1 = α/(1 + α2) and α2 = 1/(1 + α2). The pair (z1, z2) is called adjoint
variables.

3 Existence of optimal control: proof of Theorem 2.2

In this section, we prove the existence of a weak optimal solution π∗ of (1.6), i.e., we
verify Theorem 2.2. Let = infπ∈Uad F(π). For j = 0, the problem (1.1)–(1.3) has
a weak solution (m, s) with |m| = 1. Thus is finite. Let πn = (mn, sn, jn), n ∈ N

be a minimizing sequence of weak solutions, i.e.,

lim
n→∞ F(πn) = .

Since is finite, there exists R > 0 such that

jn
2
L2(H2(D̃))

≤ R. (3.1)

Again, since πn is a weak solution of (1.1)–(1.3), the following estimates hold, see
[12],

∂tmn
2
L2(L2)

+ ||∇mn
2
L∞(L2)

≤ C(α) sn 2
L2(L2(D̃))

+ m0
2
H1 ,

sn 2
L2(L2(D̃))

+ ∇sn 2
L2(L2(D̃))

≤ C jn
2
L2(L2(D̃))

,

∂t sn L2(H−1(D̃))
≤ Jn L2(L2(D̃))

+ 2D∗ sn L2(L2(D̃))

≤ C jn L2(H1(D̃))
+ sn L2(L2(D̃))

+ ∇sn L2(L2(D̃))
.

(3.2)
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Thus, thanks to (3.1) and (3.2), there exist subsequences of {sn}, {mn} and {jn} (not
relabeled) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mn → m∗ in L2(L2) and a.e. DT

mn m∗ in H 1(DT )

sn → s∗ in L2(L2(D̃)) and a.e. D̃T

∇sn ∇s∗ in L2(L2(D̃))

∂t sn ∂t s∗ in L2(H−1(D̃))

jn j∗ in L2(H2(D̃))

jn → j∗ in L2(L2(D̃)) and a.e. D̃T

(3.3)

for some functions s∗, m∗ and j∗. In view of the convergence results as in (3.3), the
uniform bounds in (3.1) and (3.2) together with Fatou’s lemma, one can easily pass to
the limit in the weak formulations for (mn, sn, jn) to verify that the limiting function
(m∗, s∗, j∗) satisfies i-iv) of Definition 2.1, except |m∗(t, x)| = 1 a.e. (t, x) ∈ DT .
We can achieve the unit length condition for m∗ in the following way. Let φ0 ∈
C∞

0 (D). Take the test function φ = m∗φ0 in iii) of Definition 2.1. Then one has

d

dt D

|m∗|2φ0 dx = 0,

and therefore |m∗(t, x)| = |m0(x)| = 1 a.e. DT . Consequently, π∗ = (m∗, s∗, j∗) ∈
Uad. It remains to show that π∗ is a minimum. Observe that F is measurable, non-
negative and lower semi-continuous convex function. Thus, by using Fatou’s lemma,
we have

0 ≤ = inf
π∈Uad

F(π) ≤ F(π∗) ≤ lim
n→∞ F(πn) = ,

i.e., F(π∗) = infπ∈Uad F(π). This completes the proof.

Remark 3.1 One may formulate the control problem for H
1-control and show the

existence of an optimal solution and hence the optimal control. In Theorem 2.2,
we have taken H

2-valued control, which play a crucial role to deduce optimality
conditions for optimal solution π∗.

4 Optimality system for d = 1

Theorem 2.2 ensures the existence of an optimal solution (m∗, s∗, j∗) of (1.6) in any
spatial dimension d = 1, 2, 3. In order to deduce the necessary optimality system
associated with the tuple (m∗, s∗, j∗), one needs higher regularity for the solution, and
therefore needs to restrict to one spatial dimension. From now onwards, we consider
D and D̃ to be bounded Lipschitz domains in R and the spin accumulation s : D̃T →
R

3 satisfies (2.3) and (2.4).
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4.1 Regularity of weak solution

We wish to deduce improved stability properties for a weak solution of the problem
(1.1), (2.3), and (2.4).

Lemma 4.1 For d = 1, let the assumptions of Theorem 2.1 hold true and D0 ∈
H 2(D̃) with D∗ > 2βD∗. Let (m, s) be a weak solution of the problem (1.1), (2.3),
and (2.4). Then

i) m ∈ L∞(H1) ∩ L2(H2) ∩ H 1(L2), i.e., there exists a constant C > 0 such that

m L∞(H1) + m L2(H2) + m H 1(L2) ≤ C.

ii) s ∈ L∞(H1(D̃)) ∩ L2(H2(D̃)), i.e., there exists a constant C > 0 such that

s
L∞(H1(D̃))

+ s
L2(H2(D̃))

≤ C.

Proof Proof of i): It is easy to establish m ∈ L∞(H1) ∩ H 1(L2). It remains to show
m ∈ L2(H2). Recalling that Heff(m) = m and that we have assumed γ0 = c = 1
in (1.1), we rewrite the (1.1) in the following form:

∂tm − α1 m = α1|∇m|2m − α2m × m − α2m × s + α1 s − m m, s , (4.1)

where α1 = α/(1 + α2) and α2 = 1/(1 + α2), noting that |∇m|2 = −m · m due
to |m| = 1. This equivalence can be shown by taking the cross product to the left
of both sides of (1.1), using |m| = 1 and the elementary identity a × (b × c) =
b a, c − c a, b , and rearranging the resulting equation.

Formally we multiply (4.1) with − m, and use the Cauchy–Schwarz inequality,
the boundedness of m together with the Gagliardo–Nirenberg inequality

X L4(D̄) ≤ C X
1
4

H 1(D̄)
X

3
4

L2(D̄)
for D̄ ⊂ R

to have
1

2

d

dt
∇m 2

L2 + α1 m 2
L2 ≤ σ m 2

L2 + C(σ, α1, α2) ∇m 4
L4 + s 2

L2(D̃)

≤ σ m 2
L2 + C(σ, α1, α2) ∇m L2 + m L2 ∇m 3

L2 + s 2
L2(D̃)

≤ (σ + σ̃ ) m 2
L2 + C(σ, σ̃ , α1, α2) ∇m 6

L2 + ∇m 4
L2 + s 2

L2(D̃)
,

for some σ, σ̃ > 0 which can be chosen such that σ + σ̃ < α1. Combining this with
the estimate for s in (2.2) we conclude that m ∈ L2(H2). Hence assertion i) follows.

Proof of ii): First we note that (2.3) and (2.4) imply, after rearranging the equation,

∂t s − D0 s = −∇(jm) + ∇D0 ∇s − βm ∇s,m − βD0m s,m

− βD0∇m ∇s,m − βD0m ∇s,∇m − D0s − D0s × m.
(4.2)

Then we formally multiply (4.2) by − s and integrate w.r.t x to obtain

1

2

d

dt
∇s 2

L2(D̃)
+ D∗ s 2

L2(D̃)
≤ T1 + T2 + · · · + T5, (4.3)
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where

T1 := | (∇(mj), s)
L2(D̃)

|,
T2 := ∇D0 ∇s − βm ∇s,m , s

L2(D̃)
,

T3 := |β (D0m s,m , s)
L2(D̃)

|,
T4 := β (D0∇m ∇s,m , s)

L2(D̃)
+ β (D0m ∇s,∇m , s)

L2(D̃)
,

T5 := (D0s + D0s × m, s)
L2(D̃)

.

By using the Cauchy–Schwarz inequality, the embedding H
1 → L

∞, and (2.1), we
have

T1 ≤ s
L2(D̃)

∇m L2 j
H1(D̃)

+ ∇j
L2(D̃)

≤ s 2
L2(D̃)

+ 1

2
∇m 2

L2 j 2
H1(D̃)

+ 1

2
∇j 2

L2(D̃)
,

T2 ≤ s 2
L2(D̃)

+ C( , β) ∇s 2
L2(D̃)

,

T3 ≤ βD∗ s 2
L2(D̃)

,

T4 ≤ 2βD∗ ∇m L∞ ∇s
L2(D̃)

s
L2(D̃)

≤ 2βD∗ ∇m H1 ∇s
L2(D̃)

s
L2(D̃)

≤ 2βD∗ ∇m L2 + m L2 ∇s
L2(D̃)

s
L2(D̃)

≤ s 2
L2(D̃)

+ C( , β, D∗) ∇m 2
L2 + m 2

L2 ∇s 2
L2(D̃)

,

T5 ≤ 2D∗ s
L2(D̃)

s
L2(D̃)

≤ s 2
L2(D̃)

+ C( , D∗) s 2
L2(D̃)

.

Combining all the estimates we obtained from (4.3)

1

2

d

dt
∇s 2

L2(D̃)
+ (D∗ − 4 − βD∗) s 2

L2(D̃)
≤ C( , β, D∗) s 2

L2(D̃)
+ ∇j 2

L2(D̃)
+ ∇m 2

L2 j 2
H 1(D̃)

+ ∇D0
2
L∞(D̃)

+ ∇m 2
L2 + m 2

L2 ∇s 2
L2(D̃)

.

By choosing sufficiently small and using the given assumption D∗ > 2βD∗, we
obtain after integrating over [0, t] and invoking Gronwall’s Lemma

∇s(t) 2
L2(D̃)

+
t

0
s 2

L2(D̃)
dτ ≤ C

t

0
s 2

L2(D̃)
+ ∇j 2

L2(D̃)
+ ∇m 2

L2 j 2
H 1(D̃)

dτ

× exp C
t

0
∇D0

2
L∞(D̃)

+ ∇m 2
L2 + m 2

L2 dτ .

In view of the estimation of i) and the estimate for s in (2.2), we complete the proof.

As we mentioned, we need improved regularity for the solution (m, s). To get
improved regularity, we need to consider more regular control j ∈ L2(H 2(D̃)).
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Lemma 4.2 For d = 1, let the assumptions of Lemma 4.1 hold with m0 ∈ H
2,

s0 ∈ H
2(D̃), and j ∈ L2(H 2(D̃)). Then the weak solution (m, s) of (1.1), (2.3) and

(2.4) satisfies the following improved regularity:

i) m ∈ L2(H3) ∩ L∞(H2) ∩ H 1(H1) → C(H2).
ii) s ∈ L2(H3(D̃)) ∩ L∞(H2(D̃)) ∩ H 1(H1(D̃)) → C(H2(D̃)).

Proof Proof of i): Let m0 ∈ H
2. Denote M = ∇m. Differentiating (4.1) with respect

to the spatial variable, we formally have

∂tM−α1 M = 2α1 ∇M, ∇m m+α1|∇m|2M − α2 M × m + m × M

− α2 M × s+m × ∇s + α1 ∇s−M m, s −m m, ∇s + M, s . (4.4)

Multiplying (4.4) by − M (formally), using integration by parts, the Cauchy–
Schwarz inequality, and the boundedness of m, we have after rearranging the
equation

1

2

d

dt
∇M 2

L2 + α1 − σ1 M 2
L2

≤ C (1 + m 2
H2) ∇m 2

L2 + ∇M 2
L2 + s 2

H1(D̃)
(1 + ∇m 2

L2) ,

for some small σ1 > 0 and C ≡ C(σ1, α1, α2) > 0 being a generic constant, so that
by choosing σ1 < α1 and invoking Lemma 4.1, we deduce

d

dt
∇M 2

L2 + M 2
L2 ≤ C 1 + m 2

H2 + C 1 + m 2
H2 ∇M 2

L2 .

By invoking Lemma 4.1 again and integrating over (0, t) we infer

∇M(t) 2
L2 +

t

0
M(τ ) 2

L2 dτ ≤ C
t

0
(1 + m(τ ) 2

H2 ) dτ + C
t

0
(1 + m(τ ) 2

H2 ) ∇M(τ ) 2
L2 dτ

≤ C + C
t

0
(1 + m(τ ) 2

H2 ) ∇M(τ ) 2
L2 dτ .

Gronwall’s Lemma and Lemma 4.1 yield

∇M 2
L∞(L2)

+ M 2
L2(L2)

≤ C(α1, α2, s
L2(H1(D̃))

, m0 H2) . (4.5)

Again, we formally multiply (4.4) by ∂tM, and use a similar argument along with the
estimate (4.5) to conclude that

∂tM 2
L2(L2)

≤ C(α1, α2, s
L2(H1(D̃))

, m0 H2) . (4.6)

Hence from (4.5) and (4.6) together with Lemma 4.1, we get m ∈ L2(H3) ∩
L∞(H2) ∩ H 1(H1) → C(H2).

Proof of ii): Denote S = ∇s. Upon differentiating (2.3) with respect to the spatial
variable, we formally see that S satisfies the following PDE:

∂tS − D0 S = −m j − 2∇m∇j − j m + D0 S − βm S,m

+ 2∇D0 ∇S − β∇m S,m − βm ∇S,m − βm S,∇m

+ D0 − β m S,m − 2β∇m ∇S,m − 2β∇m S,∇m

− 2βm ∇S,∇m − βm S,m − βm S, m − ∇D0s − D0S

− ∇D0s × m − D0S × m − D0s × ∇m . (4.7)
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Multiplying (4.7) by − S (formally), and using the Cauchy–Schwarz inequality, the
boundedness of m, and (2.1), we obtain
1

2

d

dt
∇S 2

L2(D̃)
+ D∗ S 2

L2(D̃)

≤ + βD∗ S 2
L2(D̃)

+ C( ) m 2
H2 j 2

H 2(D̃)

+C( , β) D0
2
L2(D̃)

S 2
L∞(D̃)

+ C( , β) ∇D0
2
L∞(D̃)

∇S 2
L2(D̃)

+ ∇m 2
L∞ S 2

L2(D̃)

+C( , β,D∗) m 2
L2 S 2

L∞(D̃)
+ ∇m 2

L∞ ∇S 2
L2(D̃)

+ ∇m 4
L∞ S 2

L2(D̃)

+C( ) D∗ S 2
L2(D̃)

+ ∇D0
2
L∞(D̃)

+ D∗ ∇m 2
L∞ s 2

L2(D̃)
.

By using the result in part i), we deduce (noting the assumption on D0)
1

2

d

dt
∇S 2

L2(D̃)
+ D∗ S 2

L2(D̃)
≤ + βD∗ S 2

L2(D̃)
+ C( , β,D0) j 2

H 2(D̃)
+ S 2

H1(D̃)
.

We take = D∗/2 and use Gronwall’s lemma along with the assumptions on j to
conclude

∇S 2
L∞(L2(D̃))

+ S 2
L2(L2(D̃))

≤ C( s0 (H2(D̃))
, m0 H2) ,

i.e.,
s 2

L∞(H2(D̃))
+ s 2

L2(H3(D̃))
≤ C( s0 (H2(D̃))

, m0 H2) . (4.8)

Moreover, multiplying the equation (2.3) by ∂t s, and then using the Cauchy–Schwarz
inequality, part i) as well as (4.8), we have for any > 0

∂t s 2
L2(D̃)

+ (1 − β)D∗
d

dt
∇s 2

L2(D̃)

≤ ∂t s 2
L2(D̃)

+ C( ) j 2
H 1(D̃)

m 2
H1 + ∇s 2

L2(D̃)
m 2

H2 + s 2
L2(D̃)

≤ ∂t s 2
L2(D̃)

+ C( ) 1 + j 2
H 1(D̃)

.

Since 0 < β < 1, we see that

∂t s 2
L2(L2(D̃))

≤ C( s0 (H2(D̃))
, m0 H2).

Lastly, by formally multiplying (4.7) with ∂tS, then applying the Cauchy–Schwarz
inequality along with the estimate (4.8), one can arrive at the following estimate

∂tS 2
L2(L2(D̃))

≤ C( s0 (H2(D̃))
, m0 H2) ,

i.e.,
s 2

H 1(H1(D̃))
≤ C( s0 (H2(D̃))

, m0 H2) .

This completes the proof.

Remark 4.1 In the proof of Lemma 4.2, we have used integration by parts formula,
which may be made rigorous by a standard argument using the Faedo–Galerkin
method which uses the related eigenfunctions of the given operator.

4.2 Optimization problem and its analysis

With the help of the Lagrange multiplier theorem ([18, Chapter 9, Theorem 1]), we
now deduce the optimality system for the optimal solution of (1.6) where the con-
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straints (1.2) and (1.3) are replaced by (2.3) and (2.4). To this end, we define the
spaces

M := L2(H2) ∩ H 1(L2), S := L2(H2(D̃)) ∩ H 1(L2(D̃)), J := L2(H 2(D̃)). (4.9)

Note that, in view of [10, Theorem 4, section 5.9.2, p. 306] we have

M → C(H1) → L∞(L∞) and S → C(H1(D̃)) → L∞(L∞(D̃)). (4.10)

Moreover, we define four functions e1 : M×S×J → L2(L2), e2 : M×S×J →
L2(L2(D̃)), e3 : M × S × J → H

1 and e4 : M × S × J → H
1(D̃) by

e1(m, s,j) : = ∂tm − α1 m − α1|∇m|2m + α2m × m + α2m × s − α1 s − m m, s ,

e2(m, s,j) : = ∂t s + ∇ mj − D0 ∇s − βm ∇s,m + D0s + D0s × m,

e3(m, s,j) : = m(0) − m0,

e4(m, s,j) : = s(0) − s0.

The cost functional F defined in (1.6) could be re-interpreted as a function from
M × S × J → R. With this set up, we now state the optimal control problem (1.6)
in the following form.

Problem 4.1 Let d = 1, and m̄ : DT → S
2 be a given smooth function. Assume

that m0 ∈ H
2 with |m0| = 1 in D, s0 ∈ H

2(D̃), and (2.1) holds. Minimize F subject
to (m, s,j) = 0, where : M × S × J → L2(L2) × L2(L2(D̃)) × H

1 × H
1(D̃)

is defined by

(m, s,j) :=

⎛

⎜
⎜
⎝

e1(m, s,j)

e2(m, s,j)

e3(m, s,j)

e4(m, s,j)

⎞

⎟
⎟
⎠ . (4.11)

Lemma 4.3 The function : M× S ×J → L2(L2) × L2(L2(D̃)) ×H
1 ×H

1(D̃)

is continuously Fréchet differentiable, with derivative

(m, s,j), (δm, δs, δj) =

⎛

⎜
⎜
⎜
⎜
⎝

e1(m, s,j), (δm, δs, δj)

e2(m, s,j), (δm, δs, δj)

e3(m, s,j), (δm, δs, δj)

e4(m, s,j), (δm, δs, δj)

⎞

⎟
⎟
⎟
⎟
⎠

,

where
e1(m, s,j),(δm, δs, δj)

= ∂t δm − α1 δm − α1 2 ∇m, ∇δm m + |∇m|2δm − α1 δs − m m, δs

+ α2 m × δm + δm × m + δm × s + m × δs + α1 δm m, s + m δm, s ,

e2(m, s, j),(δm, δs, δj)

= ∂t δs + ∇ mδj + δmj − D0∇δs + D0β δm ∇s,m + m ∇s, δm + m ∇δs,m

+ D0 δs + δs × m + s × δm ,

e3(m, s, j),(δm, δs, δj) = δm(0),

e4(m, s, j),(δm, δs, δj) = δs(0).
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Proof We calculate the directional derivatives of e1 in the directions δm, δs and δj
to obtain

∂me1(m, s,j), δm = ∂t δm − α1 δm − α1 2 ∇m,∇δm m + |∇m|2δm
+α2 m × δm + δm × m + δm × s + α1 δm m, s + m δm, s ,

∂se1(m, s,j), δs = α2 m × δs − α1 δs − m m, δs ,

∂je1(m, s,j), δj = 0 .

By using (4.10) we deduce

∂me1(m, s,j), δm
L2(L2)

≤ ∂t δm L2(L2)
+ C(α) δm L2(L2) + m L∞(L∞) δm L2(L2) + δm L∞(L∞) m L2(L2)

+ m L∞(L∞) ∇δm L2(L∞) ∇m L∞(L2) + δm L∞(L∞) ∇m L2(L∞) ∇m L∞(L2)

+ δm L∞(L∞) s
L2(L2(D̃))

+ s
L2(L2(D̃))

δm L∞(L∞) m L∞(L∞)

≤ C(m, s,j) δm M,

and

∂se1(m, s,j), δs
L2(L2)

≤ C(α) m L∞(L∞) + 1 + m 2
L∞(L∞)

δs
L2(L2(D̃))

≤ C(m, s,j) δs S .

Define a linear operator e1(m, s,j) ∈ L(M × S × J ; L2(L2)) by

e1(m, s,j), (δm, δs, δj) = ∂me1(m, s,j), δm + ∂se1(m, s,j), δs + ∂je1(m, s,j), δj . (4.12)

Thus, e1 is Gâteaux differentiable. Moreover, since e1 is continuous at (m, s,j), the
function e1 is continuously Fréchet differentiable and the Fréchet derivative is given
by (4.12).

For the function e2, we have

∂me2(m, s,j), δm = ∇ δmj + D0β[δm ∇s,m + m ∇s, δm ] + D0s × δm

= j∇δm + δm∇j + (∇D0)β δm ∇s,m + m ∇s, δm

+D0β ∇δm ∇s,m + δm s,m + δm ∇s, ∇m

+∇m ∇s, δm + m s, δm + m ∇s, ∇δm ,

∂se2(m, s,j), δs = ∂t δs + ∇ − D0∇ δs + βD0m ∇δs,m + D0δs + D0δs × m

= ∂t δs − ∇D0 ∇δs + D0 δs + β(∇D0)m ∇δs,m

+βD0∇m ∇δs,m + βD0m δs,m + βD0m ∇δs, ∇m

+D0δs + D0δs × m ,

∂je2(m, s,j), δj = ∇(m δj) = ∇m δj + m∇δj .
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Moreover, we have the following bounds:

∂me2(m, s,j), δm
L2(L2(D̃))

≤ ∇δm L∞(L2) j
L2(L∞(D̃))

+ δm L∞(L∞) ∇j
L2(L2(D̃))

+C(D∗, β) δm L∞(L∞) ∇s
L2(L2(D̃))

m L∞(L∞) + ∇δs L∞(L2) ∇s
L2(L∞(D̃))

m L∞(L∞)

+ δm L∞(L∞) s
L2(L2(D̃))

m L∞(L∞) + δm L∞(L∞) ∇s
L∞(L2(D̃))

m L∞(L2)

≤ C(m, s,j) δm M ,

∂se2(m, s,j), δs
L2(L2(D̃))

≤ ∂t δs L2(L2(D̃))
+ C(D∗, β) ∇δs

L2(L2(D̃))
+ δs

L2(L2(D̃))
+ m 2

L∞(L∞) ∇δs
L2(L2(D̃))

+ ∇m L2(L∞) ∇δs
L∞(L2(D̃))

m L∞(L∞) + m 2
L∞(L∞) δs

L2(L2(D̃))

+ δs
L2(L2(D̃))

+ m L∞(L∞) δs
L2(L2(D̃))

,

∂je2(m, s,j), δj
L2(L2(D̃))

≤ m L∞(L∞) ∇δj
L2(L2(D̃))

+ ∇m L∞(L2) δj
L2(L∞(D̃))

≤ C(m, s,j) δj J .

Define the operator e2(m, s,j) ∈ L(M × S × J ; L2(L2(D̃))) by

e2(m, s,j), (δm, δs, δj) = ∂me2(m, s,j), δm + ∂se2(m, s,j), δs

+ ∂je2(m, s,j), δj . (4.13)

Thus, e2 is Gâteaux differentiable. Moreover, since e2 is continuous at (m, s,j), the
function e2 is continuously Fréchet differentiable and the Fréchet derivative is given
by (4.13).

Similarly, we can show that e3 and e4 are continuously Fréchet differentiable, and
their Fréchet derivatives are given by

e3(m, s,j), (δm, δs, δj) = δm(0) and e4(m, s,j), (δm, δs, δj) = δs(0) .

Thus the function is continuously Fréchet differentiable. This completes the proof.

To apply the Lagrange multiplier theorem, one needs to check that a minimizer is
a regular point of defined in (4.11). We recall that a point (m∗, s∗,j∗) is said to be
a regular point of if e1(m

∗, s∗,j∗), e2(m
∗, s∗,j∗), e3(m

∗, s∗,j∗), e4(m
∗, s∗,j∗)

are linearly independent. We have the following lemma.

Lemma 4.4 Under the assumptions D0 ∈ H 2(D̃) and D∗ > 2βD∗, if (m∗, s∗,j∗)
is an optimal solution of Problem 4.1, then it is a regular point of .

Proof To show that (m∗, s∗,j∗) is a regular point of , it suffices to show that

(m, s, 0) → (m∗, s∗,j∗), (m, s, 0)
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is surjective. Let (f1, f2, f3, f4) ∈ L2(L2)×L2(L2(D̃))×H
1 ×H

1(D̃) be given. Then
we need to show the existence of (m, s) ∈ M × S such that

⎧
⎪⎪⎨

⎪⎪⎩

∂tm − α1 m − α1 2 ∇m∗,∇m m∗ + |∇m∗|2m − α1 s − m∗ m∗, s

+α2 m∗ × m + m × m∗ + m × s∗ + m∗ × s + α1 m m∗, s∗ + m∗ m, s∗ = f1 ,

m(0) = f3,

(4.14)

and
⎧
⎪⎪⎨

⎪⎪⎩

∂t s + ∇ mj∗ − D0∇s + D0β m ∇s∗,m∗ + m∗ ∇s∗,m + m∗ ∇s,m∗

+D0 s + s × m∗ + s∗ × m = f2 ,

s(0) = f4

(4.15)

hold. We use several steps to solve the above coupled equations.
Step I (Discretization and projection in time): We use semi discretization in time

with the semi-implicit Euler method. For some N ∈ N
∗ = {1, 2, 3, . . .}, let

ti = ik, i = 0, . . . , N, k = T

N
(4.16)

be a uniform partition of [0, T ]. Since m∗ ∈ C(H2) and s∗ ∈ C(H2(D̃)), see
Lemma 4.2, the evaluation of these functions at ti makes sense. Moreover,

m∗
i W1,∞ ≤ m∗

i H2 ≤ C and s∗i W1,∞(D̃)
≤ s∗i H2(D̃)

≤ C ∀i =0, . . . , N .
(4.17)

For f1 and f2, this is not the case. Therefore, we define a projection operator in time.
To this end, let X be a Hilbert space with inner product (·, ·)X. For each time step k,
we define the set

Pk := φk : (0, T ) → X : φk (tj ,tj+1] is a constant in X .

For any f ∈ L2(0, T ; X), we define the projection kf ∈ Pk via
T

0
kf − f, φk X

dt = 0 ∀φk ∈ Pk . (4.18)

Existence of such projection k follows from the Lax–Milgram lemma. In view of
the Cauchy–Schwarz inequality and (4.18) we see that

kf
2
L2(0,T ;X)

=
T

0
kf

2
X dt =

T

0
f, kf X

dt ≤ f L2(0,T ;X) kf L2(0,T ;X),

and therefore we obtain

kf L2(0,T ;X) ≤ f L2(0,T ;X), (4.19)

for all f ∈ L2(0, T ; X).
For any pk ∈ Pk , we take φk = kf − f + f − pk ∈ Pk in (4.18) and use the

Cauchy–Schwarz inequality to get

kf − f L2(0,T ;X) ≤ f − pk L2(0,T ;X).

Since pk ∈ Pk is arbitrary and ∪k>0Pk is dense in L2(0, T ; X), we get from above
that

kf → f in L2(0, T ; X). (4.20)
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Let 1,k , 2,k , and 3,k denote the projections associated with X = L
2, X =

L
2(D̃), and X = H 2(D̃) respectively. In the following, we denote

m∗
i = m∗(ti ), s∗i = s∗(ti ), fi1 = 1,kf1(ti ), fi2 = 2,kf2(ti ), and j∗

i = 3,kj
∗(ti ).

By using (4.19), we have

k

j−1

i=0

fi+1
1

2
L2 ≤ 1,kf1 2

L2(L2)
≤ f1 2

L2(L2)
≤ C,

k

j−1

i=0

fi+1
2

2
L2(D̃)

≤ 2,kf2 2
L2(L2(D̃))

≤ f2 2
L2(L2(D̃))

≤ C, (4.21)

k

j−1

i=0

j∗
i+1

2
L2(D̃)

≤ 3,kj
∗ 2

L2(L2(D̃))
≤ j∗ 2

L2(L2(D̃))
≤ C.

Step II (Semi-discrete scheme and its solvability): We consider the following
semi-discrete scheme for problems (4.14) and (4.15). Starting with m0 = f3 and
s0 = f4, for 0 ≤ i ≤ N − 1,

(i) compute mi+1 ∈ H
1 such that

1

k
mi+1,φ

L2
+ α1 ∇mi+1,∇φ

L2
− α1 |∇m∗

i |2mi+1,φ
L2

− α2 ∇mi+1,∇φ × m∗
i+1

L2

−α2 ∇mi+1,φ × ∇m∗
i+1

L2
+ α2 mi+1 × ( m∗

i+1 + s∗i+1),φ
L2

= 1

k
mi + fi1 + α1 si − m∗

i+1 m∗
i+1, si − mi m∗

i+1, s
∗
i+1 − m∗

i+1 mi , s∗i+1

−α2 m∗
i+1 × si + 2α1 ∇m∗

i ,∇mi m∗
i+1,φ

L2
∀φ ∈ H

1 , (4.22)

(ii) compute si+1 ∈ H
1(D̃) such that

1

k
si+1,ψ

L2(D̃)
+ D0∇si+1,∇ψ

L2(D̃)
+ D0si+1,ψ

L2(D̃)
+ D0si+1 × m∗

i+1,ψ
L2

−β D0m∗
i+1 ∇si+1,m∗

i+1 ,∇ψ
L2(D̃)

= βD0 mi+1 ∇s∗i+1,m
∗
i+1 + m∗

i+1 ∇s∗i+1,mi+1 + mi+1j
∗
i+1,∇ψ

L2(D̃)

+ 1

k
si − s∗i+1 × mi+1,ψ

L2(D̃)
+ fi+1

2 ,ψ
L2(D̃)

∀ψ ∈ H
1(D̃). (4.23)

Existence ofmi+1 in step (i) given the existence ofmi ∈ H
1: Define a bilinear form

A : H1 × H
1 → R as

A(ϕ, φ) = 1

k
ϕ, φ

L2 + α1 ∇ϕ, ∇φ
L2

− α1 |∇m∗
i |2ϕ, φ

L2
− α2 ∇ϕ, ∇φ × m∗

i+1
L2

−α2 ∇ϕ, φ × ∇m∗
i+1

L2
+ α2 ϕ × ( m∗

i+1 + s∗i+1), φ
L2

.
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One can use (4.17) to show that |A(ϕ, φ)| ≤ C(k, α) ϕ H1 φ H1 . Moreover, A is
H

1-coercive as

A(φ, φ) = 1

k
φ 2

L2 + α1 ∇φ 2
L2 − α1 |∇m∗

i |2φ, φ
L2

− α2 ∇φ, φ × ∇m∗
i+1

L2

≥ 1

k
− α1 ∇m∗

i
2
L∞ − C ∇m∗

i+1
2
L∞ φ 2

L2 + α1

2
∇φ 2

L2

≥ 1

k
− C φ 2

L2 + α1

2
∇φ 2

L2 ≥ C φ 2
H1 ,

for k is sufficiently small which can be chosen to be independent of the iteration step.
Here, in the last step we used again (4.17). Let

(φ) : = 1

k
mi + fi1 + α1 si − m∗

i+1 m∗
i+1, si − mi m∗

i+1, s
∗
i+1 − m∗

i+1 mi , s∗i+1

− α2 m∗
i+1 × si + 2α1 ∇m∗

i , ∇mi m∗
i+1, φ

L2
.

Then it is linear and bounded, since

| (φ)| ≤ 1

k
mi L2 + fi1 L2 + C(α) si L2(D̃)

+ si L2(D̃)
+ m∗

i+1 L∞ mi L2 s∗i+1 L∞(D̃)

+ m∗
i+1 L∞ si L2(D̃)

+ ∇mi L2 ∇m∗
i L∞ m∗

i+1 L∞ φ L2 ≤ C(k, α) φ H1 .

Thus, by Lax–Milgram lemma, there exists a unique mi+1 ∈ H
1 such that (4.22)

holds.

Existence of si+1 in step (ii) given the existence ofmi+1 ∈ H
1 and si ∈ H

1(D̃ ): The
same argument was done in step (i) can be used to obtain the existence of si+1. The
corresponding bilinear form to (4.23) is B : H1(D̃) × H

1(D̃) → R be the bilinear
form defined by

B(ϕ,ψ) : = 1

k
ϕ, ψ

L2(D̃)
+ D0∇ϕ, ∇ψ

L2(D̃)
+ D0ϕ, ψ

L2(D̃)

−β D0m∗
i+1 ∇ϕ,m∗

i+1 , ∇ψ
L2(D̃)

+ D0ϕ × m∗
i+1, ψ

L2(D̃)
.

We omit the details.
Step III (A priori estimates): Let 0 ≤ i ≤ N − 1. We choose φ = mi+1 and use

the algebraic identity

a, a − b = 1

2
|a|2 − |b|2 + |a − b|2 ∀ a, b ∈ R

3, (4.24)

to get, after rearranging the terms,

1

2k
mi+1

2
L2 − mi

2
L2 + mi+1 − mi

2
L2 + α1 ∇mi+1

2
L2

= α1 |∇m∗
i |2mi+1,mi+1

L2
+ α2 ∇mi+1,mi+1 × ∇m∗

i+1
L2

(4.25)

+ fi1 + α1 si − m∗
i+1 m∗

i+1, si − α2m∗
i+1 × si ,mi+1

L2

−α1 mi m∗
i+1, s

∗
i+1 + m∗

i+1 mi , s∗i+1 ,mi+1
L2

+ 2α1 ∇m∗
i , ∇mi m∗

i+1,mi+1
L2

= I1 + I2 + I3 + I4 + I5.
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By using Young’s inequality and (4.17), we obtain, for any θ1, θ2 > 0,
|I1| ≤ α1 ∇m∗

i
2
L∞ mi+1

2
L2 ≤ C mi+1

2
L2 ,

|I2| ≤ θ1 ∇mi+1
2
L2 + C(θ1) ∇m∗

i+1
2
L∞ mi+1

2
L2 ≤ θ1 ∇mi+1

2
L2 + C(θ1) mi+1

2
L2 ,

|I3| ≤ C fi+1
1

2
L2 + si 2

L2(D̃)
+ mi+1

2
L2 ,

|I4| ≤ C mi+1
2
L2 + mi

2
L2 s∗i+1

2
L∞(D̃)

≤ C mi+1
2
L2 + mi

2
L2 ,

|I5| ≤ θ2 ∇mi
2
L2 + C(θ2) ∇m∗

i
2
L∞ mi+1

2
L2

= θ2 ∇mi+1
2
L2 + θ2 ∇mi

2
L2 − ∇mi+1

2
L2 + C(θ2) mi+1

2
L2 .

Inserting these estimates into (4.25), multiplying the resulting equation by 2k, and
rearranging the terms, we deduce

mi+1
2
L2 − mi

2
L2 + mi+1 − mi

2
L2 + 2k(α1 − θ1 − θ2) ∇mi+1

2
L2

≤ Ck fi+1
1

2
L2 + si 2

L2(D̃)
+ Ck mi+1

2
L2 + mi

2
L2

+ Ck ∇mi
2
L2 − ∇mi+1

2
L2 .

The constant C may depend on α1, α2, θ1, θ2, m∗
C(H2), and s∗

C(H2(D̃))
(which in

turn depend on m0 H2 and s0 H2(D̃)
) but is independent of k. By choosing θ1, θ2 >

0 satisfying θ1 + θ2 < α1 and summing over i = 0, . . . , j − 1 for j ∈ {1, . . . , N} we
deduce

mj
2
L2 +

j−1

i=0

mi+1 − mi
2
L2 + k

j−1

i=0

∇mi+1
2
L2

≤ C m0
2
H1 + Ck

j−1

i=0

fi+1
1

2
L2 + Ck

j−1

i=0

si 2
L2(D̃)

+ Ck

j

i=0

mi
2
L2 ,

≤ C 1 + k

j−1

i=0

si 2
L2(D̃)

+ Ck

j

i=0

mi
2
L2 ,

where in the last step we used (4.21). Applying the discrete Gronwall Lemma, we
obtain

mj
2
L2 +

j−1

i=0

mi+1 − mi
2
L2 + k

j−1

i=0

∇mi+1
2
L2 ≤ C 1 + k

j−1

i=0

si 2
L2(D̃)

, (4.26)

where C > 0 is a constant independent of the time step size k.
For higher order bound, formally we choose φ = − mi+1 in (4.22), and use

integration by parts along with (4.24) to obtain
1

2k
∇mi+1

2
L2 − ∇mi

2
L2 + ∇mi+1 − ∇mi

2
L2 + α1 mi+1

2
L2

= −α1 |∇m∗
i |2mi+1, mi+1

L2
+ α2 mi+1 × ( m∗

i+1 + s∗i+1), mi+1
L2

+ α2 m∗
i+1 × si − α1(si − m∗

i+1 m∗
i+1, si ) − fi+1

1 , mi+1
L2

+α1 mi m∗
i+1, s

∗
i+1 + m∗

i+1 mi , s∗i+1 , mi+1
L2

− 2α1 ∇m∗
i ,∇mi m∗

i+1, mi+1
L2

= I6 + I7 + I8 + I9 + I10. (4.27)
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Similarly to the above estimate, by using Young’s inequality and (4.17), we have, for
any θ1, . . . , θ5 > 0,

|I6| ≤ α1 mi+1 L2 ∇m∗
i

2
L∞ mi+1 L2 ≤ θ1 mi+1

2
L2 + C(θ1) mi+1

2
L2 ,

|I7| ≤ α2 mi+1 L2 mi+1 L∞ m∗
i+1 L2 + s∗i+1 L2(D̃)

≤ θ2 mi+1
2
L2 + C(θ2) mi+1

2
H1 ,

|I8| ≤ θ3 mi+1
2
L2 + C(θ3) si 2

L2(D̃)
+ fi+1

1
2
L2 ≤ θ3 mi+1

2
L2 + C(θ3) 1 + si 2

L2(D̃)
,

|I9| ≤ C s∗i+1 L∞(D̃)
mi L2 mi+1 L2 ≤ θ4 mi+1

2
L2 + C(θ4) mi

2
L2 ,

|I10| ≤ θ5 mi+1
2
L2 + C(θ5) ∇m∗

i
2
L∞ ∇mi

2
L2 ≤ θ5 mi+1

2
L2 + C(θ5) ∇mi

2
L2 ,

where all the constants may also depend on α1, α2, m∗, s∗, and f1. Inserting all the
above estimates into (4.27) and choosing θ1, . . . , θ5 > 0 such that 5

i=1 θi < α1, we
have (after multiplying by 2k)

∇mi+1
2
L2 − ∇mi

2
L2 + ∇mi+1 − ∇mi

2
L2 + k mi+1

2
L2

≤ Ck 1 + si 2
L2(D̃)

+ Ck mi
2
L2 + mi+1

2
L2 + Ck ∇mi

2
L2 + ∇mi+1

2
L2

≤ Ck 1 + si 2
L2(D̃)

+ Ck 1 + k

i

=0

s 2
L2(D̃)

+ Ck ∇mi
2
L2 + ∇mi+1

2
L2

where in the last step we used (4.26). By summing over i from 0 to j for j ∈
{1, . . . , N} and using (4.26) again, we deduce

∇mj+1
2
L2 − ∇m0

2
L2 +

j

i=0

∇(mi+1 − mi )
2
L2 + k

j

i=0

mi+1
2
L2

≤ C 1 + k

j

i=0

si 2
L2(D̃)

+ C 1 + k2
j

i=0

i

=0

s 2
L2(D̃)

+ Ck

j+1

i=0

∇mi
2
L2

≤ C 1 + k

j

i=0

si 2
L2(D̃)

,

which implies

∇mj+1
2
L2 +

j

i=0

∇(mi+1 − mi )
2
L2 + k

j

i=0

mi+1
2
L2 (4.28)

≤ C 1 + k

j

i=1

si 2
L2(D̃)

,

where the constant C depends on m0 H1 , m∗
C(H2), s∗

L2(D̃)
, and T , but it is

independent of k.
In order to derive the bound for mi from (4.26) and (4.28), we need to estimate
j

i=1 si 2
L2(D̃)

. Choosing ψ = si+1 as test function in (4.23) and using the bound-

edness of m∗, the Cauchy–Schwarz inequality, and Young’s inequality along with
(2.1), we have for any θ > 0

1

2k
si+1

2
L2(D̃)

− si 2
L2(D̃)

+ si+1 − si 2
L2(D̃)

+ (D∗ − βD∗) ∇si+1
2
L2(D̃)

+ D∗ si+1
2
L2(D̃)

≤ θ ∇si+1
2
L2(D̃)

+ si+1
2
L2(D̃)

+ C(θ) mi+1
2
L∞ ∇s∗i+1

2
L2(D̃)

+ s∗i+1
2
L2(D̃)

+ j∗
i+1

2
L2(D̃)

+C(θ) fi+1
2

2
L2(D̃)

.
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By using (4.17), we obtain after rearranging the equation

1

2k
si+1

2
L2(D̃)

− si 2
L2(D̃)

+ si+1 − si 2
L2(D̃)

+ (D∗ − βD∗ − θ) ∇si+1
2
L2(D̃)

+ (D∗ − θ) si+1
2
L2(D̃)

≤ C(θ) mi+1
2
H1 1 + j∗

i+1
2
L2(D̃)

+ C(θ) fi+1
2

2
L2(D̃)

.

By choosing θ such that D∗ −βD∗ −θ > 0, using (4.26) and (4.28), and multiplying
the resulting equation by 2k, we deduce

si+1
2
L2(D̃)

− si 2
L2(D̃)

+ si+1 − si 2
L2(D̃)

+ k si+1
2
H1(D̃)

≤ Ck 1 + k

i

=0

s 2
L2(D̃)

1 + j∗
i+1

2
L2(D̃)

+ Ck fi+1
2

2
L2(D̃)

≤ Ck 1 + j∗
i+1

2
L2(D̃)

+ Ck2 1 + j∗
i+1

2
L2(D̃)

j

=0

s 2
L2(D̃)

+ Ck fi+1
2

2
L2(D̃)

for any j > i. By summing over i from 0 to j − 1 for j ∈ {1, . . . , N}, we deduce

sj 2
L2(D̃)

+
j−1

i=0

si+1 − si 2
L2(D̃)

+ k

j−1

i=0

si+1
2
H1(D̃)

≤ C 1 + k

j−1

i=0

j∗
i+1

2
L2(D̃)

+ Ck2
j−1

i=0

1 + j∗
i+1

2
L2(D̃)

j

=0

s 2
L2(D̃)

+ Ck

j−1

i=0

fi+1
2

2
L2(D̃)

.

By using (4.21), we have

sj 2
L2(D̃)

+ j−1
i=0 si+1 − si 2

L2(D̃)
+ k

j−1
i=0 si+1

2
H1(D̃)

≤ C + Ck
j

=0 s 2
L2(D̃)

.

By using the discrete Gronwall lemma, we deduce

sj 2
L2(D̃)

+ j−1
i=0 si+1 − si 2

L2(D̃)
+ k

j−1
i=0 si+1

2
H1(D̃)

≤ C. (4.29)

Using (4.29) in (4.26) and (4.28), we obtain

max
0≤i≤N

mi
2
H1 +

N−1

i=0

mi+1 − mi
2
H1 + k

N−1

i=0

mi+1
2
H2 ≤ C , (4.30)

where C is a constant independent of the time step size k.
Hence, by choosing ψ = − si+1 in (4.23) and using integration by parts along

with (4.17), we have
1

2k
∇si+1

2
L2(D̃)

− ∇si 2
L2(D̃)

+ ∇(si+1 − si ) 2
L2(D̃)

+ D∗ si+1
2
L2(D̃)

+ D∗ ∇si+1
2
L2(D̃)

≤ ( + βD∗) si+1
2
L2(D̃)

+ C( , β,D0) mi+1
2
H1 + C( , β,D0) si+1

2
L2(D̃)

+ ∇si+1
2
L2(D̃)

+C( ) ∇mi+1
2
L2 j∗

i+1
2
H 1(D̃)

+ mi+1
2
H1 ∇j∗

i+1
2
L2(D̃)

+ C( ) fi+1
2

2
L2(D̃)

.

Note, in the calculation above, we used the boundedness of D0 (D0 ∈ H 2(D̃)) to
have

∇D0 L∞ ≤ C. (4.31)
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By multiplying the above equation by 2k, using (4.29) and (4.30), we deduce, after
rearranging the equation and choosing such that D∗ − − βD∗ > 0,

∇si+1
2
L2(D̃)

− ∇si 2
L2(D̃)

+ ∇(si+1 − si ) 2
L2(D̃)

+ k si+1
2
L2(D̃)

≤ Ck 1 + j∗
i+1

2
H 1(D̃)

+ fi+1
2

2
L2(D̃)

+ Ck ∇si+1
2
L2(D̃)

.

By summing over i from 0 to j − 1 for j ∈ {1, . . . , N}, using (4.21), and invoking
the discrete Gronwall lemma, we deduce

∇sj 2
L2(D̃)

+
j−1

i=0

∇(si+1 − si ) 2
L2(D̃)

+ k

j−1

i=0

si+1
2
L2(D̃)

≤ C

for some constant C > 0 independent of k. Combining this equation with (4.29) gives

max
1≤j≤N

sj 2
H1(D̃)

+
N−1

i=0

si+1 − si 2
H1(D̃)

+ k

N−1

i=0

si+1
2
H2(D̃)

≤ C. (4.32)

Step IV (Continuation and its bound): Let 0 = t0 < t1 < t2 · · · < tN = T be a
uniform partition of [0, T ] with time step size k = T/N for some N ∈ N

∗. For any
sequence (xi )

N
i=0 ⊂ X, where X is a Banach space, we define the difference quotient

dtxi+1 = (xi+1 − xi )/k for 0 ≤ i ≤ N − 1. The global time interpolant Xk ∈ C(X)

of (xi )
N
i=0 is defined via

Xk(t) := t − ti

k
xi+1 + ti+1 − t

k
xi ∀t ∈ (ti , ti+1].

Moreover, we define the piecewise constant interpolants (in time) X+
k and X−

k as
follows:

X+
k (t) := xi+1, X−

k (t) := xi ∀t ∈ (ti , ti+1] (4.33)

with x−1 = x0 and xN+1 = 0.
We now show that the sequence {∂tMk} is bounded in L2(L2). To do so, let 0 ≤

i ≤ N − 1 and t ∈ (ti , ti+1]. Choosing the test function φ = dtmi+1 in (4.22) and
using integration by parts, we obtain (recalling (4.17) again)

dtmi+1
2
L2 + α1

2k
∇mi+1

2
L2 − ∇mi

2
L2 + ∇(mi+1 − mi )

2
L2

≤ 1

2
dtmi+1

2
L2 + C mi+1

2
H2 + C fi+1

1
2
L2 + si 2

L2(D̃)
+ mi

2
H1 .

Hence, by using (4.28) and (4.32), as well as rearranging the equation, we have

dtmi+1
2
L2 + 1

k
∇mi+1

2
L2 − ∇mi

2
L2 + ∇(mi+1 − mi )

2
L2 ≤ C mi+1

2
L2

+ C 1 + fi+1
1

2
L2 .
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Integrating over the time interval (ti , ti+1) and summing over i, we obtain

∂tMk
2
L2(L2)

=
N−1

i=0

ti+1

ti

dtmi+1
2
L2 dt

≤ C

N−1

i=0

k mi+1
2
L2 + C 1 +

N−1

i=0

k fi+1
1

2
L2(D̃)

≤ C, (4.34)

where we used (4.21) and (4.28) in the last step.
Next we show the boundedness of the sequence {∂tSk}k>0 in L2(L2(D̃)). For 0 ≤

i ≤ N − 1, let t ∈ (ti , ti+1]. Then using the test function ψ = dt si+1 in (4.23) and
integration by parts, we get (recalling (4.17) and (4.31))

dt si+1
2
L2(D̃)

+ 1

2k
D0∇si+1

2
L2(D̃)

− D0∇si 2
L2(D̃)

+ D0∇(si+1 − si ) 2
L2(D̃)

+ 1

2k
D0si+1

2
L2(D̃)

− D0si+1
2
L2(D̃)

+ D0(si+1 − si ) 2
L2(D̃)

≤ 1

2
dt si+1

2
L2(D̃)

+ C si+1
2
H2(D̃)

+ C mi+1
2
H1 1 + j∗

i+1
2
H1(D̃)

+C mi+1
2
L2 + fi+1

2
2
L2(D̃)

,

or equivalently,

dt si+1
2
L2(D̃)

+ 1

k
D0∇si+1

2
L2(D̃)

− D0∇si 2
L2(D̃)

+ D0∇(si+1 − si ) 2
L2(D̃)

+1

k
D0si+1

2
L2(D̃)

− D0si+1
2
L2(D̃)

+ D0(si+1 − si ) 2
L2(D̃)

≤ C si+1
2
L2(D̃)

+ C 1 + j∗
i+1

2
H1(D̃)

+ fi+1
2

2
L2(D̃)

.

Integrating over the time interval (ti , ti+1) and summing over i, we get

∂tSk
2
L2(L2(D̃))

=
N−1

i=0

ti+1

ti

dt si+1
2
L2(D̃)

dt (4.35)

≤ C

N−1

i=0

k si+1
2
L2(D̃)

+ C 1 +
N−1

i=0

k j∗
i+1

2
H1(D̃)

+
N−1

i=0

k fi+1
2

2
L2(D̃)

≤ C,

where in the last step we used (4.21) and (4.32).
Step V (Solvability of (4.14) and (4.15)): In view of (4.30), (4.32), (4.34), and

(4.35), there exists a constant C > 0, independent of the discretization parameter
k > 0, such that

M±
k L2(H2) + M±

k L∞(H1) + Mk L2(H2) + Mk L∞(H1) + Mk H 1(L2) ≤ C,

S±
k L2(H2(D̃))

+ S±
k L∞(H1(D̃))

+ Sk L2(H2(D̃))
+ Sk L∞(H1(D̃))

+ Sk H 1(L2(D̃))
≤ C.

(4.36)

Inequality (4.30) and simple calculations reveal

M+
k − Mk

2
L2(L2)

=
N−1

j=0

mj+1 − mj
2
L2

tj+1

tj

tj+1 − t

k

2
dt

= k

3

N−1

j=0

mj+1 − mj
2
L2 → 0
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as k → 0. Similarly, it can be shown that M−
k −Mk → 0 in L2(L2) and S±

k −Sk → 0
in L2(L2(D̃)). Therefore, it follows from (4.36) that there exists (m, s) ∈ M × S
(defined by (4.9)) such that the following statements hold:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mk m in L2(H2) and H 1(L2), Mk
∗
m in L∞(H1), Mk → m in L2(L2),

M±
k m in L2(H2), M±

k

∗
m in L∞(H1), M±

k → m in L2(L2),

Sk s in L2(H2(D̃)) and H 1(L2(D̃)), Sk
∗
s in L∞(H1(D̃)), Sk → s in L2(L2(D̃)),

S±
k s in L2(H2(D̃)), S±

k

∗
s in L∞(H1(D̃)), S±

k → s in L2(L2(D̃)).
(4.37)

Moreover, if M∗±
k are defined from m∗

i = m∗(ti) by (4.33) then, since m∗ ∈
C([0, T ],H2), it can be shown, using the uniform continuity of m∗, that

M∗±
k − m∗

L2(H2) → 0 as k → 0. (4.38)

We now prove that (m, s) given in (4.37) is a solution to (4.14) and (4.15). It
follows from (4.22) and (4.23) that Mk , Mk , M±

k , Sk , and S±
k satisfy the following

equations

T

0
∂tMk,φ

L2
dt + α1

T

0
∇M+

k ,∇φ
L2

dt − α1

T

0
|∇M∗−

k |2M+
k ,φ

L2
dt

−α2

T

0
∇M+

k ,∇φ × M∗+
k

L2
dt − α2

T

0
∇M∗+

k × ∇M+
k ,φ

L2
dt

−α2

T

0
∇M∗+

k ,∇φ × M+
k + φ × ∇M+

k
L2

dt + α2

T

0
M+

k × S∗+
k ,φ dt

=
T

0
F−

1k + α1 S−
k − M∗+

k M∗+
k ,S−

k − M−
k M∗+

k ,S∗+
k − M∗+

k M−
k ,S∗+

k

−α2 M
∗+
k × S−

k + 2α1 ∇M∗−
k ,∇M−

k M∗+
k ,φ

L2
dt ∀φ ∈ H

1 (4.39)

and
T

0
∂tSk,ψ

L2(D̃)
dt +

T

0
D0∇S+

k ,∇ψ
L2(D̃)

dt +
T

0
D0S

+
k ,ψ

L2(D̃)
dt (4.40)

+
T

0
D0S

+
k × M∗+

k ,ψ
L2

dt − β
T

0
D0M

∗+
k ∇S+

k ,M∗+
k ,∇ψ

L2(D̃)
dt

=
T

0
βD0 M+

k ∇S∗+
k ,M+

k + M∗+
k ∇S∗+

k ,M+
k + M+

k J
∗+
k ,∇ψ

L2(D̃)
dt

−
T

0
S∗+

k × M+
k ,ψ

L2(D̃)
dt +

T

0
F+

2k,ψ
L2(D̃)

dt ∀ψ ∈ H
1(D̃).

We discuss the passing to the limit (when k → 0) of (4.39) only. Similar arguments
hold for (4.40). The convergence in (4.37) implies, for any φ ∈ C∞(C∞(D̃)),

T

0
∂tMk, φ L2 dt →

T

0
∂tm, φ

L2 dt,
T

0
∇M+

k , ∇φ
L2 dt → ∇m, ∇φ

L2 dt,

T

0
S−

k , φ
L2 dt → s, φ

L2 dt .

The convergence of the linear term
T

0
F−

1k, φ L2 dt→
T

0
f1, φ L2dt
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can be obtained by using (4.20) as follows:

T

0
F−

1k − f1, φ L2 dt =
N−1

j=0

tj+1

tj

kf(tj ) − f1(t), φ L2 dt =
N−1

j=0

tj+1

tj

( kf(t) − f1(t), φ)L2 dt

≤ φ L2

T

0
kf1(t) − f1(t) L2 dt ≤ C kf1 − f1 L2(L2) → 0, k → 0.

The convergence of the nonlinear terms in (4.39) can be derived by using (4.36),
(4.37), and (4.38). We present detailed estimates for one term, namely

T

0 |∇M∗−
k |2M+

k , φ
L2 dt . We have

T

0
|∇M∗−

k |2M+
k − |∇m∗|2m,φ

L2
dt

≤
T

0
|∇M∗−

k |2(M+
k − m),φ

L2
dt +

T

0
(|∇M∗−

k |2 − |∇m∗|2)m,φ
L2

dt

≤ m∗
C(H2) φ H1 M+

k − m L2(L2) +
T

0 D

|∇M∗−
k | + |∇m∗| |φ| ∇M∗−

k − ∇m∗ |m| dx dt

≤ C M+
k − m L2(L2) + 2 m∗

C(H2) φ H1 M∗−
k − m∗

L2(H1) m L2(L2)

≤ C M+
k − m L2(L2) + C M∗−

k − m∗
L2(H1) → 0, k → 0.

The convergence of other nonlinear terms in (4.39) can be shown in the same manner.
Therefore, by letting k → 0 in (4.39) we deduce

T

0
∂tm, φ

L2
dt + α1

T

0
∇m, ∇φ

L2
dt − α1

T

0
|∇m∗|2m, φ

L2
dt

−α2

T

0
∇m, ∇φ × m∗

L2
dt − α2

T

0
∇m∗ × ∇m, φ

L2
dt

−α2

T

0
∇m∗, ∇φ × m + φ × ∇m

L2
dt + α2

T

0
m × s∗, φ dt

=
T

0
f1 + α1 s − m∗ m∗, s − m m∗, s∗ − m∗ m, s∗

−α2 m∗ × s + 2α1 ∇m∗, ∇m m∗, φ
L2

dt ∀φ ∈ H
1,

or equivalently (by using integration by parts),
T

0
∂tm,φ

L2
dt − α1

T

0
m,φ

L2
dt − α1

T

0
|∇m∗|2m,φ

L2
dt

+α2

T

0
m∗ × m,φ

L2
dt + α2

T

0
m × m∗,φ

L2
dt + α2

T

0
m × s∗,φ dt

=
T

0
f1 + α1 s − m∗ m∗, s − m m∗, s∗ − m∗ m, s∗

−α2 m∗ × s + 2α1 ∇m∗,∇m m∗,φ
L2

dt ∀φ ∈ H
1,

which implies the first equation in (4.14).
To show the second equation in (4.14), namely m(0) = f3, we choose the test

function φ ∈ C∞(C∞(D)) such that φ(T ) = 0. Then integration by parts gives

T

0
∂tMk, φ L2 dt = −

T

0
Mk, ∂tφ L2 dt − f3, φ(0)

L2 .
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Letting k → 0 we obtain

T

0
∂tm, φ

L2 dt = −
T

0
m, ∂tφ L2 dt − f3, φ(0)

L2 .

Using integration by parts again gives the required result. Similarly, one can easily
show that (m, s) satisfies (4.15), completing the proof of the lemma.

4.3 Proof of Theorem 2.3

Since (m∗, s∗,j∗) is a regular point of defined in (4.11) (cf. Lemma 4.4), one can
use Lagrange multiplier theorem [18, Theorem 1, Chapter 9] to show that there exists
(z1, z2, ξ1, ξ2) ∈ L2(L2) × L2(L2(D̃)) × (H2)∗ ×H

2(D̃)∗ such that the Lagrangian
functional L : M × S × J → R, given by

L(m, s,j) := F(m, s,j) +
2

i=1

zi , ei(m, s,j) +
2

i=1

ξ i , ei+2(m, s,j) ,

is stationary at the point (m∗, s∗,j∗). In other words, DL(m∗, s∗,j∗) = 0, where

DL(m∗, s∗,j∗) := DF(m∗, s∗,j∗) +
2

i=1

zi , Dei(m∗, s∗,j∗)

+
2

i=1

ξ i , Dei+2(m∗, s∗,j∗) .

Thus, by computing the directional derivative of L with respect to j, m and s, respec-
tively, we arrive at the optimality condition (2.5), the adjoint (2.6) with z1(T ) =
−(1 − κ)∇ψ(m∗(T ))/2, and the adjoint (2.7) with z2(T ) = 0 respectively.

4.4 Regularity of the adjoint and optimal control

In view of the Lagrange multiplier theorem, the adjoint variables z1 and z2 satisfy
(z1, z2) ∈ L2(L2) × L2(L2(D̃)). But one can expect better regularity properties
for these adjoint variables and the optimal control j∗. Regarding this, we have the
following lemma.

Lemma 4.5 Assume that D0 ∈ H 2(D̃) with D∗ > 2βD∗. Let (m∗, s∗,j∗) be an
optimal solution of Problem 4.1, and the adjoint variables (z1, z2) satisfy the system
(2.5), (2.6), and (2.7). Then

i) z2 ∈ L∞(H1(D̃)) ∩ L2(H2(D̃)) ∩ H 1(L2(D̃));
ii) j∗ ∈ L∞(H 3(D̃));
iii) z1 ∈ L∞(H1) ∩ L2(H2) ∩ H 1(L2).
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Proof Proof of i): Testing (2.7) formally by z2 and using (2.1) along with the
Cauchy–Schwarz inequality, we get

−1

2

d

dt
z2

2
L2(D̃)

+ (D∗ − βD∗) ∇z2
2
L2(D̃)

≤ C z2
2
L2(D̃)

+ z1
2
L2 .

Using the terminal condition z2(T ) = 0 (see (2.8)) and the condition (z1, z2) ∈
L2(L2) × L2(L2(D̃)), we deduce after integrating over [t, T ],

z2 ∈ L∞(L2(D̃)) ∩ L2(H1(D̃)) . (4.41)

Again, testing (2.7) formally by − z2 and using Young’s inequality with some >
0 :

−1

2

d

dt
∇z2

2
L2(D̃)

+ D∗ z2
2
L2(D̃)

≤ ( + βD∗) z2
2
L2(D̃)

+ C( , α, β) z1
2
L2 + ∇z2

2
L2(D̃)

∇m∗ 2
L∞ + ∇D0

2
L2(D̃)

.

Choosing < D∗/2 and using (4.17) along with (4.41) we have, after integrating
over [t, T ],

z2 ∈ L∞(H1(D̃)) ∩ L2(H2(D̃)) . (4.42)

Furthermore, testing (2.7) formally by −∂tz2, using integration by parts and Young’s
inequality, after rearranging the equation, we have

∂tz2
2
L2(D̃)

− 1

2

d

dt
D0∇z2

2
L2(D̃)

≤ ∂tz2
2
L2(D̃)

+ C( , α, β) z2
2
L2(D̃)

+ ∇z2
2
L2(D̃)

∇D0
2
L∞(D̃)

+ ∇m∗ 2
L∞

+ z2
2
L2(D̃)

+ z1
2
L2 .

Choosing sufficiently small, using (4.42) and (4.17), and integrating over [t, T ] we
infer

z2 ∈ H 1(L2(D̃)).

Thus, we complete the proof of assertion i).
Proof of ii): Test (2.5) with j∗ and − j∗ and then integrate with respect to x

along with the Cauchy–Schwarz inequality. The resulting inequality becomes

j∗ 2
L2(D̃)

+ ∇j∗ 2
L2(D̃)

+ j∗ 2
L2(D̃)

+ ∇ j∗ 2
L2(D̃)

≤ C ∇z2
2
L2(D̃)

.

Thanks to i), we see from the above estimate that j∗ ∈ L∞(H 3(D̃)).
Proof of iii): Testing (2.6) with z1, and − z1, we have, thanks to the Cauchy–

Schwarz inequality, the boundedness of m∗, and the embedding of L∞ between L
2

and H
1

− 1

2

d

dt
z1

2
L2 + α1 ∇z1

2
L2 ≤ ∇z1

2
L2 + C m̄ − m∗ 2

L2 + C ∇z2
2
L2(D̃)

+ z2
2
L2(D̃)

s∗ 2
L∞(D̃)

+ C 1 + s∗ 4
H1(D̃)

+ m∗ 4
H2 + j∗ 2

H 1(D̃)
z1

2
L2

and

−1

2

d

dt
∇z1

2
L2 + α1 z1

2
L2 ≤ z1

2
L2 + C s∗ 2

H1(D̃)
+ m∗ 4

H2 + m∗ 2
H2 z1

2
H1

+ m̄ − m∗ 2
L2 + ∇z2

2
L2(D̃)

j∗ 2
H 1(D̃)

+ s∗ 2
H2(D̃)

,
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for some > 0. We now use part i) and part ii) above, Lemma 4.2, and the condition
on z1(T ) given in (2.8) to conclude that z1 ∈ L∞(H1) ∩ L2(H2). As in the proof of
part i), by testing (2.6) with ∂tz1, one can easily show that ∂tz1

2
L2(L2)

≤ C, which
completes the proof of iii).

5 Numerical experiments

The following numerical experiments are carried out using the FEniCS auto-
mated code generation system (https://fenicsproject.org) version 2019 and the
tlm adjoint library (https://github.com/jrmaddison/tlm adjoint). FEniCS enables
a high-level syntax representation of the complex numerical equations, as well as an
efficient implementation using automated tools. On the other hand, the tlm adjoint
library is used to derive the associated adjoint model, which computes the required
derivatives of the cost functional [11, 15, 19, 27]. In general, the implementation
only requires the users to define a suitable finite element function space, the com-
putational domain and mesh, the weak formulation, and a few other specifics. The
FEniCS system and the tlm adjoint library enable automatic derivation of the
finite element equation, the discrete tangent-linear and adjoint models. Nevertheless,
we would like to lay out more details for pedagogical purpose. Generally, the PDE
constrained optimization algorithm contains two main parts. The first part is to solve
the forward problem, while the second part is to achieve optimization.

We elaborate the first part here. First we note that the weak equations in
Definition 2.1 can be rewritten as

mt , φ
D

+ α1 ∇m, ∇φ
D

= α1 |∇m|2m, φ
D

− α1 m × (m × s),φ
D

+α2 m × ∇m, ∇φ
D

− α2 m × s,φ
D

and

st , ψ
D̃

+ a(s,ψ) = β μβ

e
m ⊗ j, ∇ψ

D
,

with

a(s,ψ) := 2

λ1
D0s,ψ

D̃
+ D0∇s,∇ψ

D̃
− ββ D0m ⊗ (∇s · m), ∇ψ

D

+ 2

λ2
D0s × m, ψ

D
,

where we recover the constants γ0, c, β , e, μβ λ1, and λ2 as in problem (1.1)–(1.3).
The fully discrete schemes to solve these equations are (5.1) and (5.2) below. For the
time discretization, we recall (4.16) and use the backward Euler scheme. The spatial
discretization is determined by a shape-regular triangulation Th of D and T̃h of D̃

into tetrahedra such that the two triangulations agree on D.
The finite element spaces are defined by

S1(Th) := {φh ∈ C(D;R3) : φh|τ ∈ (P1(τ ))3 for all τ ∈ Th},
S1(T̃h) := {ψh ∈ C(D̃;R3) : ψh|τ ∈ (P1(τ ))3 for all τ ∈ T̃h},
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where P1(τ ) is the space of polynomials of degree at most 1 on τ . Supposing that
the normalized magnetization mj and spin accumulation sj at the j th time step are
known, FEniCS uses Newton’s scheme to obtain m̃j+1 by solving the nonlinear
system (5.1). Then, mj+1 is obtained by normalizing m̃j+1. Afterwards, FEniCS cal-
culates sj+1 using the value of mj+1 and sj by solving (5.2). The method here is
the implicit Euler method due to the spin accumulation PDE (1.2) being linear. The
complete algorithm reads as follows:

(i) Find m̃j+1
h ∈ S1(Th) such that

m̃j+1
h − mj

h

k
, φh

D
+ α1 ∇m̃j+1

h , ∇φh
D

= α1 |∇mj
h|2m̃j+1

h , φh
D

− α1 m̃j+1
h × (mj

h×sjh), φh
D

+ α2 m̃j+1
h × ∇m̃j+1

h , ∇φh
D

− α2 m̃j+1
h ×sjh, φh

D
.

(5.1)

(ii) Normalize m̃j+1
h by

mj+1
h = m̃j+1

h

|m̃j+1
h |

nodewise,

i.e. mj+1
h is the normalized m̃j+1

h .

(iii) Find sj+1
h ∈ S1(T̃h) such that

sj+1
h − sjh

k
, ψh

D̃
+ a(sj+1

h , ψh) = βμβ

e
mj+1

h ⊗ j, ∇ψh
D

, (5.2)

We note that (5.2) to find the spin accumulation has been used in [3].

The optimization part of the algorithm reads as follows: Given a target m̄, we
introduce the standard procedures for achieving the minimizer π∗ of the discretized
cost functional F(πn) defined in (1.6). In general, the steps are:

1. Choose an initial guess for the current density J(0) = {j(0)
j }Jj=1. The initial guess

of control variables can be chosen based on physical laws or previous studies in
order to save the computation time.

2. For i = 0, 1, 2, ... do:

(a) Determine (M(i),S(i)) = {(m(i)
j , s(i)j )}Jj=1 with J(i) via the fully discretized

coupled LLG-Spin accumulation system (5.1) and (5.2). The assembly code
was generated by FEniCS using Gaussian quadrature for integration. We
note that the upper index indicates the optimization step, whereas the lower
index indicates the time step.

(b) Evaluate the cost functional F( (i)) defined by (1.6) at (i) =
(M(i),S(i),J(i)).

(c) If the targeted value for the cost functional is fulfilled, terminate the iteration
and set ∗ = (i). Otherwise, proceed to (d).

(d) Determine the next control variable J(i+1) = {j(i+1)
j }Jj=1. Here, evalua-

tions of the derivative dF/dJ(i+1) are used to determine a search direction
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d(i) in which the functional F is decreasing. We used the L-BFGS-B algo-
rithm [22], which is an iterative method for solving unconstrained nonlinear
optimization problems from the Scipy library [32].

(e) Set i = i + 1 and return to (a).

Step (d) is crucial as the main task of the gradient based optimization is to determine
an improved choice of control variable in order to achieve fast convergence to the
optimal solution.

In Section 5.1 we show the numerical results for the case of one-dimensional
domains D and D̃. Even though the analysis presented in previous sections does
not apply for multi-dimensional domains, we still experiment with D = D̃ ⊂ R

3;
the results are shown in Section 5.2. In all experiments in both sections, the cost
functional F(π), see (1.5), is defined with the terminal payoff

(m(T )) = m(T ) − m̄(T ) 2
L2

and parameters
δ1 = δ2 = δ3 = 0.01.

We also choose κ = 1 in F(π) for all simulations, except the ones in Section 5.1.4,
where we experiment on different values of κ . The other parameters in (1.1), (1.2),
and (1.3) are chosen to be

γ0 = c = β = e = μβ = D0 = 1, λ1 = λ2 = 2, β = 0.5.

Fig. 1 Example 1: j = 0 and m0 = (sin(x), cos(x)/
√

2, cos(x)/
√

2), no target. The blue arrows indicate
the magnetization m, while the green arrows indicate the spin accumulation s
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5.1 Experiments for 1D problem

In this section, we present numerical results for

D = D̃ = [0, 1] and J(0) = 1.0.

The stopping criterion is

F( i) < 0.005 or
F( (i)) − F( (i−1))

F ( (i−1))
≤ 10−10. (5.3)

We apply uniform partitions with space mesh size h = 0.01 and time step k =
0.0005. We observe that when a larger value of k is chosen, e.g., k = 0.5, the numer-
ical simulation becomes unstable and Newton’s method used to solve the nonlinear
system (5.1) fails to converge.

5.1.1 No targets

Example 1: In this example, we show the evolutions of magnetization m and the spin
accumulation s when the control variable j = 0 and there are no targets (Fig. 1), with

Fig. 2 Example 2: m0 = (1, 0, 0) and m̄ = (−1, 0, 0)
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Fig. 3 Example 3: m0 = (1, 0, 0) and m̄ = (0, 1, 0)

the initial data m0 given by m0 = (sin(x), cos(x)/
√

2, cos(x)/
√

2) and the terminal
time T = 0.3.

5.1.2 Single targets

Example 2: In this example, the initial states, total running time, and the assimilation
target are

m0(x) = (1, 0, 0), s0(x) = (1, 1, 1), T = 0.4, and m̄ = (−1, 0, 0).

Figure 2 (1a)–(1e) show the progress of assimilation of m. The final iteration shown
in Fig. 2 (1e) gives a good approximation of the target magnetization m̄.
Example 3: In this example, the given data are

m0(x) = (1, 0, 0) s0(x) = (1, 1, 1), T = 0.4, and m̄ = (0, 1, 0).

The simulation is presented in Fig. 3 (1a)–(1e).
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Fig. 4 Example 4: m0 = sin(x), cos(x)/
√

2, cos(x)/
√

2 and m̄ = (1, 0, 0)

Example 4: In this example, the given data are

m0(x) = sin(x),
cos(x)√

2
,

cos(x)√
2

, s0(x) = (1, 1, 1), T = 0.3, and m̄ = (1, 0, 0).

The simulation is presented in Fig. 4 (1a)–(1e).
For all three examples 2, 3, and 4, we show in Fig. 5 two comparisons. The left

column (a) plots the cost functional F versus the optimization iteration. The right col-
umn (b) plots the relative change δF/F versus the optimization iteration. A general
decreasing trend can be seen which indicates the numerical method is valid.

5.1.3 Switching type initial and target profile

Example 5: In this example, we show the numerical simulations when the switching
type initial conditions and the targets are given. The total time is chosen to be T =
0.6. The switching moment Ts = 0.3. The initial states are

m0(x) = (1, 0, 0), when x ∈ [0.0, 0.5)

sin(x),
cos(x)√

2
,

cos(x)√
2

, when x ∈ [0.5, 1.0).
(5.4)
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Fig. 5 Shown are the two comparisons. (a) shows cost functional F versus the optimization iteration in all
three examples; (b) shows the relative change δF/F versus the optimization iteration in all three examples

The switching targets are

m̄(x) = (0, 1, 0) for t ∈ [0, 0.3),

(0, −1, 0) for t ∈ [0.3, 0.6).
(5.5)

Figure 6 shows the evolution of the optimal m∗ with respect to time t . Figure 6 (1d)
is the simulation at the switching moment t = 0.3.

5.1.4 Multiple cost functional settings

In the following two examples, we choose different values of κ for the cost functional
in (1.5).
Example 6: The given data are:

m0(x) = sin(x),
cos(x)√

2
,

cos(x)√
2

, s0(x) = (1, 1, 1), T = 0.3,

m̄(x) = (1, 0, 0), and κ = 0.0.

Example 7: The given data are:

m0(x) = sin(x),
cos(x)√

2
,

cos(x)√
2

, s0(x) = (1, 1, 1), T = 0.3,

m̄(x) = (1, 0, 0), and κ = 0.5.
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Fig. 6 Example 5: Optimal solutions m∗ with switching initial (5.4) and target profile (5.5)

The assimilation process for Example 6 is shown in Fig. 7 and for Example 7 in
Fig. 8.

5.2 Experiments for 3D problem

In this section, we present numerical results for

D = D̃ = [0, 1]3 and J(0) = (1, 1, 1).

The same stopping criterion (5.3) is used. We apply uniform partition with space
mesh size h = 0.2 and time step k = 0.01.
Example 8: In this example, the given data are

s0(x, y, z) := (1, 1, 1), m0(x, y, z) := (1, 0, 0), and m̄ = (−1, 0, 0).

The progress of the assimilation is presented in Fig. 9 (a)–(d).
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Fig. 7 Example 6: m0(x) = sin(x), cos(x)/
√

2, cos(x)/
√

2 , m̄(x) = (1, 0, 0), and κ = 0.0

Example 9: In this example, the given data are

s0(x, y, z) := (1, 1, 1), m0(x, y, z) := (1, 0, 0), and m̄ = (0, 1, 0).

It is noted that in order to achieve optimal control in this example, we need to add an
extra external field, namely the Zeeman field, to the effective field in (1.4). Other-
wise, the minimization of the cost functional cannot be obtained. The effective field
in this example becomes

Heff := m − ce3,

where e3 = (0, 0, 1) and c is some physical constant, chosen to be 1 in this example.
The assimilation is shown in Fig. 10 (a)–(d).
Example 10: In this example, the given data are chosen to be

s0(x, y, z) := (1, 1, 1), m0(x, y, z) := sin(x),
cos(x)√

2
,

cos(x)√
2

, and m̄ = (1, 0, 0).

While the time step is chosen to be k = 0.01 as in the previous examples, here we
have to choose a smaller spatial step, namely h = 0.05. This is due to the non-
constant initial data m0 which results in larger interpolation errors at non-nodal points
in D, even though at the nodal points normalization has been performed to ensure that
|m| = 1. These errors can be observed in Fig. 11 (c) (red color area). The progress
of the assimilation is shown in Fig. 11 (a)–(d).
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Fig. 8 Example 7: m0(x) = sin(x), cos(x)/
√

2, cos(x)/
√

2 , m̄(x) = (1, 0, 0), and κ = 0.5

Fig. 9 Example 8: m0 = (1, 0, 0) and m̄ = (−1, 0, 0). (a) shows the initial state; (b) shows the 10th
iteration; (c) shows the 20th iteration; (d) shows the 36th and final iteration
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Fig. 10 Example 9: m0 = (1, 0, 0) and m̄ = (0, 1, 0). (a) shows the initial state. (b) shows the 40th
iteration. (c) shows the 80th iteration. (d shows the 124th and final iteration

5.3 Discussion

The numerical simulations in Sections 5.1 and 5.2 showcase the availability of opti-
mal control for a coupled spin-polarized current and magnetization system in a simple
geometry. It is noted that, in order to provide a realistic physical interpretation and
insight, a couple of issues need to be addressed. First, a more sophisticated geometry
is needed. The typical case is a multilayer structure that consists of two ferromag-
netic layers of given thickness that are separated by a nonmagnetic layer [1, 2, 28].
Second, more external fields should be included to the effective fields in the LLG
equation. However, because this paper focuses on providing a mathematical frame-
work for the optimal control problem, we only use the simple geometry to validate
the mathematical analysis. We plan to investigate the optimal control of the coupled
system in a more complicated setting in the near future.

6 Concluding remarks

In this paper, we proved the existence of the optimal solution of a coupled spin
drift-diffusion Landau– Lifshitz–Gilbert system. We also showed the existence of the
adjoint variables which define the first-order optimality system to be solved for the
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Fig. 11 Example 10: m0 = sin(x),
cos(x)√

2
,

cos(x)√
2

and m̄ = (1, 0, 0). (a) shows the initial state; (b) shows

the 41th iteration; (c) shows the 92th iteration; (d) shows the 115th and final iteration

optimal solution. Theorem 2.3, Lemma 4.1, Lemma 4.2, Lemma 4.3, Lemma 4.4,
and Lemma 4.5 hold only for one dimensional spatial variables, while Theorem 2.2
holds for more general dimensions.
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