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Abstract
This study aimed to investigate the performance of machine learning (ML) algorithms in determining horizontal velocity 
at specific points using the current Global Navigation Satellite System (GNSS) velocity field. To achieve this objective, the 
analysis utilized the most comprehensive velocity field available for Turkey, where 70% of the GNSS velocities was allocated 
for training the ML algorithms, while the remaining 30% was used for testing. Contrary to the previous research, the sig-
nificance of considering the tectonic structure within the study area was emphasized at this point. To determine the tectonic 
structure of the horizontal velocity field in the region, a preliminary clustering procedure was conducted. Subsequently, dis-
tinct ML algorithms were trained using velocity fields associated with different tectonic plates. Moreover, to investigate the 
impact of the tectonic domain, the entire velocity field was also tested using ML algorithms without considering the tectonic 
structure. Four different ML algorithms, namely, Gradient Boosting Machines (GBM), LightGBM, Random Forest (RF), 
and eXtreme Gradient Boosting Machines (XGBoost), were employed to estimate the horizontal velocities (east and north 
components). The findings imply that incorporating the tectonic structure improved the performance of machine learning 
predictions, as indicated by the GBM algorithm's decreased root-mean-square error values. In addition, when the tectonic 
structure was taken into account, the accuracy assessment values for the RF and XGBoost algorithms in the east component 
decreased significantly. In terms of predicting GNSS velocities, the RF algorithm exhibited the lowest root-mean-square 
error values compared to other algorithms. The horizontal velocity differences between averages of the reference velocity 
field and the RF velocity estimates are maximum 0.4 mm/yr.
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Introduction

Global plate motion models such as NUVEL-1 or NUVEL-
1A (DeMets et al. 1990; 1994) were used before the geodetic 
velocity field based on the Global Positioning System (GPS) 
was established to interpret broad crustal movement and tec-
tonic structure. With GPS technology, crustal motions began 
to be observed directly with a few GPS measurements. In 
the mid-1990s, 105 survey GPS sites with a few continuous 

stations measured for 6 years were interpreted to under-
stand the tectonic structure of Turkey (77 sites for Turkey) 
and the surrounding region (Reilinger et al. 1997). By the 
early 2000s, there were 119 GPS sites in Turkey, with a total 
of 190 sites from the Caucasus to Greece in the east–west 
direction and from the Eurasian plate to the Arabian plate 
in the north–south direction (McClusky et al. 2000). In the 
mid-2000s, the number of GPS sites was 165 in Turkey and 
433 with a vast area processed and investigated for active 
tectonics and block modeling (Reilinger et al. 2006). All 
these data are generally based on survey measurements, and, 
to increase the number of the stations, researchers densified 
observations in areas related to specific tectonic structures 
(Özener et al. 2010; Yavaşoğlu et al. 2011; Tiryakioğlu et al. 
2013; Ergintav et al. 2014; Aktuğ et al. 2016). In 2008, the 
CORS-TR network (Continuously Operating Reference Sta-
tions—Turkey) was established homogenously throughout 
Turkey and northern Cyprus with 146 permanent GNSS 
stations, now 158 GNSS stations. Finally, in 2023, a study 
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gathered the Turkish National Fundamental GPS Network 
(TNFGN) of 594 sites, the Turkish Real-Time Kinematic 
GNSS Network (CORS-TR) of 158 stations, and a few small 
regional continuous networks, and processed all the data to 
produce a homogenous and dense GNSS geodetic velocity 
field (Kurt et al. 2023) with a total of 836 sites.

The geodetic velocity field provides constraints on plate 
kinematics by explaining how the earth’s surface moves and 
how this is related to tectonic events along plate bounda-
ries (Reilinger and McClusky 2011). By analyzing GNSS 
velocities, researchers can acquire insight into the deforma-
tion and motion of the crust. It should be noted, however, 
that the velocity field varies between tectonic plates. Inter-
actions between these plates influence the movement and 
deformation of the Earth's crust, which can result in varia-
tions in the observed velocities. In tectonically active regions 
such as Turkey, velocity variations are significant, because 
Turkey is situated at the intersection of multiple tectonic 
plates. The interaction of Eurasian, African, and Arabian 
lithospheric plates creates a complex tectonic structure in 
the eastern Mediterranean, of which Turkey is in the middle 
and actively deforming because of the convergence to the 
east and subduction to the south–west (Emre et al. 2018). 
Anatolia is moving at 16–30 mm/yr, increasing from east to 
west relative to Eurasia, bordered by the dextral North Ana-
tolian Fault (NAF), and sinistral East Anatolian Fault (EAF) 
and the Dead Sea Fault. The interaction of the Eurasian and 
African plates specifically includes oceanic lithosphere sub-
duction along the Hellenic and Cyprus Subduction Zones 
(Fig. 1) and continental extensions such as in the Marmara 
Sea and Aegean region (Reilinger et al. 2010).

A velocity field derived from GNSS measurements can 
provide critical information such as moment accumula-
tion rate and strain rate for earthquake hazards (Kurt et al. 
2023). In locations with no GNSS stations, conventional 

interpolation methods such as Kriging modeling have been 
generally used to estimate geodetic velocities. Recently, 
Artificial Neural Networks (ANNs), machine learning (ML), 
and deep learning (DL) techniques belonging to the artifi-
cial intelligence (AI) family have become alternatives in this 
area of geoscience (Konakoglu 2021; Sorkhabi et al. 2022a). 
While these techniques are widely used across domains, 
relatively few studies have been conducted for predicting 
GNSS velocities. Yilmaz and Gullu (2014) evaluated two 
different types (Back-Propagation Artificial Neural Network 
and Radial Basis Function Neural Network) of ANN models 
in order to estimate the velocities of the 125 control points 
belonging to TNFGN as an alternative tool for the Krig-
ing method in western Turkey. Their results revealed that 
Back-Propagation Artificial Neural Network is an alternative 
tool to conventional methods for geodetic station velocity 
estimation. Konakoglu (2021) comparatively evaluated three 
different ANN models to estimate the geodetic velocities of 
238 TNFGN stations in eastern Turkey and found that the 
most appropriate model was obtained with the generalized 
regression neural network. Sorkhabi et al. (2022b) examined 
the usability of four different DL methods for estimating 
GPS geodetic velocities at 42 GNSS stations in northwest-
ern Iran. The obtained findings revealed that Deep Boltz-
mann Machines exhibited superior performance compared 
to Convolutional Neural Networks, Deep Belief Networks, 
and Recurrent Neural Networks. To our knowledge, no work 
has yet explicitly examined and accounted for the tectonic 
structure of the area the observation sites cover. In addi-
tion, no prior research efforts have focused on applying ML 
methodologies to estimating geodetic velocity.

Within this investigation, we use the presently pub-
lished GNSS geodetic velocity field and apply supervised 
ML algorithms, GBM, LightGBM, RF, and XGBoost, to 
evaluate the efficacy of these techniques in the estimation 

Fig. 1  Arrows show the current 
GNSS horizontal velocity field 
of Turkey with 95% confidence 
ellipses in the Eurasia-fixed ref-
erence frame (Kurt et al. 2023). 
NAF and EAF stand for North 
and East Anatolian Faults, 
respectively. Blue solid lines 
illustrate active faults (Emre 
et al. 2013)
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of horizontal velocities. In order to demonstrate the impor-
tance of accounting for the tectonic structure in the GNSS 
geodetic velocity field, clustering analysis, known as unsu-
pervised machine learning, was applied to the available 
velocity field. Clustering analysis for this region has been 
previously applied (Kilic and Özarpacı, 2022; Özarpacı 
et al. 2023). However, in these studies, the authors used a 
sparse GNSS velocity field previously published (Özdemir 
and Karslıoğlu 2019). In this study, a new and dense GNSS 
velocity field (Kurt et al. 2023) was used for analysis, and 
the optimum number of clusters that best fit these data was 
compared to the literature. Moreover, it was observed that 
the clustering results are consistent with studies in the lit-
erature. Using this velocity field, at first, individual cluster-
ing algorithms were performed and comparatively analyzed, 
and then, Non-Negative Matrix Factorization-based (NMF) 
consensus clustering was utilized to improve the outputs of 
the individual clustering ensemble members and to obtain 
the final clustering outcomes, followed by an evaluation of 
the fit of the final solutions with the block boundaries. After 
clustering, all ML algorithms were applied to each cluster 
separately, and the results were compared with the former 
ML-based RMSE values to emphasize the effects of primary 
tectonic structure on the GNSS velocities.

Data and methodology

The dataset we utilized is the published GNSS geodetic 
velocity field prepared by Kurt et al. (2023) (see Fig. 1). 
About 78% of the velocity field analyzed in the research 
was obtained from campaign data, while 22% was derived 
from the processing of continuous GNSS stations. The data 
were gathered between 1992 and 2020, and the daily time for 
data collection is 7–10 h for the campaign sites and 24 h for 
the continuous GNSS stations. The velocity field includes 
data from the Turkish National Fundamental GPS Network 
(TNFGN) and the Turkish Real-Time Kinematic GNSS 
Network (TUSAGA-Active). Additionally, data from the 
Marmara Research Center of Turkey (MAGNET), the Turk-
ish National Permanent GNSS Network (TNPGN), and the 
regional networks of the water and sewerage administrations 
of Bursa, Sakarya, and Istanbul were combined with the data 
to increase the density. The average standard deviations for 
east and north velocities are 0.22 mm/yr and 0.25 mm/yr, 
respectively. For a comprehensive understanding of the data 
used, Kurt et al. (2023) provided further information that 
may be accessed through their study. Here, we only used this 
velocity field in our analysis.

The velocity field shown in Fig. 1 is employed with 
our proposed methodology, which entails two compara-
tive approaches: The first involves ML outcomes derived 
by neglecting the tectonic configuration of the area 

under investigation, and the second involves ML results 
obtained by accounting for the tectonic structure and block 
boundaries.

In the first stage, the performance of ML-based mod-
els was analyzed using the GNSS velocity solution. In the 
second stage, we included clustering to define the tectonic 
blocks before ML. For the purpose of clustering analysis, the 
horizontal velocities of 836 GNSS stations were assessed 
based on the current GNSS velocity field. Initially, four 
distinct cluster validity indices, namely, Davies–Bouldin, 
Elbow, Gap, and Silhouette, were employed to determine 
the optimum number of clusters (k) that would best fit the 
data. Subsequently, clustering models were generated from 
five different clustering techniques, including BIRCH, 
k-means, mini-batch k-means, HAC, and spectral clustering, 
to develop the ensemble clustering approach. Then, NMF 
consensus clustering was utilized to aggregate the outputs 
of the individual clustering ensemble members and obtain 
the final clustering outcomes, followed by an evaluation of 
the fit of the final solutions with the block boundaries. After 
the first clustering application, some stations along the NAF 
are assigned to one of the Anatolian clusters, away from that 
cluster. This can be explained as the plate boundary between 
Eurasia and Anatolia along the NAF is more dominant as 
a distinguishing feature than clustering itself (Savage and 
Simpson 2013; Özarpacı et al. 2023). We cleaned the data-
set for these GNSS sites affected by the fault surface trace 
(1999 Izmit and Düzce earthquake regions). After that, we 
replicated the identical procedure to derive the ultimate out-
comes of ensemble clustering from the data pertaining to 
the remaining 825 GNSS stations. We determined the block 
borders and clustered the horizontal velocity data into appro-
priate blocks. In conclusion, machine learning-based predic-
tors were employed to estimate GNSS geodetic velocities for 
each cluster. Simultaneously, to estimate the uncertainties of 
the predicted velocities, model training/testing stages were 
repeated for standard deviations as well. The performance 
of the models was assessed using RMSE and mean absolute 
error (MAE) on the test split data for each respective cluster 
(Fig. 2).

Clustering process

In this study, clustering analysis of GNSS velocities was 
conducted as an initial step to determine the tectonic struc-
ture of the region. Clustering analysis of GNSS velocities 
allows for the identification of coherent groups within the 
velocity field, providing valuable insights into tectonic 
processes and deformation patterns. This approach facili-
tates the identification of distinct blocks with consistent 
motion, revealing their spatial distribution and behavior. 
Additionally, clustering aids in the identification of fault 
system segmentation, block boundaries, and interactions 
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between tectonic units. It also helps delineate localized 
deformation areas, such as shear zones or regions of 
strain accumulation, and identifies regions influenced by 
common driving forces or exhibiting similar kinematic 
behavior. This procedure helps identify velocity gradients; 
therefore, ML algorithms process each velocity cluster in 
individual regions. By performing this, we assume that 
the ML algorithm will not be affected by the changes in 
GNSS velocities because of tectonic reactions, and the 
accuracy of the predicted velocities will be higher. For this 
purpose, the first step is to determine the optimum number 
of clusters for the GNSS velocity field. After this step, 
individual clustering methods are applied for the deter-
mined number, and the last step is the ensemble clustering 
that determines the input velocities of ML algorithms for 

each cluster. Ensemble clustering helps to eliminate the 
subjectivity of the individual clustering methods.

Determining the optimum number of clusters

During the process of clustering data in velocity space, four 
distinct indices of cluster validity were utilized to determine 
the most suitable data grouping, estimate the intra-variance 
(cluster cohesion) and inter-variance (cluster separation). 
Before executing the data clustering, it is necessary to exam-
ine multiple approaches, as opposed to a single method, 
to obtain the result most compatible with the underlying 
data structure. The optimum number of clusters for four 
different cluster validity indices was determined using the 
Python 3.8 and R programming languages. Table 1 presents 

Fig. 2  Flowchart of the proposed ML-based velocity estimation. Data 
pre-processing before ML involves the cluster assignment for the 
velocity field, train–test splitting data, and normalizing the coordi-

nates for data. ML-based models help to estimate velocities for each 
cluster and compare accuracy assessments with GNSS velocities in 
the test split
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the outcomes of the four cluster validity indices utilized to 
determine the optimal number of clusters that best fit the 
data (k = 2 to 10).

Upon reviewing the outcomes presented in Table 1 (also 
shown in Fig. 3), it is evident that the optimal number of 
clusters is found to be five for all cluster validity indices. 
Among k values ranging from 2 to 10, taking into account 
that the lowest Davies–Bouldin value produces the best 
results, we still conclude that k = 5 (0.644) yields the opti-
mum results because the Davies–Bouldin value obtained is 
closest to 0 (Fig. 3). The Elbow findings generally exhibit 
a decreasing trend in distortion value (k = 2–10). However, 
at a certain value of k, the reduction is gradual, and there is 
an inflection point (k = 5) known as the Elbow point. This 
point represents the optimum cluster number for the Elbow 
curve (Fig. 3). The Gap statistic algorithm measures the dis-
tance between center sites to create intra-cluster observa-
tion values and identifies the optimum number of clusters 
as the longest decline below the reference value (Fig. 3). 
The optimal number of clusters for this dataset is, therefore, 
determined to be five. In the Silhouette approach, coherence 
is established by the average distance among all sites within 
the same cluster, while cluster separation is determined by 
the distance to the nearest neighbor. As a result, Silhouette 
values range from − 1 to 1, and the ideal solution (k = 5) is 
obtained as the Silhouette values converge to 1 (Fig. 3).

Why ensemble clustering?

Each clustering technique groups the dataset from a dis-
tinct perspective based on a specific set of criteria, thereby 
resulting in potentially varying outcomes from different 
algorithms for the same dataset. In reference to this pro-
cess, Jain et al. (1999) stated that clustering is a subjective 
procedure wherein partitioning a given set of data items may 
differ based on various applications. Therefore, we applied 
five different clustering methods to evaluate the outcomes 
in GNSS-based horizontal velocity clustering (Fig. 4a–e).

Upon analyzing the cluster distributions (k = 5) obtained 
from five different clustering techniques in Fig. 4a–e, it is 
evident that all clustering results identify the NAF and EAF, 
as depicted in Fig. 1, as the borders separating different clus-
ters. As illustrated in Fig. 4, it is noticeable that cluster-
ing borders can vary, and the clusters of some GNSS sites 
can change when different algorithms are employed. At this 
point, it is necessary to pose the following question. Which 
is the correct one? Cluster validity indices, which are used 
to evaluate the quality of clustering outcomes, do not evalu-
ate the outcomes of any clustering algorithm in a totally 
impartial manner (Vega-Pons and Ruiz-Shulcloper 2011).

Ensemble clustering, also known as the concept of 
integrating multiple clustering results, has emerged as an 
alternative method for improving the quality of clustering 
algorithm outcomes by eliminating the subjectivity. The 
NMF-based ensemble clustering approach considers the 
discovery of the median partition as an optimization prob-
lem in relation to the cluster ensemble and generates the 
final solutions to best fit the GNSS geodetic velocity data, 
as illustrated in Fig. 5a. The separation of the Anatolian 
block from the Eurasian and Arabian blocks defines NAF 
and EAF, respectively. Besides, the Aegean block can clearly 
be seen as a different cluster. The separation of the Anatolian 
block into two parts, east and west, does not mean that there 
are tectonic blocks; here, it only means that the velocity 
difference is enough to create two clusters in that region. In 
Fig. 5b, one can see five clusters in the velocity field, all in 
the same colors as each block in Fig. 5a.

Machine learning approach

Machine learning enables computers to do specific tasks by 
learning from prior examples, then analyzing new data to get 
accurate results. Complex problems, especially those involv-
ing large datasets and that are difficult for humans to classify, 
are usually solved using machine learning.

In the following steps, first information is given about the 
pre-processing and separation of the data as train/test, and 
in the model training section, detailed information about the 
machine learning algorithms used in the study is presented.

Step 1 Train/test split and preprocess

Table 1  Cluster validity indices results for determining the optimum 
number of clusters

k is the optimum number of clusters, and v is the best value corre-
sponding to k for each cluster validity indices. v indicates the relevant 
value for the optimum number of clusters that best fit the data before 
clustering the GNSS horizontal velocities

Davies–Bouldin Elbow Gap statistic Silhouette

k, v 5, 0.644 5, 14,592.830 5, 0.517 5, 0.513

Fig. 3  Determining the optimal number of clusters that best fit the 
GNSS horizontal velocities with Davies–Bouldin, Elbow, Gap, and 
Silhouette methods
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In order to examine the performance of the model on 
unseen samples, among 825 GNSS stations, 70% of training 
and 30% of test points were randomly selected from each 
cluster. We selected train/test procedure instead of train/vali-
dation/test due to following reasons: (i) limited number of 
total data, (ii) imbalanced number of data between clusters, 
and (iii) analyzing model performances under limited train/
test data circumstances for usability in daily routine. A total 
of 576 GNSS velocities and standard deviations of 149, 156, 
63, 54, and 154 stations were included in training, whereas 
a total of 249 GNSS velocities with standard deviations of 
64, 68, 27, 24, and 66 stations were involved in testing for 
clusters 1–5, respectively. The input coordinate pairs of lati-
tude and longitude were subjected to a 0–1 range to avoid 
over-fitting and stabilize the model training by suppressing 
the effect of various coordinate pairs.

Step 2 Model training

From the literature, it is known that deep learning algo-
rithms require a large amount of training data (Alzubaidi 
et  al. 2021). Due to limited GNSS stations, we picked 
machine learning-based regression models instead of 
deep neural networks. Regressors, based on decision trees 
(Fig. 2), such as RF (Breiman 2001), employ a single deci-
sion tree or an ensemble of decision trees to generate predic-
tions. In contrast, boosting-based regressors, such as GBM 
(Friedman 2001), XGBoost (Chen et al. 2015; Chen and 
Guestrin 2016), and LightGBM (Ke et al. 2017), employ an 
ensemble of weak learners for generating predictions. Com-
pared to tree-based models, boosting-based models offer the 
primary benefit of higher accuracy, particularly for complex 
and high-dimensional data.

The grid-search technique was utilized for model training, 
and RMSE and MAE metrics were used for model evalua-
tion. Models were trained and evaluated with the scikit-learn 

Fig. 4  Results of single clustering methods for current GNSS geodetic velocity field a BIRCH, b HAC, c k-means, d mini-batch k-means, and e 
spectral clustering
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(Pedregosa et al. 2011) library in the Python 3.8 program-
ming language.

Results and discussion

In the circumstances where ignoring the tectonic configu-
ration results in ML-based velocity prediction are demon-
strated in Table 2, outperformed predictors are given in bold. 
The number of train/test splits was 576/249, due to a 0.7/0.3 
ratio of 825 GNSS station velocities.

According to Table 2, RF produced the most accurate 
results for the north velocities, whereas LightGBM outper-
formed other models in the east velocities without cluster-
ing. It is also observed that there are larger errors in the esti-
mation of the velocities with the east component compared 
to the estimation of the velocities with the north component, 
especially in the RMSE values. We assume that neglecting 
the tectonic structure can cause an effect, especially with 
the Anatolia western escape with respect to the Eurasian 
plate. We believe that as Anatolia moves toward the west, the 
east–west velocity component of the growth is not accurately 
predicted with sufficient sensitivity by the ML algorithms. 
Therefore, we believe that it is necessary to predefine the 
velocity changes and evaluate each tectonic block separately.

After defining the tectonic structure with blocks using 
clustering, velocity prediction via ML algorithms is exe-
cuted, and the results are illustrated in Table 3. Outperform-
ing predictors are given in bold. The number of test sites was 
64, 68, 27, 24, and 66 for clusters 1–5, respectively.

When one examines the RMSE and MAE results in 
Table 3, the success can be seen for each ML algorithm in 
each cluster. For instance, for cluster 1, RF has the best error 
score with 1.01 RMSE and 0.75 MAE for the east velocities. 

However, for the north velocity component, GBM (0.80 
RMSE and 0.68 MAE) was slightly better than RF (0.91 
RMSE and 0.72 MAE). Overall results (mean RMSE and 
MAE scores for each cluster) showed that RF achieved the 
best performance while LightGBM had the biggest errors.

If the results of neglecting the tectonic structure and con-
sidering it are compared, one can see that GBM accuracy 
assessments are decreasing with the tectonic structure taken 
into account (Table 2 and Table 3 All (Mean) values). How-
ever, LightGBM RMSE and MAE values are increasing with 
the clustering of velocities. Our results demonstrated that, 
as the number of training and testing sites increased, Light-
GBM produced more accurate results due to the generaliza-
tion ability of regularization and the gradient-based learn-
ing approach. On the other hand, when cluster 2 and cluster 
3 results are compared, we see that LightGBM produced 
smaller errors with fewer sites. Therefore, we assume that 
the variation in the north velocity component in cluster 4, 
the Aegean block, affected all the RMSE and MAE accuracy 
assessments, including LightGBM. The Hellenic arc in the 
southern part of the Aegean Sea and continental extensions 

Fig. 5  Clustering results for current GNSS geodetic velocity field for Turkey a NMF consensus clustering results with each color representing a 
cluster in a geographic space and b NMF consensus clustering results with each color representing a cluster in velocity space

Table 2  Accuracy assessment of velocity prediction via ML algo-
rithms with neglecting tectonic configuration

Accuracy Ass ML algorithms East North

RMSE (mm/yr) GBM 2.94 1.34
LightGBM 1.64 1.01
RF 2.01 0.93
XGBoost 1.79 1.03

MAE (mm/yr) GBM 1.12 0.87
LightGBM 0.84 0.77
RF 0.99 0.75
XGBoost 0.89 0.78
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such as the Sea of Marmara and the Aegean region create a 
gradient in the velocity field, especially in the north compo-
nent, that ML algorithms cannot solve.

RF and XGBoost also show a significant decrease in 
the east component when considering the tectonic struc-
ture. However, in the north component, one can see a slight 
increase in the accuracy assessment values. Also, this could 
be a reflection of the north component in cluster 4.

Predicting a GNSS geodetic velocity with ML should 
treat each cluster independently; therefore, the error does 
not propagate. Considering the tectonic structure, we can 
say that the predictions made with ML algorithms give more 
reliable results, especially the RF algorithm providing the 
most consistent results among the clusters. In Fig. 6, we have 
used the RF results for illustration only but the GBM and 
XGBoost results are also suitable for estimating the GNSS 
velocity components (see Table 3).

Table 4 shows the optimal hyperparameter configurations 
of the machine learning regressors found by the grid-search 
technique that produces the lowest RMSE and MAE scores 

in the corresponding cluster. Subsequently, these hyperpa-
rameters were also selected for the estimation of standard 
deviations. The number of estimators is diverse for all pre-
dictors except XGBoost. In general, the learning rates yield 
0.1 or 0.7 except for XGBoost and GBM, but lower learning 
rates achieve more accurate results.

In Fig. 6, the velocity predictions and standard devia-
tions (orange arrows with 95% confidence ellipses) from 
the RF algorithm are shown with all clusters together in 
geographic space. Blue arrows illustrate the GNSS geodetic 
velocity field, and one can see the test results of RF and how 
it reflects the tectonic structure of the region.

The velocity estimates acquired by ML algorithms 
are compatible with the reference velocity field. Aver-
age east–west component velocity estimates obtained 
by RF method are − 0.77, − 19.82, − 7.66, − 20.67, 
and − 15.69 mm/yr, when the reference values are − 0.8
6, − 19.92, − 7.38, − 20.61, and − 15.56 mm/yr for each 
cluster, respectively. When the north–south velocity 
component is examined, the results obtained with the RF 

Table 3  Accuracy assessment of velocity prediction via ML algorithms after clustering

Cluster 1 
(n = 64)

Cluster 2 
(n = 68)

Cluster 3 
(n = 27)

Cluster 4 
(n = 24)

Cluster 5 
(n = 66)

All (Mean)

East North East North East North East North East North East North

RMSE (mm/yr) GBM 1.28 0.80 0.74 1.04 2.12 0.79 0.86 2.94 1.03 0.47 1.21 1.21
LightGBM 1.22 1.47 2.27 1.50 1.44 1.04 3.22 11.57 3.30 0.90 2.29 3.30
RF 1.01 0.91 0.83 1.05 1.32 0.47 0.89 2.29 0.82 0.72 0.97 1.09
XGBoost 1.58 0.95 0.66 1.01 1.92 0.64 0.95 2.39 1.08 0.65 1.24 1.13

MAE (mm/yr) GBM 0.84 0.68 0.71 0.79 0.99 0.80 0.79 1.37 0.79 0.53 0.82 0.83
LightGBM 0.88 0.87 1.08 0.88 0.89 0.82 1.48 2.74 1.31 0.74 1.13 1.21
RF 0.75 0.72 0.68 0.78 0.79 0.55 0.77 1.29 0.68 0.64 0.73 0.80
XGBoost 0.91 0.78 0.64 0.79 0.93 0.64 0.77 1.30 0.77 0.63 0.80 0.83

Fig. 6  RF test results with com-
bination for each cluster shown 
in geographic space. Blue and 
orange arrows show the data 
and the RF results, respectively, 
with 95% confidence ellipses. 
Gray solid lines illustrate the 
active faults (Emre et al. 2013)
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algorithm for each cluster are 2.69, − 4.64, 13.16, − 16.99, 
and 5.26 mm/yr, and the reference north velocity com-
ponent averages are 2.78, − 4.85, 13.26, − 16.63, and 
5.36 mm/yr, respectively. The standard deviations of the 
velocity values determined by the ML algorithms have 
also been estimated. When examining the test results 
obtained with the RF method (Fig. 6), the estimated mean 
standard deviations for each cluster are found to be 0.22, 
0.18, 0.24, 0.41, and 0.20 mm/yr for the east–west com-
ponent and 0.27, 0.20, 0.28, 0.36, and 0.22 mm/yr for 
the north–south component, respectively. It is observed 
that the obtained velocity differences between the model 
results and the data are maximum 0.2  mm/yr except 
for the 3rd and the 4th clusters. It is observed that the 
decrease in the amount of data assigned to clusters has 
a negative impact on the results as previously explained. 
The test data values per cluster, as shown in Table 3, 
dropping below 30 in the 3rd and 4th clusters, widen 
the difference between velocity estimates and reference 
velocities. Also, standard deviation values, except for the 
4th cluster, are in good agreement with the input data. 
The lower accuracy in the 4th cluster is thought to be due 
to the low number of data points in the cluster. Besides, 
the results of the Hellenic arc extension in the region 
disturb and affect the north–south velocity component. 
We assume when estimating GNSS velocities by ML 
algorithms, especially in tectonic regions where veloc-
ity gradient is large, should be done very carefully and 
enough data should be provided.

In velocity space, the data and the RF predictions for 
the GNSS velocities are shown in Fig. 7 with residual 
histograms and distributions. Figure 7a shows the east 
velocity field with predictions, and Fig. 7b shows the 
east velocity residuals, or in other words, the differences 
between the data and the predictions or model are in the 
normal distribution. Figure 7c shows the north velocity 
field data on the one axis and RF predictions on the other 
axes. Figure 7d shows the residuals of north velocities 
and the normal distribution curve. In Fig. 7a and c, all 

the circles are around the x = y line, which means that the 
differences are very small, and residual histograms have 
proven this (Fig. 7b and d).

Conclusion

This research explored the application of ML algorithms 
to estimate horizontal GNSS velocities in an active tec-
tonic region. The dataset was split into 70% for training 
the ML models and 30% for testing their performance. An 
essential aspect of this study was the consideration of the 
tectonic structure within the study area, achieved through 
a clustering procedure.

In tectonic regions, ensemble clustering techniques can 
be applied to identify tectonic structures when estimat-
ing velocities using ML algorithms. Here, we used four 
methods to determine the optimum number of clusters, 
and we found five with all methods for the velocity field 
used. Afterwards, we used five different individual cluster-
ing algorithms to identify the five cluster borders before 
ensemble clustering. NMF consensus clustering technique 
is used to eliminate the subjective results of individual 
clustering techniques and create a robust, stabile, and 
novel result. As a result, the clusters are compatible with 
the velocity gradients and the plate boundaries that create 
transform faults such as NAF and EAF. The each obtained 
cluster is tested with the ML algorithms separately.

We prove that the horizontal GNSS velocities can be 
estimated using ML algorithms. However, ignoring the 
tectonic structure while estimating velocities can lead to 
incorrect results. Therefore, when working in tectonically 
active regions, considering the tectonic structure ensures 
the generation of more accurate results. Our results indi-
cated that incorporating the tectonic structure significantly 
enhanced the ML predictions, particularly with the GBM 
algorithm, which exhibited reduced RMSE values. Taking 
into account, the tectonic structure also led to improved 

Table 4  Grid-search results for 
machine learning algorithms

Predictor Parameter Cluster

1 2 3 4 5

GBM Number of estimators 200 250 100 50 150
Learning rate 0.1 0.3 0.1 0.1 0.1

LightGBM Number of estimators 150 500 50 100 50
Learning rate 0.7 0.1 0.1 0.7 0.1

RF Number of estimators 150 100 50 50 200
Maximum depth 7 8 8 8 8

XGBoost Number of estimators 50 50 50 50 50
Learning rate 0.7 0.1 0.1 0.1 0.3
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accuracy assessment values for the RF and XGBoost algo-
rithms in the east component.

The RF algorithm demonstrated superior performance 
in predicting GNSS velocities, displaying the lowest root-
mean-square error values among the ML algorithms. The 
results show that the velocity estimates and the reference 
velocity differences are not more than 0.4 mm/yr. The 
maximum differences are in the clusters with the lowest 
number of GNSS stations. Besides, the highest differ-
ence is in the north component of 4th cluster. We assume 
that the extension caused by the Hellenic arc is affecting 
the north velocity component in the region. The findings 
underscore the importance of accounting for the tectonic 

structure when utilizing ML algorithms for horizontal 
velocity estimation.

This study contributes valuable insights into the appli-
cation of ML algorithms for geodetic velocity field pre-
dictions and emphasizes the significance of considering 
tectonic factors in such analyses. The results provide use-
ful information for geodynamic studies and fault displace-
ment analyses. Future research could focus on refining ML 
algorithms and integrating more advanced techniques to 
further enhance the accuracy of velocity predictions in 
tectonically active regions like Turkey. In conclusion, ML 
algorithms present promising opportunities to advance 

Fig. 7  Scatter graph of the predicted and observed geodetic velocity 
values and histogram distributions of the residual a East component 
data and model values in velocity space, b east component data and 

model differences in histogram, c north component data and model 
values in velocity space, and d north component data and model dif-
ferences in histogram
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geodetic velocity field predictions and deepen our under-
standing of tectonic movements.

In the future, new studies will carried out with various 
algorithms and test the results in tectonic and nontectonic 
regions.
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