Skip to main content
Log in

Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The necessity to develop automated methods for the fast screening of new libraries of compounds and the identification of active entities from natural mixtures has led to an increasing interest in the development of immobilized enzyme reactors (IMERs). This strategy overcomes some drawbacks of the in-solution methods and is, therefore, very attractive in the drug discovery field. This review gives an overview of IMER applications in the last decade. The reported examples concern conventional columns as well as capillary reactors integrated in liquid chromatography or capillary electrophoresis systems, coupled to spectroscopic or mass spectrometry detectors. The experimental setups and main features as well as characterization of new active entities are discussed. As a result of the growing importance of compounds from natural sources in drug discovery, particular attention is given to IMERs developed to be used for the identification of bioactive compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from J. Pharm. Biomed. Anal. [33]

Fig. 3

Reprinted with permission from J. Chromatogr. B. [36]

Fig. 4
Fig. 5

Reprinted with permission from Anal. Biochem. [66]

Fig. 6

Reprinted with permission from [80]

Similar content being viewed by others

References

  1. Bertucci C, Bartolini M, Gotti R, Andrisano V (2003) J Chromatogr B Analyt Technol Biomed Life Sci 797:111–129

    Article  CAS  PubMed  Google Scholar 

  2. Girelli AM, Mattei E (2005) J Chromatogr B Analyt Technol Biomed Life Sci 819:3–16. https://doi.org/10.1016/j.jchromb.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  3. Jason-Moller L, Murphy M, Bruno J (2006) Curr Protoc Protein Sci 45:19.13.1–19.13.14. https://doi.org/10.1002/0471140864.ps1913s45

    Article  Google Scholar 

  4. Choi JW, Oh BK, Kim YK, Min J (2007) J Microbiol Biotechnol 17:5–14

    CAS  PubMed  Google Scholar 

  5. Lee J, Soper SA, Murray KK (2009) Anal Chim Acta 649:180–190. https://doi.org/10.1016/j.aca.2009.07.037

    Article  CAS  PubMed  Google Scholar 

  6. Krenková J, Foret F (2004) Electrophoresis 25:3550–3563. https://doi.org/10.1002/elps.200406096

    Article  CAS  PubMed  Google Scholar 

  7. Fang SM, Wang HN, Zhao ZX, Wang WH (2012) J Pharm Anal 2:83–89. https://doi.org/10.1016/j.jpha.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Brena BM, Irazoqui G, Giacomini C, Batista-Viera F (2003) Effect of increasing co-solvent concentration on the stability of soluble and immobilized beta-galactosidase. J Mol Catal B Enzym 21:25–29

    Article  CAS  Google Scholar 

  9. Schejbal J, Glatz Z (2018) J Sep Sci 41:323–335. https://doi.org/10.1002/jssc.201700905

    Article  CAS  PubMed  Google Scholar 

  10. Vilanova E, Manjon A, Iborra JL (1984) Biotechnol Bioeng 26:1306–1312. https://doi.org/10.1002/bit.260261107

    Article  CAS  PubMed  Google Scholar 

  11. Luckarift HR, Johnson GR, Spain JC (2006) J Chromatogr B Analyt Technol Biomed Life Sci 843:310–316. https://doi.org/10.1016/j.jchromb.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  12. Hu F, Deng C, Zhang X (2008) J Chromatogr B Analyt Technol Biomed Life Sci 871:67–71. https://doi.org/10.1016/j.jchromb.2008.06.036

    Article  CAS  PubMed  Google Scholar 

  13. Freije R, Klein T, Ooms B, Kauffman HF, Bischoff R (2008) J Chromatogr A 1189:417–425. https://doi.org/10.1016/j.chroma.2007.10.059

    Article  CAS  PubMed  Google Scholar 

  14. Wu S, Sun L, Ma J, Yang K, Liang Z, Zhang L, Zhang Y (2011) Talanta 83:1748–1753. https://doi.org/10.1016/j.talanta.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  15. Fossati T, Colombo M, Castiglioni C, Abbiati G (1994) J Chromatogr B Biomed Appl 656:59–64

    Article  CAS  PubMed  Google Scholar 

  16. Yamato S, Kawakami N, Shimada K, Ono M, Idei N, Itoh Y, Tachikawa E (2004) Biol Pharm Bull 27:210–215

    Article  CAS  PubMed  Google Scholar 

  17. Shu HC, Wu NP (2001) Talanta 54:361–368

    Article  CAS  PubMed  Google Scholar 

  18. Markoglou N, Wainer IW (2002) J Chromatogr A 948:249–256

    Article  CAS  PubMed  Google Scholar 

  19. Mattiasson B (1988) Methods Enzymol 137:647–656

    Article  CAS  PubMed  Google Scholar 

  20. Gast FU, Franke I, Meiss G, Pingoud A (2001) J Biotechnol 87:131–141

    Article  CAS  PubMed  Google Scholar 

  21. Luckarift HR, Ku BS, Dordick JS, Spain JC (2007) Biotechnol Bioeng 98:701–705. https://doi.org/10.1002/bit.21447

    Article  CAS  PubMed  Google Scholar 

  22. Betancor L, Luckarift HR (2008) Trends Biotechnol 26:566–572. https://doi.org/10.1016/j.tibtech.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  23. Subramanian A, Kennel SJ, Oden PI, Jacobson KB, Woodward J, Doktycz MJ (1999) Comparison of techniques for enzyme immobilization on silicon supports. Enzyme Microbial Technol 24:26

    Article  CAS  Google Scholar 

  24. He P, Greenway G, Haswell SJ (2008) Nanotechnology 19:315603. https://doi.org/10.1088/0957-4484/19/31/315603

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Herr AE (2013) Biomicrofluidics 7:41501. https://doi.org/10.1063/1.4816934

    Article  CAS  PubMed  Google Scholar 

  26. Andrisano V, Bartolini M (2010) Immobilisation of enzymes on monolithic matrices: applications in drug discovery. In: Wang PG (eds) Monolithic chromatography and its modern applications. ILM, London

    Google Scholar 

  27. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Soc 56:658–666

    Article  CAS  Google Scholar 

  28. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vodopivec M, Podgornik A, Berovic M, Strancar A (2003) J Chromatogr B Analyt Technol Biomed Life Sci 795:105–113

    Article  CAS  PubMed  Google Scholar 

  31. Wheatley JB, Schmidt DE (1999) J Chromatogr A 849:1–12

    Article  CAS  PubMed  Google Scholar 

  32. Bartolini M, Cavrini V, Andrisano V (2005) J Chromatogr A 1065:135–144

    Article  CAS  PubMed  Google Scholar 

  33. De Simone A, Mancini F, Cosconati S, Marinelli L, La Pietra V, Novellino E, Andrisano V (2013) J Pharm Biomed Anal 73:131–134. https://doi.org/10.1016/j.jpba.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  34. Andrisano V, Bartolini M, Gotti R, Cavrini V, Felix G (2001) J Chromatogr B Biomed Sci Appl 753:375–383

    Article  CAS  PubMed  Google Scholar 

  35. Chlebek J, De Simone A, Hošťálková A, Opletal L, Pérez C, Pérez DI, Havlíková L, Cahlíková L, Andrisano V (2016) Fitoterapia 109:241–247. https://doi.org/10.1016/j.fitote.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  36. De Simone A, Seidl C, Santos CA, Andrisano V (2014) J Chromatogr B Analyt Technol Biomed Life Sci 953–954:108–114. https://doi.org/10.1016/j.jchromb.2014.01.056

    Article  CAS  PubMed  Google Scholar 

  37. Mancini F, Andrisano V (2010) J Pharm Biomed Anal 52:355–361. https://doi.org/10.1016/j.jpba.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  38. Mancini F, Naldi M, Cavrini V, Andrisano V (2007) J Chromatogr A 1175:217–226. https://doi.org/10.1016/j.chroma.2007.10.047

    Article  CAS  PubMed  Google Scholar 

  39. Mancini F, De Simone A, Andrisano V (2011) Anal Bioanal Chem 400:1979–1996. https://doi.org/10.1007/s00216-011-4963-x

    Article  CAS  PubMed  Google Scholar 

  40. Seidl C, de Moraes Santos CA, De Simone A, Bartolini M, Weffort-Santos AM, Andrisano V (2017) Curr Alzheimer Res 14:317–326. https://doi.org/10.2174/1567205013666161026150455

    Article  CAS  PubMed  Google Scholar 

  41. Bartolini M, Greig NH, Yu QS, Andrisano V (2009) J Chromatogr A 1216:2730–2738. https://doi.org/10.1016/j.chroma.2008.09.100

    Article  CAS  PubMed  Google Scholar 

  42. Nicoli R, Bartolini M, Rudaz S, Andrisano V, Veuthey JL (2008) J Chromatogr A 1206:2–10. https://doi.org/10.1016/j.chroma.2008.05.080

    Article  CAS  PubMed  Google Scholar 

  43. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  44. Perola E, Cellai L, Lamba D, Filocamo L, Brufani M (1997) Biochim Biophys Acta 1343:41–50

    Article  CAS  PubMed  Google Scholar 

  45. André C, Herlem G, Gharbi T, Guillaume YC (2011) J Pharm Biomed Anal 55:48–53. https://doi.org/10.1016/j.jpba.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  46. Morris SM (2002) Annu Rev Nutr 22:87–105. https://doi.org/10.1146/annurev.nutr.22.110801.140547

    Article  CAS  PubMed  Google Scholar 

  47. Wu G, Meininger CJ (1995) Am J Physiol 269:H1312–H1318. https://doi.org/10.1152/ajpheart.1995.269.4.H1312

    Article  CAS  PubMed  Google Scholar 

  48. Kuhn NJ, Ward S, Piponski M, Young TW (1995) Arch Biochem Biophys 320:24–34. https://doi.org/10.1006/abbi.1995.1338

    Article  CAS  PubMed  Google Scholar 

  49. Raman NN, Khan M, Hasan R (1994) Bioactive components from Ficus glomerata. Pure Appl Chem 66:2287–2290

    Article  Google Scholar 

  50. Vanzolini KL, Vieira LC, Corrêa AG, Cardoso CL, Cass QB (2013) J Med Chem 56:2038–2044. https://doi.org/10.1021/jm301732a

    Article  CAS  PubMed  Google Scholar 

  51. Vilela AF, da Silva JI, Vieira LC, Bernasconi GC, Corrêa AG, Cass QB, Cardoso CL (2014) J Chromatogr B Analyt Technol Biomed Life Sci 968:87–93. https://doi.org/10.1016/j.jchromb.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  52. da Silva JI, de Moraes MC, Vieira LC, Corrêa AG, Cass QB, Cardoso CL (2013) J Pharm Biomed Anal 73:44–52. https://doi.org/10.1016/j.jpba.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  53. Orhan IE (2012) Curr Med Chem 19:2252–2261

    Article  CAS  PubMed  Google Scholar 

  54. Anand N, Singh P, Sharma A, Tiwari S, Singh V, Singh DK, Srivastava KK, Singh BN, Tripathi RP (2012) Bioorg Med Chem 20:5150–5163. https://doi.org/10.1016/j.bmc.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  55. Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, Cellamare S, Carotti A (2013) Bioorg Med Chem 21:146–152. https://doi.org/10.1016/j.bmc.2012.10.045

    Article  CAS  PubMed  Google Scholar 

  56. Peng XM, Damu GL, Zhou C (2013) Curr Pharm Des 19:3884–3930

    Article  CAS  PubMed  Google Scholar 

  57. Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M (2013) Prim Care Companion CNS Disord 15:1–8. https://doi.org/10.4088/pcc.12r01412

    Article  Google Scholar 

  58. Kruskal WH, Wallis WA (1952) J Am Statist Assoc 47:583–621

    Article  Google Scholar 

  59. Cornelio VE, de Moraes MC, Domingues VC, Fernandes JB, da Silva MFDG, Cass QB, Vieira PC (2018) J Pharm Biomed Anal 151:252–259. https://doi.org/10.1016/j.jpba.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  60. Benes P, Vetvicka V, Fusek M (2008) Crit Rev Oncol Hematol 68:12–28. https://doi.org/10.1016/j.critrevonc.2008.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cardoso CL, Lima VV, Zottis A, Oliva G, Andricopulo AD, Wainer IW, Moaddel R, Cass QB (2006) J Chromatogr A 1120:151–157. https://doi.org/10.1016/j.chroma.2005.10.063

    Article  CAS  PubMed  Google Scholar 

  62. de Moraes MC, Ducati RG, Donato AJ, Basso LA, Santos DS, Cardoso CL, Cass QB (2012) J Chromatogr A 1232:110–115. https://doi.org/10.1016/j.chroma.2011.10.056

    Article  CAS  PubMed  Google Scholar 

  63. Galmarini CM (2006) IDrugs 9:712–722

    CAS  PubMed  Google Scholar 

  64. Kalckar HM (1947) J Biol Chem 167:429–443

    CAS  PubMed  Google Scholar 

  65. Bartolini M, Cavrini V, Andrisano V (2007) J Chromatogr A 1144:102–110. https://doi.org/10.1016/j.chroma.2006.11.029

    Article  CAS  PubMed  Google Scholar 

  66. Vilela AFL, Seidl C, Lima JM, Cardoso CL (2018) Anal Biochem 549:53–57. https://doi.org/10.1016/j.ab.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  67. Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E (2003) Alzheimer Dis Assoc Disord 17:117–126

    Article  CAS  PubMed  Google Scholar 

  68. Forsberg EM, Green JR, Brennan JD (2011) Anal Chem 83:5230–5236. https://doi.org/10.1021/ac200534t

    Article  CAS  PubMed  Google Scholar 

  69. Forsberg EM, Brennan JD (2014) Anal Chem 86:8457–8465. https://doi.org/10.1021/ac5022166

    Article  CAS  PubMed  Google Scholar 

  70. Besanger TR, Hodgson RJ, Green JR, Brennan JD (2006) Anal Chim Acta 564:106–115. https://doi.org/10.1016/j.aca.2005.12.066

    Article  CAS  PubMed  Google Scholar 

  71. La Motta C, Sartini S, Mugnaini L, Salerno S, Simorini F, Taliani S, Marini AM, Da Settimo F, Lavecchia A, Novellino E, Antonioli L, Fornai M, Blandizzi C, Del Tacca M (2009) J Med Chem 52:1681–1692. https://doi.org/10.1021/jm801427r

    Article  CAS  PubMed  Google Scholar 

  72. Alunni S, Orrù M, Ottavi L (2008) J Enzyme Inhib Med Chem 23:182–189. https://doi.org/10.1080/14756360701475233

    Article  CAS  PubMed  Google Scholar 

  73. Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E (2001) Med Res Rev 21:105–128

    Article  CAS  PubMed  Google Scholar 

  74. de Moraes MC, Temporini C, Calleri E, Bruni G, Ducati RG, Santos DS, Cardoso CL, Cass QB, Massolini G (2014) J Chromatogr A 1338:77–84. https://doi.org/10.1016/j.chroma.2014.02.057

    Article  CAS  PubMed  Google Scholar 

  75. Brekkan E, Lundqvist A, Lundahl P (1996) Biochemistry 35:12141–12145. https://doi.org/10.1021/bi9603231

    Article  CAS  PubMed  Google Scholar 

  76. Haneskog L, Lundqvist A, Lundahl P (1998) J Mol Recognit 11:58–61. https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6%3c58:AID-JMR390%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  77. Haneskog L, Zeng CM, Lundqvist A, Lundahl P (1998) Biochim Biophys Acta 1371:1–4

    Article  CAS  PubMed  Google Scholar 

  78. Ouimet CM, D’amico CI, Kennedy RT (2017) Expert Opin Drug Discov 12:213–224. https://doi.org/10.1080/17460441.2017.1268121

    Article  CAS  PubMed  Google Scholar 

  79. Iqbal J, Iqbal S, Müller CE (2013) Analyst 138:3104–3116. https://doi.org/10.1039/c3an00031a

    Article  CAS  PubMed  Google Scholar 

  80. Ji X, Ye F, Lin P, Zhao S (2010) Talanta 82:1170–1174. https://doi.org/10.1016/j.talanta.2010.06.029

    Article  CAS  PubMed  Google Scholar 

  81. Haynes J, Killilea DW, Peterson PD, Thompson WJ (1996) J Pharmacol Exp Ther 276:752–757

    CAS  PubMed  Google Scholar 

  82. Lin P, Zhao S, Lu X, Ye F, Wang H (2013) J Sep Sci 36:2538–2543. https://doi.org/10.1002/jssc.201300315

    Article  CAS  PubMed  Google Scholar 

  83. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Int J Cardiol 213:8–14. https://doi.org/10.1016/j.ijcard.2015.08.109

    Article  PubMed  Google Scholar 

  84. Kim SC, Schneeweiss S, Choudhry N, Liu J, Glynn RJ, Solomon DH (2015) Am J Med 128:616–657. https://doi.org/10.1016/j.amjmed.2015.01.013

    Article  CAS  Google Scholar 

  85. Zhang L, Hu K, Li X, Zhao S (2018) CE method with partial filling techniques for screening of xanthine oxidase inhibitor in traditional Chinese medicine. Chromatographia 73:583–587

    Article  CAS  Google Scholar 

  86. Iqbal J (2011) Anal Biochem 414:226–231. https://doi.org/10.1016/j.ab.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  87. Lanier M, Sergienko E, Simão AM, Su Y, Chung T, Millán JL, Cashman JR (2010) Bioorg Med Chem 18:573–579. https://doi.org/10.1016/j.bmc.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  88. Teriete P, Pinkerton AB, Cosford ND (2013) Methods Mol Biol 1053:85–101. https://doi.org/10.1007/978-1-62703-562-0_5

    Article  CAS  PubMed  Google Scholar 

  89. Narisawa S, Harmey D, Yadav MC, O’Neill WC, Hoylaerts MF, Millán JL (2007) J Bone Miner Res 22:1700–1710. https://doi.org/10.1359/jbmr.070714

    Article  CAS  PubMed  Google Scholar 

  90. Wang S, Su P, Yang Y (2012) Anal Biochem 427:139–143. https://doi.org/10.1016/j.ab.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  91. Guascito MR, Malitesta C, Mazzotta E, Turco A (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sensors Actuators B Chem 131:394–402

    Article  CAS  Google Scholar 

  92. Jiang TF, Liang TT, Wang YH, Zhang WH, Lv ZH (2013) J Pharm Biomed Anal 84:36–40. https://doi.org/10.1016/j.jpba.2013.05.023

    Article  CAS  PubMed  Google Scholar 

  93. Gao X, Luo W, Xie G, Xue C, Ding Q (2004) Characteristics and kinetics of inhibition of polyphenol oxidase from Spodoptera exigua (Lepidoptera: Noctuidae). Sci Agric Sin:687–691

    Google Scholar 

  94. Camara MA, Tian M, Guo L, Yang L (2015) J Chromatogr B Analyt Technol Biomed Life Sci 990:174–180. https://doi.org/10.1016/j.jchromb.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  95. Ham M, Choe SS, Shin KC, Choi G, Kim JW, Noh JR, Kim YH, Ryu JW, Yoon KH, Lee CH, Kim JB (2016) Diabetes 65:2624–2638. https://doi.org/10.2337/db16-0060

    Article  CAS  PubMed  Google Scholar 

  96. Zhang C, Zhang Z, Zhu Y, Qin S (2014) Anticancer Agents Med Chem 14:280–289

    Article  CAS  PubMed  Google Scholar 

  97. Schejbal J, Řemínek R, Zeman L, Mádr A, Glatz Z (2016) J Chromatogr A 1437:234–240. https://doi.org/10.1016/j.chroma.2016.01.081

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors receive no funds to develop this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela De Simone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Rising Stars in Separation Science, as part of Chromatographia’s 50th Anniversary Commemorative Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Simone, A., Naldi, M., Bartolini, M. et al. Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018. Chromatographia 82, 425–441 (2019). https://doi.org/10.1007/s10337-018-3663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3663-5

Keywords

Navigation