Skip to main content
Log in

Using Superficially Porous Particles and Ultrahigh Pressure Liquid Chromatography in Pharmacopeial Monograph Modernization of Common Analgesics

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The higher pressures and flow rates needed to increase throughput in ultrahigh pressure liquid chromatography (UHPLC) can lead to thermal broadening due to viscous friction. The use of superficially porous particles and still air thermal environments can help reduce this broadening, but this has not yet been studied for applied, isocratic methods. Here, the use of five columns with varying lengths, diameters, and particle sizes were investigated for increased analytical throughput of pharmacopeial monograph methods for two over-the-counter analgesic drugs. System suitability parameters (resolution and peak asymmetry) and temperature changes across the axial length of the column were monitored at conditions near column or system pressure limits. Results from these investigations indicated that a 2.1 × 50-mm column packed with 2.6 µm particles provides the best opportunity for increased throughput, which was demonstrated with a 20-s cycle time method for the separation of four compounds (two active pharmaceutical ingredients, one impurity, and one internal standard) while maintaining a baseline resolution of 1.5 between all peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Santos LM, Davani B, Anthony CM, Clark JE (2015) USP monograph modernization initiative. Am Pharm Rev 18(2)

  2. Russo K, Dressman S (2011) Monograph makeover requires industry input. Pharm Technol 35:90–94

    Google Scholar 

  3. Alsante KM, Huynh-Ba KC, Baertschi SW et al (2014) Recent trends in product development and regulatory issues on impurities in active pharmaceutical ingredient (API) and drug products. Part 2: safety considerations of impurities in pharmaceutical products and surveying the impurity landscape. AAPS Pharm Sci Technol 15:237–251. https://doi.org/10.1208/s12249-013-0061-z

    Article  Google Scholar 

  4. United States Pharmacopeial Convention (2017) Chromatography. In: United States Pharmacopeia and National Formulary (USP 40-NF 35), Rockville, pp 8071–8082

  5. Dolan JW (2017) Method adjustment the USP way. LC-GC North Am 35:368–373

    CAS  Google Scholar 

  6. Fekete S, Schappler J, Veuthey J-L, Guillarme D (2014) Current and future trends in UHPLC. TrAC Trends Anal Chem 63:2–13. https://doi.org/10.1016/j.trac.2014.08.007

    Article  CAS  Google Scholar 

  7. Broeckhoven K, Desmet G (2014) The future of UHPLC: towards higher pressure and/or smaller particles? TrAC Trends Anal Chem 63:65–75. https://doi.org/10.1016/j.trac.2014.06.022

    Article  CAS  Google Scholar 

  8. Stafford JD, Maloney TD, Myers DP et al (2011) A systematic approach to development of liquid chromatographic impurity methods for pharmaceutical analysis. J Pharm Biomed Anal 56:280–292. https://doi.org/10.1016/j.jpba.2011.05.028

    Article  CAS  PubMed  Google Scholar 

  9. Natishan TK (2011) Developments in fast liquid chromatographic analysis of pharmaceuticals. J Liq Chromatogr Relat Technol 34:1133–1156. https://doi.org/10.1080/10826076.2011.588058

    Article  CAS  Google Scholar 

  10. Perrenoud AG-G, Veuthey JL, Guillarme D (2012) Comparison of ultrahigh performance supercritical fluid chromatography and ultrahigh performance liquid chromatography for the analysis of pharmaceutical compounds. J Chromatogr A 1266:158–167. https://doi.org/10.1016/j.chroma.2012.10.005

    Article  CAS  Google Scholar 

  11. Guillarme D, Schappler J, Boccard J et al (2012) New insights in pharmaceutical analysis. Chim Int J Chem 66:330–334. https://doi.org/10.2533/chimia.2012.330

    Article  CAS  Google Scholar 

  12. Dong MW, Zhang K (2014) Ultrahigh-pressure liquid chromatography (UHPLC) in method development. TrAC Trends Anal Chem 63:21–30. https://doi.org/10.1016/j.trac.2014.06.019

    Article  CAS  Google Scholar 

  13. Fekete S, Kohler I, Rudaz S, Guillarme D (2014) Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J Pharm Biomed Anal 87:105–119. https://doi.org/10.1016/j.jpba.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  14. Fekete S, Veuthey J-L, Guillarme D (2015) Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice. J Chromatogr A 1408:1–14. https://doi.org/10.1016/j.chroma.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  15. Abrahim A, Al-Sayah M, Skrdla P et al (2010) Practical comparison of 2.7 µm fused-core silica particles and porous sub-2 µm particles for fast separations in pharmaceutical process development. J Pharm Biomed Anal 51:131–137. https://doi.org/10.1016/j.jpba.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  16. Shaaban H, Górecki T (2012) Fused core particles as an alternative to fully porous sub-2 µm particles in pharmaceutical analysis using coupled columns at elevated temperature. Anal Methods 4:2735. https://doi.org/10.1039/c2ay25202c

    Article  CAS  Google Scholar 

  17. Ruta J, Zurlino D, Grivel C et al (2012) Evaluation of columns packed with shell particles with compounds of pharmaceutical interest. J Chromatogr A 1228:221–231. https://doi.org/10.1016/j.chroma.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  18. Broeckhoven K, Cabooter D, Desmet G (2013) Kinetic performance comparison of fully and superficially porous particles with sizes ranging between 2.7 µm and 5 µm: Intrinsic evaluation and application to a pharmaceutical test compound. J Pharm Anal 3:313–323. https://doi.org/10.1016/j.jpha.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  19. Holm R, Elder DP (2016) Analytical advances in pharmaceutical impurity profiling. Eur J Pharm Sci 87:118–135. https://doi.org/10.1016/j.ejps.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen DT-T, Guillarme D, Heinisch S et al (2007) High throughput liquid chromatography with sub-2 µm particles at high pressure and high temperature. J Chromatogr A 1167:76–84. https://doi.org/10.1016/j.chroma.2007.08.032

    Article  CAS  PubMed  Google Scholar 

  21. Guillarme D, Nguyen DTT, Rudaz S, Veuthey J-L (2008) Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: gradient experiments. Eur J Pharm Biopharm 68:430–440. https://doi.org/10.1016/j.ejpb.2007.06.018

    Article  CAS  PubMed  Google Scholar 

  22. Welch CJ, Gong X, Schafer W et al (2010) MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph. Tetrahedron Asymmetry 21:1674–1681. https://doi.org/10.1016/j.tetasy.2010.05.029

    Article  CAS  Google Scholar 

  23. Núñez O, Gallart-Ayala H, Martins CPB et al (2013) State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications. J Chromatogr B Anal Technol Biomed Life Sci 927:3–21. https://doi.org/10.1016/j.jchromb.2012.12.031

    Article  CAS  Google Scholar 

  24. Ahmad IAH, Soliven A, Allen RC et al (2015) Comparison of core–shell particles and sub-2 µm fully porous particles for use as ultrafast second dimension columns in two-dimensional liquid chtomatography. J Chromatogr A 1386:31–38. https://doi.org/10.1016/j.chroma.2014.11.069

    Article  CAS  Google Scholar 

  25. Zawatzky K, Barhate CL, Regalado EL et al (2017) Overcoming “speed limits” in high throughput chromatographic analysis. J Chromatogr A 1499:211–216. https://doi.org/10.1016/j.chroma.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  26. Gilar M, McDonald TS, Gritti F (2017) Impact of instrument and column parameters on high-throughput liquid chromatography performance. J Chromatogr A 1523:215–223. https://doi.org/10.1016/j.chroma.2017.07.035

    Article  CAS  PubMed  Google Scholar 

  27. Patel DC, Breitbach ZS, Wahab MF et al (2015) Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal Chem 87:9137–9148. https://doi.org/10.1021/acs.analchem.5b00715

    Article  CAS  PubMed  Google Scholar 

  28. Wahab MF, Wimalasinghe RM, Wang Y et al (2016) Salient sub-second separations. Anal Chem 88:8821–8826. https://doi.org/10.1021/acs.analchem.6b02260

    Article  CAS  PubMed  Google Scholar 

  29. Barhate CL, Regalado EL, Contrella ND et al (2017) Ultrafast chiral chromatography as the second dimension in two-dimensional liquid chromatography experiments. Anal Chem 89:3545–3553. https://doi.org/10.1021/acs.analchem.6b04834

    Article  CAS  PubMed  Google Scholar 

  30. Welch CJ (2017) Are we approaching a speed limit for the chromatographic separation of enantiomers? ACS Cent Sci 3:823–829. https://doi.org/10.1021/acscentsci.7b00250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halász I, Endele R, Asshauer J (1975) Ultimate limits in high-pressure liquid chromatography. J Chromatogr 112:37–60. https://doi.org/10.1016/S0021-9673(00)99941-2

    Article  Google Scholar 

  32. Lin H, Horváth S (1981) Viscous dissipation in packed beds. Chem Eng Sci 36:47–55. https://doi.org/10.1016/0009-2509(81)80047-4

    Article  CAS  Google Scholar 

  33. Poppe H, Kraak JC, Huber JFK, van den Berg JHM (1981) Temperature gradients in HPLC columns due to viscous heat dissipation. Chromatographia 14:515–523. https://doi.org/10.1007/BF02265631

    Article  CAS  Google Scholar 

  34. Martin M, Guiochon G (2005) Effects of high pressure in liquid chromatography. J Chromatogr A 1090:16–38. https://doi.org/10.1016/j.chroma.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  35. MacNair JE, Lewis KC, Jorgenson JW (1997) Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal Chem 69:983–989. https://doi.org/10.1021/ac961094r

    Article  CAS  PubMed  Google Scholar 

  36. De Vos J, De Pra M, Desmet G et al (2015) High-speed isocratic and gradient liquid-chromatography separations at 1500 bar. J Chromatogr A 1409:138–145. https://doi.org/10.1016/j.chroma.2015.07.043

    Article  CAS  PubMed  Google Scholar 

  37. De Vos J, Broeckhoven K, Eeltink S (2016) Advances in ultrahigh-pressure liquid chromatography technology and system design. Anal Chem 88:262–278. https://doi.org/10.1021/acs.analchem.5b04381

    Article  CAS  PubMed  Google Scholar 

  38. de Villiers A, Lauer H, Szucs R et al (2006) Influence of frictional heating on temperature gradients in ultrahigh-pressure liquid chromatography on 2.1 mm I.D. columns. J Chromatogr A 1113:84–91. https://doi.org/10.1016/j.chroma.2006.01.120

    Article  CAS  PubMed  Google Scholar 

  39. Neue UD, Kele M (2007) Performance of idealized column structures under high pressure. J Chromatogr A 1149:236–244. https://doi.org/10.1016/j.chroma.2007.03.042

    Article  CAS  PubMed  Google Scholar 

  40. Gritti F, Guiochon G (2008) Fundamental chromatographic equations designed for columns packed with very fine particles and operated at very high pressures: applications to the prediction of elution times and the column efficiencies. J Chromatogr A 1206:113–122. https://doi.org/10.1016/j.chroma.2008.07.084

    Article  CAS  PubMed  Google Scholar 

  41. Cabooter D, Lestremau F, de Villiers A et al (2009) Investigation of the validity of the kinetic plot method to predict the performance of coupled column systems operated at very high pressures under different thermal conditions. J Chromatogr A 1216:3895–3903. https://doi.org/10.1016/j.chroma.2009.02.079

    Article  CAS  PubMed  Google Scholar 

  42. Gritti F, Martin M, Guiochon G (2009) Influence of viscous friction heating on the efficiency of columns operated under very high pressures. Anal Chem 81:3365–3384. https://doi.org/10.1021/ac802632x

    Article  CAS  PubMed  Google Scholar 

  43. Nováková L, Veuthey JL, Guillarme D (2011) Practical method transfer from high performance liquid chromatography to ultrahigh performance liquid chromatography: the importance of frictional heating. J Chromatogr A 1218:7971–7981. https://doi.org/10.1016/j.chroma.2011.08.096

    Article  CAS  PubMed  Google Scholar 

  44. McCalley DV (2014) The impact of pressure and frictional heating on retention, selectivity and efficiency in ultrahigh-pressure liquid chromatography. TrAC Trends Anal Chem 63:31–43. https://doi.org/10.1016/j.trac.2014.06.024

    Article  CAS  Google Scholar 

  45. Broeckhoven K, Desmet G (2017) Considerations for the use of ultrahigh pressures in liquid chromatography for 2.1 mm inner diameter columns. J Chromatogr A 1523:183–192. https://doi.org/10.1016/j.chroma.2017.07.040

    Article  CAS  PubMed  Google Scholar 

  46. Åsberg D, Samuelsson J, Leśko M et al (2015) Method transfer from high-pressure liquid chromatography to ultrahigh-pressure liquid chromatography: II: Temperature and pressure effects. J Chromatogr A 1401:52–59. https://doi.org/10.1016/j.chroma.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  47. Åsberg D, Chutkowski M, Leśko M et al (2017) A practical approach for predicting retention time shifts due to pressure and temperature gradients in ultrahigh-pressure liquid chromatography. J Chromatogr A 1479:107–120. https://doi.org/10.1016/j.chroma.2016.11.050

    Article  CAS  PubMed  Google Scholar 

  48. Dong MW (2017) Ultrahigh-pressure liquid chromatography, Part III: potential issues. LC-GC North Am 35:818–823

    CAS  Google Scholar 

  49. Gritti F, Guiochon G (2007) Consequences of the radial heterogeneity of the column temperature at high mobile phase velocity. J Chromatogr A 1166:47–60. https://doi.org/10.1016/j.chroma.2007.06.067

    Article  CAS  PubMed  Google Scholar 

  50. Gritti F, Guiochon G (2008) Complete temperature profiles in ultrahigh-pressure liquid chromatography columns. Anal Chem 80:5009–5020. https://doi.org/10.1021/ac800280c

    Article  CAS  PubMed  Google Scholar 

  51. Desmet G (2006) Theoretical calculation of the retention enthalpy effect on the viscous heat dissipation band broadening in high performance liquid chromatography columns with a fixed wall temperature. J Chromatogr A 1116:89–96. https://doi.org/10.1016/j.chroma.2006.03.024

    Article  CAS  PubMed  Google Scholar 

  52. Gritti F, Guiochon G (2007) Measurement of the axial and radial temperature profiles of a chromatographic column: influence of thermal insulation on column efficiency. J Chromatogr A 1138:141–157. https://doi.org/10.1016/j.chroma.2006.10.095

    Article  CAS  PubMed  Google Scholar 

  53. Gritti F, Guiochon G (2009) Optimization of the thermal environment of columns packed with very fine particles. J Chromatogr A 1216:1353–1362. https://doi.org/10.1016/j.chroma.2008.12.072

    Article  CAS  PubMed  Google Scholar 

  54. Grinias JP, Keil DS, Jorgenson JW (2014) Observation of enhanced heat dissipation in columns packed with superficially porous particles. J Chromatogr A 1371:261–264. https://doi.org/10.1016/j.chroma.2014.10.075

    Article  CAS  PubMed  Google Scholar 

  55. Grinias JP, Wong J-MT, Kennedy RT (2016) Repeatability of gradient ultrahigh pressure liquid chromatography–tandem mass spectrometry methods in instrument-controlled thermal environments. J Chromatogr A 1461:42–50. https://doi.org/10.1016/j.chroma.2016.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gritti F, Gilar M, Jarrell JA (2016) Achieving quasi-adiabatic thermal environment to maximize resolution power in very high-pressure liquid chromatography: theory, models, and experiments. J Chromatogr A 1444:86–98. https://doi.org/10.1016/j.chroma.2016.03.070

    Article  CAS  PubMed  Google Scholar 

  57. Gritti F, Gilar M, Jarrell JA (2016) Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography. J Chromatogr A 1456:226–234. https://doi.org/10.1016/j.chroma.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  58. Fallas MM, Hadley MR, McCalley DV (2009) Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 and 5 µm) columns in reversed-phase high-performance liquid chromatography. J Chromatogr A 1216:3961–3969. https://doi.org/10.1016/j.chroma.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  59. Gritti F, Guiochon G (2010) Comparison of heat friction effects in narrow-bore columns packed with core–shell and totally porous particles. Chem Eng Sci 65:6310–6319. https://doi.org/10.1016/j.ces.2010.09.019

    Article  CAS  Google Scholar 

  60. Gritti F, Guiochon G (2010) Mass transfer resistance in narrow-bore columns packed with 1.7 µm particles in very high pressure liquid chromatography. J Chromatogr A 1217:5069–5083. https://doi.org/10.1016/j.chroma.2010.05.059

    Article  CAS  PubMed  Google Scholar 

  61. McCalley DV (2011) Some practical comparisons of the efficiency and overloading behaviour of sub-2 µm porous and sub-3 µm shell particles in reversed-phase liquid chromatography. J Chromatogr A 1218:2887–2897. https://doi.org/10.1016/j.chroma.2011.02.068

    Article  CAS  PubMed  Google Scholar 

  62. Guiochon G, Gritti F (2011) Shell particles, trials, tribulations and triumphs. J Chromatogr A 1218:1915–1938. https://doi.org/10.1016/j.chroma.2011.01.080

    Article  CAS  PubMed  Google Scholar 

  63. United States Pharmacopeial Convention (2017) Naproxen oral solution. In: United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD, pp 5283–5284

  64. United States Pharmacopeial Convention (2017) Ibuprofen. In: United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD, pp 4555–4556

  65. United States Pharmacopeial Convention (2017) Acetaminophen and aspirin tablets. In: United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD, pp 8703–8704

  66. United States Pharmacopeial Convention (2017) Acetaminophen, aspirin, and caffeine tablets. In: United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD, pp 8704–8705.

  67. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley, Hoboken

    Google Scholar 

  68. Wolcott RG, Dolan JW, Snyder LR et al (2000) Control of column temperature in reversed-phase liquid chromatography. J Chromatogr A 869:211–230. https://doi.org/10.1016/S0021-9673(99)00894-8

    Article  CAS  PubMed  Google Scholar 

  69. Fekete S, Fekete J, Guillarme D (2014) Estimation of the effects of longitudinal temperature gradients caused by frictional heating on the solute retention using fully porous and superficially porous sub-2 µm materials. J Chromatogr A 1359:124–130. https://doi.org/10.1016/j.chroma.2014.07.030

    Article  CAS  PubMed  Google Scholar 

  70. Boswell PG, Stoll DR, Carr PW et al (2013) An advanced, interactive, high-performance liquid chromatography simulator and instructor resources. J Chem Educ 90:198–202. https://doi.org/10.1021/ed300117b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abata-Pella D, Stoll DR, Carr PW, Boswell PG (2015) An open-source simulator for exploring HPLC theory. LC-GC 33:200–207

    Google Scholar 

  72. Taylor T (2017) Ditch your mundane HPLC methods and supercharge your chromatography. In: LCGC Blog. http://www.chromatographyonline.com/lcgc-blog-ditch-your-mundane-hplc-methods-and-supercharge-your-chromatography. Accessed 29 Dec 2017

  73. Desmet G, Clicq D, Gzil P (2005) Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal Chem 77:4058–4070. https://doi.org/10.1021/ac050160z

    Article  CAS  PubMed  Google Scholar 

  74. Desmet G, Clicq D, Nguyen DTT et al (2006) Practical constraints in the kinetic plot representation of chromatographic performance data: theory and application to experimental data. Anal Chem 78:2150–2162. https://doi.org/10.1021/ac051280&%23x002B;

    Article  CAS  PubMed  Google Scholar 

  75. Causon TJ, Broeckhoven K, Hilder EF et al (2011) Kinetic performance optimisation for liquid chromatography: principles and practice. J Sep Sci 34:877–887. https://doi.org/10.1002/jssc.201000904

    Article  CAS  PubMed  Google Scholar 

  76. Broeckhoven K, Cabooter D, Eeltink S, Desmet G (2012) Kinetic plot based comparison of the efficiency and peak capacity of high-performance liquid chromatography columns: theoretical background and selected examples. J Chromatogr A 1228:20–30. https://doi.org/10.1016/j.chroma.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  77. Andrés A, Broeckhoven K, Desmet G (2015) Methods for the experimental characterization and analysis of the efficiency and speed of chromatographic columns: a step-by-step tutorial. Anal Chim Acta 894:20–34. https://doi.org/10.1016/j.aca.2015.08.030

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Partial funding for this work was provided by Rowan University College of Science and Mathematics start-up funding and a summer undergraduate research fellowship to G.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Grinias.

Ethics declarations

Conflict of Interest

G.A.K. and J.P.G. declare no conflicts of interest. J.-M.T.W., M.D.P., and F.S. are employed by Thermo Fisher Scientific, a company that manufactures some of the technology used in this study.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Rising Stars in Separation Science, as part of Chromatographia’s 50th Anniversary Commemorative Issue.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kresge, G.A., Wong, JM.T., De Pra, M. et al. Using Superficially Porous Particles and Ultrahigh Pressure Liquid Chromatography in Pharmacopeial Monograph Modernization of Common Analgesics. Chromatographia 82, 465–475 (2019). https://doi.org/10.1007/s10337-018-3593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3593-2

Keywords

Navigation