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Abstract
Earthquakes and tsunamis can trigger acoustic and gravity waves that could reach the ionosphere, generating electron density 
disturbances, known as traveling ionospheric disturbances. These perturbations can be investigated as variations in iono-
spheric total electron content (TEC) estimated through global navigation satellite systems (GNSS) receivers. The VARION 
(Variometric Approach for Real-Time Ionosphere Observation) algorithm is a well-known real-time tool for estimating 
TEC variations. In this context, the high amount of data allows the exploration of a VARION-based machine learning clas-
sification approach for TEC perturbation detection. For this purpose, we analyzed the 2015 Illapel earthquake and tsunami 
for its strength and high impact. We use the VARION-generated observations (i.e., dsTEC/dt) provided by 115 GNSS sta-
tions as input features for the machine learning algorithms, namely, Random Forest and XGBoost. We manually label time 
frames of TEC perturbations as the target variable. We consider two elevation cut-off time series, namely, 15° and 25°, to 
which we apply the classifier. XGBoost with a 15° elevation cut-off dsTEC/dt time series reaches the best performance, 
achieving an F1 score of 0.77, recall of 0.74, and precision of 0.80 on the test data. Furthermore, XGBoost presents an 
average difference between the labeled and predicted middle epochs of TEC perturbation of 75 s. Finally, the model could 
be seamlessly integrated into a real-time early warning system, due to its low computational time. This work demonstrates 
high-probability TEC signature detection by machine learning for earthquakes and tsunamis, that can be used to enhance 
tsunami early warning systems.

Keywords GNSS Ionospheric Seismology · VARION algorithm · Machine learning · XGBoost · Tsunami early warning 
systems

Introduction

Natural hazards such as volcanic eruptions, earthquakes, 
and tsunamis can perturb the ionosphere (Astafyeva 2019; 
Huang et al. 2019; Calais and Minster 1995; Peltier and 
Hines 1976; Hargreaves 1992; Occhipinti 2015; Rolland 
et  al. 2010; Meng et  al. 2019; Artru et  al. 2005; Chou 
et al. 2017; Zettergren et al. 2017). In detail, these events 
can generate acoustic and gravity waves (AGWs), that are 
amplified as atmosphere density decreases and can reach 
the ionosphere. These waves interact with the ionospheric 
plasma and cause ionospheric electron density disturbances, 
known as traveling ionospheric disturbances (TIDs; Galvan 
et al. 2012; Astafyeva 2019). Here, we mention acoustic 
gravity waves generated near the epicenter (AGWepi) and 
internal gravity waves (IGWtsu; Occhipinti 2015). AGWepi, 
related to the uplift at the source, reaches the ionosphere in 
around 8 min, whereas IGWtsu, linked to tsunami offshore 
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propagation, takes about 45–60 min (Lognonné et al. 2006; 
Occhipinti et al. 2011).

These perturbations are detected through variations in 
ionospheric total electron content (TEC; Coster et al. 2013; 
Hofmann-Wellenhof et al. 2008), retrieved by global naviga-
tion satellite system (GNSS) measurements, and measured 
in TEC units (1 TECU =  1016 electrons/m2). Specifically, we 
refer to the slant TEC (sTEC) measured by dual-frequency 
GNSS receivers and encountered by the GNSS signal dur-
ing its path through the ionosphere from the satellite to the 
receiver.

The VARION algorithm (Variometric Approach for Real-
Time Ionosphere Observation) is an established tool to esti-
mate sTEC variations from GNSS observations (Savastano 
et al. 2017; Ravanelli et al. 2021). It is based on a single time 
difference of geometry-free combinations, being suitable for 
real-time applications (Ravanelli et al. 2020).

TIDs detection considering sTEC time series has been 
conducted using traditional techniques reliant on human 
expertise, including the analysis of the ionospheric power 
index (Manta et al. 2020), the wavelet analysis threshold-
based (Torrence and Compo 1998), and the 2D principal 
component analysis (Lin 2022). Despite the effectiveness of 
these traditional approaches, there is increasing recognition 
that artificial intelligence (AI), particularly machine learn-
ing, holds potential for advancing TIDs detection. Machine 
learning uses data-driven algorithms for autonomous deci-
sion-making, offering computational efficiency and data 
handling capacity (Kuglitsch et al. 2022; Crocetti et al. 
2021). During the past years, the application of machine 
learning algorithms has become widespread in ionospheric 
research for different purposes: automatic detection meth-
ods to study TID signatures (Brissaud and Astafyeva 2022; 
Constantinou et al. 2023a, b); forecasting TEC data (Cesa-
roni et al. 2020; Huang and Yuan 2014; Natras et al. 2022; 
Liu et al. 2020); nowcasting TEC data (Zhukov et al. 2018; 
Camporeale 2019; Łoś et al. 2020); improvement of regional 
and global TEC models (Zhukov et al.2020); ionospheric 
scintillation parameter predictions (Atabati et  al. 2021; 
McGranaghan et al. 2018; Linty et al. 2019); and the gen-
eral analysis of TEC variations induced by earthquakes and 
tsunamis (Zhukov et al. 2020).

Within the framework of automatic detection methods to 
study TID signatures, the previous studies by Constantinou 
et al. (2023a, b) considered computer vision and convolu-
tional neural networks, while Brissaud and Astafyeva (2022) 
applied the Random Forest classifier, similar to our study, 
focusing on classifying ionospheric waveforms into TIDs 
and noise, picking TID arrival times, and associating arrivals 
across a satellite network in near real-time. In this context, 
our study aims to use machine learning algorithms for clas-
sifying ionospheric TEC variations caused by earthquakes 
and tsunamis using the large amount of GNSS time-series 

data (provided by every satellite-station link available). It 
aligns with the existing body of research while contributing 
novel insights into the classification of TIDs in large-scale 
GNSS data sets. Automatic TIDs detection, as planned by 
the NASA-JPL GUARDIAN system (Martire et al. 2023), 
underscores the importance of our research within the sci-
entific community.

This paper investigates the 2015 Illapel earthquake 
and tsunami, a valid case study with a well-documented 
high magnitude and tsunami signature (Reddy et al. 2017; 
Ravanelli et al. 2021; Shrivastava et al. 2021).

The main objective is to examine if and how machine 
learning algorithms are suitable to find TEC time-series sig-
natures related to earthquakes and tsunamis.

To reach our aim, we consider two machine learning 
classifiers, namely, Random Forest and XGBoost (Breiman 
2001; Chen and Guestrin 2016), and apply them to the first 
temporal derivative of the sTEC (dsTEC/dt), representing 
VARION-core output. It depicts the rate of change of sTEC 
with respect to time, to which an elevation cut-off of 15° 
and 25° is implemented. Several experiments are carried out 
to determine the optimally performing model, such as data 
pre-processing, and feature-selection. The following Section 
provides an overview of the analyzed event, the study region, 
and the data used. The Methods Section describes the meth-
odologies: the VARION algorithm and the machine learning 
techniques. Moreover, it presents the set-up of the machine 
learning classification, the explanations of the pre-process-
ing features, and the assessment of the model performance. 
In the Results Section, the outcomes are presented, analyzed, 
and discussed. Here, we also validate the model by applying 
it to time series with no seismic-induced variations in sTEC. 
Specifically, we consider data with alterations in dsTEC/dt 
values not related to the earthquake, testing the algorithm's 
capability to exclusively detect variations directly linked to 
the earthquake, aligning with our primary objective. Finally, 
the last Section summarizes the outcomes derived from this 
study, identifies the most effective configuration for an effi-
cient model, and offers a prospective outlook on potential 
enhancements yet to be explored.

Study context and data set overview

On September 16, 2015, at 19:54:33 Chile Standard Time 
(22:54:33 UTC), a devastating earthquake with a moment 
magnitude of Mw 8.3 occurred 46-km offshore of the 
Coquimbo region of Chile. The primary seismic event 
lasted between 3 and 5 min, followed by multiple after-
shocks (Ravanelli et al. 2021). Both the NOAA Pacific Tsu-
nami Warning Centre (https:// www. tsuna mi. gov/; https:// 
earth quake. usgs. gov/ earth quakes/ event page/ us200 03k7a/ 
execu tive) and the Servicio Hidrográfico y Oceanográfico 

https://www.tsunami.gov/
https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/executive
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de la Armada (Chile’s National Tsunami Warning System) 
(https:// www. armada. cl/ notic ias- naval es/ shoa- difun de- oport 
una- alerta- de- tsuna mi; https:// www. snamc hile. cl/) issued 
tsunami threat messages and alarms, respectively. Within 
10 min, tsunami waves measuring 4.5 m struck the Chil-
ean shoreline between Chañaral (~ 26°S) and Constitución 
(~ 35°S), causing substantial impact (https:// www. tsuna 
mi. gov/ events/ PAAQ/ 2015/ 09/ 16/ nuskyv/ 22/ WEAK51/ 
WEAK51. txt). Pichidangui (~ 32°S) was reached by the 
first wave 13.70  min after the mainshock. The coastal 
area between Coquimbo (~ 30°S) and Valparaíso (~ 33°S) 
recorded the highest wave height (over 1.5 m), leading to 
significant flooding in Coquimbo (Shrivastava et al. 2021).

Data set

Data from 115 GNSS stations mostly located in Chile but 
also spread all over the South American continent (Fig. 1) 
are processed with VARION (Ravanelli et al. 2021). The 
GNSS receivers collect data at 10-, 15-, and 30-s rates. Fol-
lowing Reddy et al. 2017 research, we consider G12, G24, 
and G25 satellites, resulting in a data set composed of 345 
observations.

In detail, our data set consists of 345 VARION-obtained 
sTEC variations over time, i.e., dsTEC/dt [TECU/s], which 

represent the primary and the real-time output of VARION 
and do not require any additional post-processing (Ravanelli 
et al. 2021). Specifically, the dsTEC/dt time series are repre-
sentative as the earthquake has high magnitude and causes 
evident signatures in the ionosphere. However, while our 
data set provides insights into TID detection, it has limita-
tions. Indeed, seismic and non-seismic external factors such 
as space weather, noise, satellite angles, geomagnetic field, 
and observation geometry influence the induced TEC obser-
vation (Meng et al. 2022; Bagiya et al. 2019). We analyze 
both GPS days, i.e., DOY 259 and 260 (the earthquake day 
and the day after), considering the time series of the whole 
DOY 259 and part of the time series of DOY 260, namely, 
until satellites descend above the elevation cut-off (Fig. 2). 
Moreover, the data set considers only 31 selected links sat-
ellite-stations following four criteria:

• Data availability on both days (DOY 259 and 260)
• Considerable (that can be visually identified) variations 

in the dsTEC/dt time series (related to the earthquake)
• Only one gap during the day (due to satellite visibility)

Fig. 1  Map showing the 115 GNSS receivers (red points) and the epi-
center of the 2015 Illapel earthquake (yellow star)

Fig. 2  Two of the 31 dsTEC/dt time series that constitute our data set. 
Here, the link composed of the G12 satellite and the PAZU station 
is shown on the top plot (a); whereas the bottom plot (b) presents a 
zoomed view of the time series of the link composed of the G25 sat-
ellite and the MRCG station, specifically focusing on the part of the 
day when the earthquake develops. This portion, occurring after the 
gap due to the satellite visibility, highlights the seismic-induced vari-
ations in the data

https://www.armada.cl/noticias-navales/shoa-difunde-oportuna-alerta-de-tsunami
https://www.armada.cl/noticias-navales/shoa-difunde-oportuna-alerta-de-tsunami
https://www.snamchile.cl/
https://www.tsunami.gov/events/PAAQ/2015/09/16/nuskyv/22/WEAK51/WEAK51.txt
https://www.tsunami.gov/events/PAAQ/2015/09/16/nuskyv/22/WEAK51/WEAK51.txt
https://www.tsunami.gov/events/PAAQ/2015/09/16/nuskyv/22/WEAK51/WEAK51.txt
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• Data availability from the first observation of the day 
(which is on the first 15 s of the day), for both DOY 259 
and 260

The frequency of the observations related to the selected 
31 samples is 15 s.

Methodology

The VARION algorithm is applied to the observations of 
GPS DOY 259 and 260. VARION estimates real-time sTEC 
variations relying on stand-alone GNSS receivers and stand-
ard GNSS broadcast products. It is based on single time 
differences of a geometry-free combination of GNSS carrier-
phase measurements (Savastano et al. 2017; Ravanelli et al. 
2020, 2021). A crucial tool in this study, VARION provides 
the time series for both train the machine learning algorithm 
and validate the results.

In this analysis, we use the elevation cut-off angles of 15° 
and 25° to mitigate the impact of observational noise, a prev-
alent challenge in ionospheric studies. These cut-off angles 
represent a strategic filter, effectively excluding observations 
derived by satellites with lower elevation angles where data 
tend to be noisier due to increased atmospheric interference. 
This aligns with common practices in the literature, where 
such elevation cut-offs are used to enhance the signal-to-
noise ratio and improve the overall quality of the data set, 
ensuring a more robust and reliable foundation for our analy-
sis (Occhipinti et al. 2011; Astafyeva 2019; Ravanelli et al. 
2023).

To achieve our final aim of detecting the TIDs caused by 
earthquakes and tsunamis, we formulate a binary classifica-
tion problem using supervised machine learning algorithms. 
Data are classified into two categories: 0 (if there are no 
sTEC variations related to the earthquake and tsunami in a 
30-min window that runs through the time series) and 1 (if 
there are sTEC variations). The TIDs detection is based on 
established criteria derived from prior studies available in 
the literature. These include factors such as the arrival time 
of the perturbation in the ionosphere, its shape, absence of 
geomagnetic disturbances, and frequency content, as iden-
tified and validated in the previous research (Reddy et al. 
2017; Ravanelli et al. 2021; Shrivastava et al. 2021; Sanchez 
et al. 2023).

We consider Random Forest (RF) and XGBoost (XGB) 
classifiers among the several available for classification tasks 
(Zhang et al. 2017), for their well-known good performances 
(Brissaud and Astafyeva 2022). Indeed, Crocetti et al. 2021 
show that RF and XGB algorithms perform better than oth-
ers (i.e., Linear Support Vector Classification, Perceptron, 
K-Nearest Neighbor, and more). Specifically, RF excels in 
handling high-dimensional data and mitigating overfitting 

through bootstrap aggregation, while XGBoost improves 
weak learners iteratively, enhancing accuracy and compu-
tational efficiency. Both algorithms, as ensemble learning 
methods, capture intricate relationships within the data 
and enhance predictive accuracy. They are suitable for our 
purposes, especially since we do not require deep learning 
methods (i.e., Convolutional Neural Networks—CNNs; 
Albawi et al. 2017) given our moderate data set size and the 
division into short chunks of the time series.

In detail, RF consists of decision trees, nonlinear mod-
els with multiple linear boundaries. Decision tree nodes 
use data-related questions linked to specific feature values, 
recursively dividing layers into child nodes. The iterative 
process creates a tree with a predefined depth. The algo-
rithm selects bootstrapped samples and a random feature 
subset for model evaluation. The final prediction aggregates 
results from all decision trees (Breiman 2001). In contrast, 
XGBoost builds trees sequentially, each minimizing the 
error of the previous tree. It starts with a constant, itera-
tively trains trees on residuals, and combines them with the 
previous model to reduce error. Finally, strong learner results 
from combining all weak learners (Wang and Liu 2020; 
Chen and Guestrin 2016).

The classification is conducted for the selected 31 links 
(described in the Data set Section), split into 80% (25 links) 
and 20% (6 links) for training and testing. The dsTEC/dt 
time series of each link are divided into individual chunks, 
as described in the following Section. The model is trained 
based on the dsTEC/dt time series of the 25 training links, 
while tested considering the ones of the six testing links. 
Finally, the validation of the model and the evaluation of its 
performance are analyzed by considering 18 unseen dsTEC/
dt time series, also related to the Illapel event. However, 
these show variations in dsTEC/dt not linked to the seismic 
event. This additional analysis allows us to assess the mod-
el's ability to distinguish variations in dsTEC/dt specifically 
linked to the earthquake and tsunami from those unrelated 
to the seismic event.

Feature matrix

We use the dsTEC/dt time series of 31 links satellite-stations 
as features for the machine learning algorithms. In detail, we 
exclude the gap due to the satellite visibility of each time 
series and consider the time frames (1) from the first 15 s of 
DOY 259 until the start of the gap of DOY 259 and (2) from 
the end of the gap of DOY 259 until the start of the gap of 
the DOY 260 of each time series.

The time series are split into k chunks to create the fea-
ture matrices. Each chunk is m = 30 min long and shifted 
by n = 1 min from the next one: The first chunk contains 
dsTEC/dt values from the first 15 s (the first observation 
for both the days) until m, while the second one from 75 s 
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(15 s + n) until 75 s + m, and so on. The feature matrices 
have the dimension [k, 120] as 120 is the number of 15 s 
in m. Finally, we obtain 31 feature matrices (one per link), 
where we combine 25 to create the feature matrix used 
for training (80%), and 6 to create the one used for test-
ing (20%). The structure of the feature matrix is shown 
in Fig. 3.

Target vector

The target vector denotes whether sTEC variations due to 
the tsunami occurred within their corresponding chunks, 
classifying them as “1” if the perturbation is present or “0” 
if not. As previous mentioned, this attribution is based on 
well-defined conditions validated in the literature, which 
demonstrate the link between sTEC perturbations and the 
seismic event. To perform this binary classification, the 
time frame of sTEC perturbation related to the event is 
manually labeled from the time series, i.e., the initial and 
finishing times of the sTEC perturbation for every link 
satellite-station. Therefore, the target vector is labeled as 
1 whenever the 30-min chunks contain any point in time of 
the manually labeled time frame of the sTEC perturbation.

In this way, we create a target vector with the dimension 
[k, 1] for every link (Fig. 3). As for the feature matrix, we 
use the same 80% of the links for training and 20% for 
testing.

Data pre‑processing

The pre-processing of the data set consists of cleaning and 
preparation of the data, to improve the quality of the data 
set and ensure better performance of the model. In this 
study, we consider standardization and normalization, two 
methods used to scale the data set. In detail, standardization 
transforms the data to a specific range (e.g., 0 and 1 or − 1 
and + 1); while normalization changes the data so that they 
resemble a normal distribution (Ali and Faraj 2014; Vieira 
et al. 2020).

Finally, we also include additional features in the feature 
matrix, namely, the value range, defined as the maximum 
value minus the minimum one before the normalization, and 
the variance of each chunk, both individually and together.

Model evaluation

To evaluate the performance of the model, we consider the 
confusion matrix, the difference between the labeled and 
predicted middle epochs of the perturbations time frames, 
the receiver operating characteristic (ROC) curve and the 
area under the curve (ROC-AUC).

In detail, the confusion matrix shows the number of false 
negatives (FNs), false positives (FPs), true negatives (TNs), 
and true positives (TPs) generated from the machine learn-
ing classification (Crocetti et al. 2021). In our case, TPs and 
TNs indicate correctly classified chunks with (or without, 

Fig. 3  Structure of the feature 
matrix related to the time values 
for DOY 259 (both for training 
and for testing). For every time 
value, the matrix is filled with 
the corresponding dsTEC/dt 
value. The red cells are an illus-
trative and hypothetical example 
to show the dsTEC/dt values 
perturbed from the earthquake 
and tsunami, corresponding to 
the value “1” in the target vector
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for TNs) earthquake- and tsunami-induced sTEC variations. 
Conversely, FNs identify chunks with undetected sTEC vari-
ations, while FPs designate chunks without sTEC variations, 
wrongly classified as containing them. Due to our aim of 
not overlooking any tsunamis, FNs are considered the most 
crucial errors in the analysis. However, to evaluate the best 
model, we consider the confusion matrix in terms of the 
well-known performance measures of precision, recall, and 
F1 score (Ting 2017).

Moreover, we compare the labeled perturbation time 
frame with the one generated by the model, represented 
by the time frame containing all the TPs (assumed to be at 
the middle epoch of the 30-min time period of the chunk). 
To achieve this goal, we calculate the numerical difference 
between the middle epoch of both time frames and assess 
how many 15 s of difference there are between them (accord-
ing to the time-series resolution).

Results and discussion

To reach the final aim of finding signatures in TEC time 
series related to earthquakes and tsunamis using machine 
learning algorithms, we performed several experiments con-
sidering two classifiers, i.e., Random Forest and XGBoost, 
and two elevation cut-off angles, i.e., 15° and 25° (see the 
following Section). We conducted hyperparameter tuning 
through grid search for each of the four combinations clas-
sifier elevation cut-off. We also assessed the influence of 
additional features (see the Section related to the impact 
of added features) and pre-processing techniques (refer to 
the Section concerning the pre-processing effects) on the 
model's performance. The model with the best performance 
in terms of F1 score was then selected for each combination, 
resulting in four models. Finally, our final best model was 
selected in terms of F1 score, difference between the mid-
dle epochs of the labeled and predicted perturbation time 
frames, ROC curve and ROC-AUC.

The best result is presented in the first part of this section, 
while the following subsections show how we came to this 
conclusion by comparing the best model with the others.

We trained our model on a machine with a 2.20-GHz 
i7-Intel Core processor, 32 GB of memory, and an Intel(R) 
UHD Graphics 630 graphics card. So, it can even be trained 
on a laptop without a proper GPU.

From this study, the best model is the XGBoost clas-
sifier that uses 15° elevation cut-off dsTEC/dt time series 
and includes the value range of each chunk as an addi-
tional feature. A hyperparameter tuning was performed 
to optimize the overall model performance. In the case of 
XGBoost, the number of boosting rounds (or the number 
of trees to be built in the ensemble), the maximum depth 
of trees, the number of columns to be randomly sampled 

for each tree, and the learning rate (the step size at each 
iteration while the model optimizes toward its objective) 
were analyzed. To determine the most suitable hyperpa-
rameters, we used a grid search, which systematically 
searches through a grid of a manually predefined set of 
hyperparameter combinations. In this study, the perfor-
mance of all hyperparameter value combinations is evalu-
ated based on a threefold cross-validation. This involves 
partitioning the data set into three subsets, with two-thirds 
used for direct model training and one-third reserved for 
validation. This process was repeated three times, ensuring 
each subset served as a validation set once. The average 
performance across these three runs for each hyperparam-
eter combination was then compared to identify the set of 
hyperparameter values that reach the best performance. 
Table 1 shows the tested combinations and the best and 
default hyperparameter values for XGB-15°, our best 
model.

Regarding the testing samples, the best-performing model 
correctly classifies 183 of 247 (74.09%) samples of sTEC 
variations related to the earthquake and the tsunami (TP). 
Furthermore, 2975 of 3021 (98.49%) of the testing samples 
are correctly classified, containing no earthquake-induced 
sTEC variations (TN). Thus, 64 of 247 samples (25.91%) are 
wrongly classified as containing no seismic-induced sTEC 
variations (FN), while 46 of 3021 (1.51%) are the number 
of wrongly classified chunks as containing sTEC variations 
related to the event (FP), as shown in Table 2. The model 
achieves an F1 score of 0.77, recall of 0.74, and precision 
of 0.8; while the accuracy considering the training and the 
testing data is 0.98 and 0.97, respectively (Table 3). Figure 4 
depicts these results for two links and the difference between 

Table 1  Best tested and default hyperparameter values in the grid 
search for XGB-15°

n_estimators is the number of boosting rounds, max_depth is the 
maximum depth of the tree, colsample_bytree is the number of col-
umns to be randomly sampled for each tree, and learning_rate is the 
step size of each iteration

Hyperparameter Best value Tested values Default value

n_estimators 100 [100, 500, 1000] 100
max_depth 10 [3,6,10] 6
colsample_bytree 0.7 [0.3, 0.7] 1
learning_rate 0.01 [0.01, 0.05, 0.1] 0.3

Table 2  Confusion matrix of our best model (XGB-15°), showing 
FPs, TPs, FNs, and TNs

0 (no perturbation) 1 (perturbation)

0 (no perturbation) 2975 (TNs) 46 (FPs)
1 (perturbation) 64 (FNs) 183 (TPs)
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the labeled and predicted middle epochs of the perturbation 
time frames.

The average numerical difference between the epoch of 
the TID is 70.8 s, considering the 25 links used to train the 
model, and 75 s for the 6 links used for testing (Table 4). 
As the time series are 15-s step discontinuous, achieving a 
5-step average differences between the two epochs both in 
training and in testing is relevant. This highlights the algo-
rithm's precise temporal detection of the AGWepi-related 
perturbations, underlining its critical role in timely TIDs 
identification for effective early warning systems. Further-
more, having similar results for training and testing data 
shows the model’s generalization ability, avoiding over-
fitting problems. In this context, the model's capability to 
generalize is ensured by incorporating an additional feature 
(i.e., value range), which prevents overfitting and captures 

Table 3  Results (in terms of accuracy for training and testing data, 
precision, recall, and F1 score) of the four models

XGBoost (XGB) Random forest (RF)

Elevation cut-off 15° 25° 15° 25°
Added feature(s) Value  

range
Variance Value 

range
Value range
Variance

Accuracy train 0.98 0.99 0.99 0.99
Accuracy test 0.97 0.96 0.96 0.95
Precision 0.80 0.78 0.99 0.98
Recall 0.74 0.78 0.46 0.53
F1 score 0.77 0.78 0.63 0.69

Fig. 4  Time series of two 
sample links: the one composed 
by the G24 satellite and PAZU 
station, used for training (a); 
and the one formed by the G24 
satellite and UDAT station, 
used for testing (b). In both, the 
performance of the best model 
is presented. The plots show the 
position of the FNs and TPs in 
the time series together with the 
labeled and predicted middle 
epochs of the perturbation time 
frame

Table 4  Results (in terms of 
the average difference between 
labeled and predicted middle 
epochs and the number of 15-s 
steps considering the training 
and testing links) of the four 
models

The number of links both for training and for testing showing an average difference higher than 100  s 
(named “#links > 100 s”) is also reported

XGBoost (XGB) Random forest (RF)

Elevation cut-off 15° 25° 15° 25°
Added feature(s) Value range Variance Value range Value range

Variance
Avg. diff. train 70.8 s

∼ 5 15-s step
102 s
∼ 7 15-s step

13.2 s
∼ 1 15-s step

88.8 s
∼ 6 15-s step

#links > 100 s 4 9 - 5
Avg. diff. test 75 s

5 15-s step
80 s
∼ 5 15-s step

80 s
∼ 5 15-s step

135 s
∼ 9 15-s step

#links > 100 s 2 2 2 5
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essential information. The generalization is also achieved by 
the threefold cross-validation. Moreover, the sensitivity to 
noisy observations (i.e., selection of elevation cut-off angles) 
improves the model's focus on relevant information.

Figure 5 illustrates the ROC curves and AUC values for 
both algorithms and cut-off angles. RF reaches better ROC 
curves and higher AUC values; however, we opted for XGB-
15° considering its greater performance in the F1 score and 
in the difference between the labeled and predicted middle 
epochs. In particular, a good performance in the last metric 
is essential for good results in real-time applications, align-
ing with our aim scope.

Overall, the algorithm demonstrates good computational 
efficiency, detecting in about 2–3 min, with hyperparameters 
tuning as the most critical step. An effective computational 
performance is crucial for real-time operational require-
ments, essential for effective early warning systems. How-
ever, our analysis uses data sampled at larger intervals than 
the 1-s real-time data rate, which can increase the computa-
tional time to 30–40 min.

Finally, the algorithm holds potentials as a highly viable 
tool, considering its ability to operate in real-time using only 
sTEC time series. However, several crucial aspects must be 
addressed for practical implications. In fact, successful real-
world implementation requires access to real-time data from 
networks in high-risk areas prone to tsunamis. Furthermore, 
incorporating buffer time into the analysis process allows for 
a thorough examination of the data and its quality in real-
time (i.e., data integrity, and bias and outlier identification). 
Establishing the necessary infrastructure is also crucial. This 
includes dedicated servers that can perform complex com-
putations, efficiently run AI algorithms, and transfer data to 
cloud platforms. Finally, the use of servers and cloud storage 

is essential for storing data collected in real-time, which can 
be used for training new models and conducting retrospec-
tive analyses.

Comparison of different elevation cut‑off angles

We tested two different elevation cut-off angles, 15° and 
25°, as input features for our model. The results for the two 
classifiers, and the elevation cut-off angles, are shown in 
Table 3, where the first column shows the results of our best 
model.

For both classifiers, the performance related to the dif-
ferent cut-off angles is similar in terms of accuracy and pre-
cision. However, the recall is a bit higher when using an 
elevation cut-off of 25° (Table 3), whereas the F1 score is 
higher for an elevation cut-off of 25° for RF and similar for 
XGBoost. Conversely, when comparing the results of the 
two classifiers, we note that while the precision is higher 
when using RF, the F1 score and recall are significantly 
higher for XGBoost (Table 3).

Furthermore, Table 4 shows that for both classifiers, the 
differences between the labeled and predicted middle epochs 
for the links used for training and testing are smaller when 
using an elevation cut-off of 15° instead of 25°. Even though 
the average difference between the middle epochs for the 
training links is higher for XGBoost than for RF, the one for 
the testing links is smaller (Table 4). Moreover, RF presents 
a high dissimilarity between the average difference of the 
middle epochs considering the training and testing links, so 
the model proves not to be suitable to generalize well over 
unseen data sets.

Thus, we conclude that the XGBoost algorithm using 
dsTEC/dt time series with an elevation cut-off of 15° is the 
best model since it has high accuracy, precision, recall, and 
F1 score and performs best when investigating the average 
differences between labeled and predicted middle epochs.

Impact of additional features

We evaluate the impact of adding additional features, 
namely, the value range and variance of the chunk, to the 
feature matrix used in the machine learning algorithm. 
The choice of incorporating those features in our model 
is motivated by their capacity to capture different aspects 
of the dsTEC/dt time series. The value range represents 
the amplitude of variations within each chunk, providing 
insights into the overall perturbation magnitude. Mean-
while, variance quantifies the internal dynamics and tem-
poral variability, describing the temporal characteristics 
of the ionospheric perturbations. For all combinations 
(XGB-15°, XGB-25°, RF-15°, and RF-25°), this addi-
tion improves the results in terms of precision, recall, and 
F1 score, as shown in Table 5. Indeed, they enable the 

Fig. 5  ROC curves depicting the performance of the different 
machine learning algorithms. The blue dashed line represents the per-
formance of a random classifier. The legend includes the correspond-
ing AUC values
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model to better distinguish seismic-induced variations in 
dsTEC/dt time series, thus improving predictive accuracy 
through a deeper understanding of ionospheric perturba-
tions. In particular, in XGB-15°, RF-25°, and XGB-25°, 
including value range or variance leads to similar results, 
having thus a similar impact on the model. On the other 
hand, in RF-15°, including the value range has a greater 
impact than including variance as it doubles the values 
of the metrics obtained with the raw data. This sensitiv-
ity of the algorithm to the range values aligns with the 
nature of Random Forest, which benefits from capturing a 
broad spectrum of information for robust decision-making, 
and the value range seems to capture the data variability 
more effectively than the variance. Finally, the study of 
the feature importance reveals that, for our best model 
(XGB-15°), the value range has the greatest impact. Thus, 
this shows that the value range significantly contributes to 
reduce errors in the tree ensemble.

Including both value range and variance in the feature 
matrix improves the raw case results. However, in XGB-
15° and XGB-25°, the outcomes are worse than the ones 
related to the addition of value range or variance indi-
vidually. Only in the case of RF-25°, adding both value 
range and variance presents better results than including 
them individually. This is likely because we do not have 
that much training data, and having more data can help 
the model better learn the patterns and relationship within 
the features. In this case, the joint inclusion of the fea-
tures might introduce redundancies or interactions that the 
model struggles to effectively leverage.

Impact of the pre‑processing

In this section, we evaluate the impact of standardization 
and normalization of the feature matrix chunks, done sepa-
rately for each chunk, on the performances of the differ-
ent models (Table 6), which commonly should be small on 
tree-based algorithms (García et al. 2015; Dougherty 2013). 
We highlight that only standardization applied to XGB-15° 
outperforms the raw case. This improvement can be attrib-
uted to the sensitivity of the XGBoost algorithm to the scale 
of input features. Standardization helps align the features 
to a common scale, facilitating more effective convergence 
during the boosting process. Furthermore, with 15° eleva-
tion cut-off, we observe more noisy data compared to the 
ones at 25°. This leads to more pronounced fluctuations and 
a high amount of data, underscoring the greater impact of 
standardization.

In contrast, in RF-15°, RF-25°, and XGB-25°, both stand-
ardization and normalization have a negative impact on the 
model, worsening the raw case results in terms of F1 score 
and recall. This outcome shows that RF and XGB are in this 
case not highly sensitive to the scale of features.

Validation of the model

To validate our results, we apply the best model to unseen 
dsTEC/dt time series related to the same event but generated 
from different satellite-station links. Specifically, we select 
the time series with variations in dsTEC/dt values occurring 
before the seismic event, ensuring that these perturbations 

Table 5  Impact of additional features (value range and variance, both 
individually and together) on the precision, recall, and F1 score, met-
rics of the four models

Added feature(s) No added 
features

Value range Variance Value range
Variance

XGB-15°
 Precision 0.83 0.89 0.86 0.78
 Recall 0.32 0.53 0.52 0.41
 F1 score 0.46 0.66 0.65 0.54

XGB-25°
 Precision 0.77 0.85 0.82 0.82
 Recall 0.38 0.55 0.58 0.52
 F1 score 0.51 0.67 0.68 0.63

RF-15°
 Precision 1.0 1.0 1.0 1.0
 Recall 0.21 0.44 0.32 0.42
 F1 score 0.34 0.61 0.49 0.59

RF-25°
 Precision 0.99 0.98 1.0 0.99
 Recall 0.31 0.44 0.45 0.53
 F1 score 0.47 0.61 0.62 0.69

Table 6  Impact of pre-processing of the features (standardization and 
normalization) on the precision, recall, and F1 score, metrics of the 
four models

Pre-processing No pre-
processing

Standardization Normalization

XGB-15°
 Precision 0.83 0.83 0.78
 Recall 0.32 0.40 0.31
 F1 score 0.46 0.54 0.44

XGB-25°
 Precision 0.77 0.80 0.71
 Recall 0.38 0.34 0.35
  F1 score 0.51 0.48 0.47

RF-15°
 Precision 1.0 1.0 1.0
 Recall 0.21 0.04 0.09
 F1 score 0.34 0.07 0.17

RF-25°
 Precision 0.99 1.0 1.0
 Recall 0.31 0.06 0.23
 F1 score 0.47 0.11 0.37
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are not caused by the earthquake. To select them, we apply 
some variations to the first two selection criteria used before:

• Data availability only on DOY 259, excluding DOY 260 
(as those time series are not registering at the end of 
DOY 259, when the earthquake occurred, so there would 
be a gap between DOY 259 and 260)

• Considerable (that can be visually identified) variations 
in the dsTEC/dt time series, but not related to the earth-
quake (caused by noise or ionospheric background)

In this way, 18 dsTEC/dt time series are selected, ena-
bling us to evaluate the performance of the model. Indeed, 
the expectations for this application are to predominantly 
capture all or most TNs, and minimize the occurrence of 
FPs. This is particularly crucial, as we are specifically con-
sidering time-series data with variations in sTEC that is not 
induced by the earthquake, ensuring a focus on our primary 
objective. The confusion matrix shows good results: 96.89% 
TNs and 3.11% FPs (in numbers: 5119 of TNs and 164 of 
FPs). These successful results are also confirmed by an accu-
racy of 0.97 (Fig. 6).

Conclusions

This study successfully used two machine learning algo-
rithms, Random Forest and XGBoost, to detect TEC varia-
tions induced by the significant 2015 Illapel earthquake and 

tsunami, known for its substantial ionospheric TEC signa-
tures. We approached the problem as a supervised binary 
classification task and used the VARION-generated dsTEC/
dt time series as the input for our model. We followed spe-
cific criteria to select 31 links satellite-station. Then, we 
split the corresponding dsTEC/dt time series into individ-
ual 30-min chunks to create the feature matrix used in the 
machine learning algorithms.

We considered different classifiers, elevation cut-off 
angles, additional features, and pre-processing techniques. 
The best result, based on F1 score, average difference 
between labeled and predicted middle epochs of the per-
turbation time frames, and ROC curves, was with XGBoost 
classifier applied to 15° elevation cut-off time dsTEC/dt time 
series. The best performance was achieved by including the 
value range of the chunks as an additional feature and by 
tuning the hyperparameter using grid search.

Applying our final model to unseen test data, we obtained 
an overall performance of an F1 score of 0.77, a recall of 
0.74, and a precision of 0.80. Indeed, focusing on the test-
ing samples, 183 of 247 (74.09%) were correctly classified 
to contain sTEC variations related to the earthquake and 
the tsunami (TP). Furthermore, 2975 of 3021 (98.49%) of 
the testing samples were correctly classified, containing no 
sTEC variations caused by an earthquake (TN). Thus, 64 
samples (25.91%) were wrongly classified as containing no 
sTEC variations caused by the event (FN), and 46 (1.51%) 
were the number of wrongly classified chunks as containing 
sTEC variations related to the earthquake and tsunami (FP).

Fig. 6  Time series of G14 satel-
lite and LSCH station showing 
the results obtained applying 
the model to one of the unseen 
dsTEC/dt time series, where the 
earthquake does not occur. The 
plot shows the FPs and TNs in 
the time series (a), with a zoom 
on the time frame where the FPs 
are detected (b)
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Our model, with a smaller data set and single event, 
achieves competitive TP and TN rates when compared to 
the study by Brissaud and Astafyeva (Brissaud) with a sub-
stantial data set of 12 earthquake events, underscoring its 
potential utility in operational early warning systems.

This model demonstrated a 75-s average difference in pre-
dicting perturbation time frames for testing links, equivalent 
to an average difference of five steps considering the 15-s 
steps time series. This highlights the algorithm's potential for 
early detection of ionospheric perturbations caused by earth-
quakes and tsunamis, aiding in early warnings purposes.

The model’s versatility allows application in an opera-
tional real-time setting using real-time GNSS data, as it only 
needs the VARION-generated real-time sTEC time series 
(dsTEC/dt). In that case, buffer time conversion of the sTEC 
time series, tools for store the processed data, powerful 
servers, and adequate computational resources need to be 
considered.

The model takes a few minutes to detect TIDs, presenting 
a very low percentage of FPs (1.51%) and showing a high 
computational efficiency, crucial for effective early warn-
ing systems. However, real-time situations may increase the 
computational time due to higher data frequency (1 s) and 
bigger data set size, emphasizing the need for continuous 
improvement.

Finally, we validated our results applying the best model 
to dsTEC/dt time series related to the same event but gen-
erated from different satellite-station links. In detail, those 
time series had variations in dsTEC/dt values occurring 
before the seismic event, thus not caused by the earthquake. 
We obtained promising results: 96.89% TNs, 3.11% FPs, 
and 97% accuracy. However, we know that validation pro-
cess also involves applying the model to similar events. 
We acknowledge the importance of external validation on 
entirely different data sets to assess the model's performance 
in different scenarios, which will be discussed in the future 
works.

In conclusion, we have demonstrated a powerful tool for 
timely and accurate identification of ionospheric perturba-
tions linked to seismic events. Our study not only provides a 
valuable contribution to the field of ionospheric research but 
also sets the stage for the integration of advanced machine 
learning techniques into operational early warning systems, 
improving our ability to respond proactively to seismic 
events and associated hazards.

However, recognizing the current model's limitations, 
particularly referring to the low frequency and low copi-
ousness of the data, future studies should fine-tune the algo-
rithm for real-time, high-resolution data, widening the analy-
sis to different kinds of TIDs and data sets. Furthermore, 
the model should be improved by incorporating additional 
features and optimizing the computational efficiency con-
sidering parallel processing, together with the analysis of 

its generalization capabilities. This will enhance the model's 
robustness and effectiveness in real-time application. Moreo-
ver, a database that stores the events (such as earthquakes, 
tsunamis, and volcanic eruptions) with their characteristic 
features (time frame, waveform, frequency content, and 
period) should be established. In this way, it will be pos-
sible to collect several events that can be adopted within 
different algorithms, reaching a way of continuous learning. 
Those outcomes could then be used as tools that enable early 
warning systems to combine data derived from the iono-
sphere with other information to achieve integrated systems 
that work synergically, enhancing the overall effectiveness 
of disaster prediction and mitigation strategies.
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