Skip to main content
Log in

Measurement of the Band Broadening of UV Detectors used in Ultra-high Performance Liquid Chromatography using an On-tubing Fluorescence Detector

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In modern ultra-high performance liquid chromatography set-ups, short columns (max. 10 cm) with a narrow ID (2.1 mm) packed with small, (sub-2 µm) fully or superficially porous particles are used. Since the volume and corresponding peak variance arising from these columns are very small, the dispersion contribution from the chromatographic system has a large effect on the overall separation performance. In gradient elution, the on-column focusing of the sample band at the start of the gradient results in the elimination of the pre-column band broadening. However, since gradient elution separations yield very narrow sample peaks at the outlet of the column, any post-column band broadening has a large effect on the obtained separation quality. In this contribution, the main factor of post-column band broadening is investigated, i.e., that from the UV detector, by comparing the peak width measured on capillary directly in front of the UV detector using an LIF detector and the peak widths obtained in the UV detector. These experiments show that there is a clear increase in peak variance with flow rate up to around 0.4–0.6 mL/min (depending on the investigated flow cell). It is found that modern low-dispersion flow cells generate a dispersion contribution around 0.7 µL2 at high flow rates, whereas standard flow cells can have a contribution up to 5.8 µL2. For the investigated nano-flow cell (80 nL), no significant dispersion was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Vos J, Broeckhoven K, Eeltink S (2016) Advances in ultrahigh-pressure liquid chromatography technology and system design. Anal Chem 88:262–278

    Article  CAS  PubMed  Google Scholar 

  2. Broeckhoven K, Desmet G (2014) The future of UHPLC: Towards higher pressure and/or smaller particles? TrAC Trends Anal Chem 63:65–75

    Article  CAS  Google Scholar 

  3. De Vos J, De Pra M, Desmet G, Swart R, Edge T, Steiner F, Eeltink S (2015) High-speed isocratic and gradient liquid-chromatography separations at 1500 bar. J Chromatogr A 1409:138–145

    Article  CAS  PubMed  Google Scholar 

  4. Broeckhoven K, De Vos J, Desmet G (2017) Particles, pressure, and system contribution: the holy trinity of ultrahigh-performance liquid chromatography. LC GC Eur 30:618–625

    CAS  Google Scholar 

  5. Majors RE (2015) Future needs of HPLC and UHPLC column technology. LCGC North Am 33:886–887

    CAS  Google Scholar 

  6. Fekete S, Guillarme D (2013) Kinetic evaluation of new generation of column packed with 1.3 µm core–shell particles. J Chromatogr A 1308:104–113

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez AC, Friedlander G, Fekete S, Anspach J, Guillarme D, Chitty M, Farkas T (2013) Pushing the performance limits of reversed-phase ultra high performance liquid chromatography with 1.3 µm core–shell particles. J Chromatogr A 1311:90–97

    Article  CAS  PubMed  Google Scholar 

  8. Hupe K-P, Jonker RJ, Rozing G (1984) Determination of band-spreading effects in high-performance liquid chromatographic instruments. J Chromatogr 285:253–265

    Article  CAS  Google Scholar 

  9. Fekete S, Fekete J (2011) The impact of extra-column band broadening on the chromatographic efficiency of 5 cm long narrow-bore very efficient columns. J Chromatogr A 1218:5286–5291

    Article  CAS  PubMed  Google Scholar 

  10. Vanderlinden K, Broeckhoven K, Vanderheyden Y, Desmet G (2016) Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions. J Chromatogr A 1442:73–82

    Article  CAS  PubMed  Google Scholar 

  11. Dasgupta PK, Shelor CP, Kadjo AF, Kraiczek KG (2018) Flow-cell-induced dispersion in flow-through absorbance detection systems. True column effluent peak variance. Anal Chem 90:2063–2069

    Article  CAS  PubMed  Google Scholar 

  12. Cohen KA, Stuart JD (1987) A practical method to predict the effect of extra-column variance on observed efficiency in high performance liquid chromatography. J Chrom Sci 25:381–390

    Article  CAS  Google Scholar 

  13. Yukuei Z, Miansheng B, Xiouzhen L, Peichang L (1980) High-performance liquid chromatographic columns of small diameter. J Chrom 197:97–108

    Article  CAS  Google Scholar 

  14. DiCesare JL, Dong MW, Atwood JG (1981) Very-high-speed liquid chromatography: II. Some instrumental factors influencing performance. J Chrom 217:369–386

    Article  CAS  Google Scholar 

  15. Kamahori M, Watanabe Y, Miura J, Taki M, Miyagi M (1989) High-sensitivity micro ultraviolet detector for high-performance liquid chromatography. J Chrom 465:227–232

    Article  CAS  Google Scholar 

  16. Scott RPW, Kucera P (1979) Mode of operation and performance characteristics of microbore columns for use in liquid chromatography. J Chrom 169:51–72

    Article  CAS  Google Scholar 

  17. Gritti F, Guiochon G (2011) On the minimization of the band-broadening contributions of a modern, very high pressure liquid chromatograph. J Chromatogr A 1218:4632–4648

    Article  CAS  PubMed  Google Scholar 

  18. Kraiczek KG, Rozing GP, Zengerle R (2013) Relation between chromatographic resolution and signal-to-Noise ratio in spectrophotometric HPLC detection. Anal Chem 85:4829–4835

    Article  CAS  PubMed  Google Scholar 

  19. Broeckhoven K, Vanderlinden K, Guillarme D, Desmet G (2018) On-tubing fluorescence measurements of the band broadening of contemporary injectors in ultra-high performance liquid chromatography. J Chromatogr A 1535:44–54

    Article  CAS  PubMed  Google Scholar 

  20. Kok WTh, Brinkman UATh, Frei RW, Hanekamp HB, Nooitgedacht F (1982) H.Poppe, Use of conventional instrumentation with microbore columns in high-performance liquid chromatography. J Chromatogr 237:357–369

    Article  CAS  Google Scholar 

  21. Van Schoors J, Maes K, Van Wanseele Y, Broeckhoven K, Van Eeckhaut A (2016) Miniaturized ultra-high performance liquid chromatography coupled to electrochemical detection: Investigation of system performance for neurochemical analysis. J Chromatogr A 1427:69–78

    Article  CAS  PubMed  Google Scholar 

  22. Spaggiari D, Fekete S, Eugster PJ, Veuthey J-L, Geiser L, Rudaz S, Guillarme D (2013) Contribution of various types of liquid chromatography–mass spectrometry instruments to band broadening in fast analysis. J Chromatogr A 1301:45–55

    Article  CAS  Google Scholar 

  23. https://www.agilent.com/cs/library/usermanuals/public/G4212-90122_TN_for_Flowcell.pdf, retrieved on 10/07/2018

  24. Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: Determination of ground and excited state dipole moment. Spectrochim Acta Part A Mol Biomol Spectrosc 65:673–677

    Article  CAS  Google Scholar 

  25. Vanderheyden Y, Broeckhoven K, Desmet G (2014) Comparison and optimization of different peak integration methods to determine the variance of unretained and extra-column peaks. J Chromatogr A 1364:140–150

    Article  CAS  PubMed  Google Scholar 

  26. Broeckhoven K, Desmet G (2007) Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns. J Chromatogr A 1172:25–39

    Article  CAS  PubMed  Google Scholar 

  27. Broeckhoven K, Desmet G (2009) Numerical and analytical solutions for the column length dependent band broadening originating from axisymmetrical trans-column velocity gradients. J Chromatogr A 1216:1325–1337

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a Research Grant from FWO Vlaanderen (1520115N) to KB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Broeckhoven.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Rising Stars in Separation Science, as part of Chromatographia’s 50th Anniversary Commemorative Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderlinden, K., Desmet, G. & Broeckhoven, K. Measurement of the Band Broadening of UV Detectors used in Ultra-high Performance Liquid Chromatography using an On-tubing Fluorescence Detector. Chromatographia 82, 489–498 (2019). https://doi.org/10.1007/s10337-018-3622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3622-1

Keywords

Navigation