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Abstract
The tropospheric delay is a major error source for space geodetic techniques, and the performance of its modeling is sig-
nificantly limited due to the high spatiotemporal variability of the moisture in the lower atmosphere. In this study, global 
modeling of the tropospheric zenith wet delay (ZWD) was realized based on surface meteorological data obtained from 
radiosondes and Global Positioning System (GPS) radio occultation (RO) measurements through the random forest (RF) 
and backpropagation neural network (BPNN) regression analysis. The modeling performance was further validated based on 
two kinds of global atmospheric profiles for the year 2020. Our results show that the ZWD modeling accuracy gained by two 
machine learning regression approaches is significantly improved by taking into account surface meteorological parameters, 
especially the surface water vapor pressure when compared to the Global Pressure and Temperature 3 (GPT3) model. When 
surface meteorological data are available, the RF-B model yields ZWD estimations with an overall agreement of 3.1 cm in 
comparison with the sounding profiles and 2.4 cm in contrast to the GPS RO atmospheric profiles. The RF-B is superior to 
other models based on surface meteorological parameters for ZWD calculation, e.g., the accuracy improves by 21.8–23.8% 
against the approach by Saastamoinen and 7–12.2% against the formula by Askne and Nordius.

Keywords Tropospheric zenith wet delay (ZWD) · Random forest · Backpropagation neural network · Machine learning · 
Radio occultation

Introduction

Microwave signals emitted by space-based navigation satel-
lites or radio sources are inevitably influenced by the neutral 
atmosphere when they propagate through the atmosphere, 
revealed as retardation and geometric bending effects. The 
neutral atmospheric effect is commonly referred to as tropo-
spheric slant delay in the fields of space geodesy since the 
dry gases and moisture particles in the troposphere mainly 
caused it. Compared to the ionosphere, the neutral atmos-
phere is a non-dispersive medium for microwave signals, 
and hence, tropospheric delays cannot be directly eliminated 
by the linear combinations of observations at multiple fre-
quencies. It is necessary to accurately model them by means 

of external datasets such as sounding profiles or numerical 
weather model (NWM) operational or reanalysis data.

For modeling purposes, tropospheric slant delays are 
normally separated into two components: a hydrostatic part 
mainly caused by the dry gases and a non-hydrostatic (wet) 
part induced by the water vapor in the lower atmosphere 
(Davis et al. 1985). Both hydrostatic and non-hydrostatic 
constituents can be represented as the product of the zenith 
delay and respective mapping functions under the assump-
tion of a spherically symmetric atmosphere (Böhm et al. 
2006). As the dry gases are relatively stable in the atmos-
phere, accurate modeling of zenith hydrostatic delay (ZHD) 
can be realized based on physics-based models with meas-
ured surface pressure under the condition of atmosphere 
hydrostatic equilibrium (Hopfield 1971; Saastamoinen 
1972). Using the in situ meteorological measurements, ZHD 
values at the earth’s surface can be derived by the Saas-
tamoinen (1972) model with a typical accuracy of a few 
millimeters. However, in contrast to the ZHD, it is difficult 
to accurately estimate zenith wet delay (ZWD) due to the 

 * Qinzheng Li 
 qinzheng.li@geo.tuwien.ac.at

1 Faculty of Geosciences and Environmental Engineering, 
Southwest Jiaotong University, Chengdu 611756, China

2 Department of Geodesy and Geoinformation, TU Wien, 
1040 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-023-01595-2&domain=pdf


 GPS Solutions (2024) 28:5757 Page 2 of 14

high dynamics of the atmospheric moisture both spatially 
and temporally (Nilsson et al. 2013; Dousa and Elias, 2004).

At present, the most accurate way of determining ZWD 
is the ray-tracing through atmospheric vertical profiles from 
radiosonde measurements (e.g., Davis et al. 1985; Niell 
1996) or data from numerical weather models. It is based 
on rigorous theoretical fundamentals and is thus commonly 
used as the benchmark for ZWD modeling and validation. In 
addition to the ray-tracing approach, ZWD is usually param-
eterized as the function of surface meteorological variables 
at the sites, for example, traditional troposphere models by 
Saastamoinen (1972) and Hopfield (1971). However, the 
accuracy and reliability of those models with surface mete-
orological data are still limited (Yao and Hu 2018). Consid-
ering vertical humidity distribution in the troposphere and 
assuming that water vapor pressure decreases exponentially 
with increasing height, Askne and Nordius (1987) proposed 
a formula for ZWD with the input parameters water vapor 
decrease factor � , weighted mean temperature Tm , and sur-
face water vapor pressure es . For convenience, the formula 
proposed by Askne and Nordius (1987) is referred to as the 
A&N formula in the following.

Compared with the approaches mentioned above, global 
empirical models such as the UNB3 series (Collins and 
Langley 1997; Leandro et al. 2008) and Global Pressure 
and Temperature (GPT) series (Böhm et al. 2015; Landskron 
and Böhm 2018) can directly estimate zenith delays as well 
as mapping functions with a loss of accuracy using the date 
and approximate station coordinates. They have a promising 
prospect in real-time and fast geodetic applications since 
no external meteorological data are required. Nevertheless, 
global empirical troposphere models still cannot well repre-
sent daily fluctuations and complex variations of meteoro-
logical variables in the troposphere because they are realized 
based on monthly NWM data or the US standard atmosphere 
model. It has been demonstrated that the UNB3m (Leandro 
et al. 2008) model typically yields ZWD values with a global 
mean accuracy of around 5.5 cm due to a coarse spatial reso-
lution and the lack of sensitivity to the longitude in the mod-
eling (Möller et al. 2014). Concerning the GPT3 (Landskron 
and Böhm 2018) and its former version GPT2w (Böhm et al. 
2015), they can yield ZWD estimations with a global mean 
accuracy of approximately 3.8–4.0 cm compared with the 
radiosonde observations (Yao and Hu 2018).

In recent years, machine learning has attracted much 
attention due to the ability to model time-varying signals 
through a large number of historical datasets. It has been 
widely applied to space geodesy, meteorology, and geo-
physical studies, such as satellite orbit determination (Peng 
and Bai 2019; Mortlock and Kassas 2021), ionospheric 
delay modeling and forecasting (Han et al. 2021; Zhukov 
et al. 2021), precipitable water fusion and rainfall forecast 
(Khanisni et al. 2021; Zhang and Yao 2021), tropospheric 

zenith delay modeling (Kitpracha et al. 2019; Mohammed 
2021), and global atmospheric forecast (Arcomano et al. 
2020). Up to now, few studies have been devoted to global 
modeling of the tropospheric ZWD based on machine learn-
ing (ML) approaches. Moreover, the ZWD modeling in 
these studies was realized based on site-wise Vienna Map-
ping Function 3 (VMF3) products (Landskron and Böhm 
2018) from TU Wien or troposphere products at discrete 
International GNSS Service (IGS) stations. Their modeling 
accuracy over oceans is inevitably affected due to the inho-
mogeneous distribution of sites. In addition, the accuracy of 
wet components for IGS troposphere products is affected by 
the modeling uncertainty of surface pressure at the sites. On 
the other hand, the ZWD accuracy of the VMF3 products 
depends on the quality of the NWM meteorological fields 
and ray-tracing algorithms. Therefore, the main objective 
of this study is to realize global modeling for tropospheric 
ZWD based on machine learning and surface meteorologi-
cal data derived from radiosonde data and Global Position-
ing System radio occultation (GPS RO) measurements. The 
modeling accuracy over the globe is expected to be improved 
by considering the relationship between ZWD and surface 
meteorological variables and integrating both radiosonde 
data and GPS RO observations. Accurate a priori informa-
tion for ZWD is of importance to real-time precise position-
ing and other geodetic applications, which can reduce the 
coordinate convergence time and to some extent improve 
positioning accuracy. In particular, this applies to cases 
when the estimation of the ZWD from GNSS observations 
is not advisable.

The next section introduces the datasets of radiosonde 
data and GPS RO atmospheric profiles, along with ZWD 
determination through the numerical integration approach. 
Then, we present the ZWD modeling based on the random 
forest and backpropagation neural network approaches. 
Moreover, we validate the ZWD models and formulae by 
comparison with the numerical integrals of radiosonde data 
and GPS RO measurements across the globe. Conclusions 
are given in the last section.

Datasets and zenith wet delay 
determination

Radiosondes provide meteorological profiles with a high 
vertical resolution at discrete sites, while GPS radio occul-
tations gathered by low-earth-orbit satellites can retrieve 
atmospheric profiles with good global coverage. Thus, 
the integration of both kinds of atmospheric profiles will 
enable more reliable modeling of the tropospheric ZWD 
over the globe. Within the current study, the modeling 
datasets include ZWD values and surface meteorological 
data derived from 5 years (2015–2019) of radiosonde data 
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at 596 sites and 4 years (2016–2019) of GPS RO global 
atmospheric profiles of the Meteorological Operational Polar 
Satellite (MetOp-A/-B) mission. The datasets for the valida-
tion were obtained from radiosonde data at 609 near-global 
sites and GPS RO atmospheric profiles of the MetOp-A/-B 
satellites in 2020.

Atmospheric profiles from radiosondes

Radiosonde (RS) can retrieve meteorological variables for 
total pressure, temperature, relative humidity, geopoten-
tial height, wind speed as well as directions at a series of 
isobaric levels, covering the troposphere and part of the 
stratosphere (Durre et al. 2018). Currently, several research 
institutions including the University of Wyoming and the 
National Centers for Environmental Information (NCEI) 
routinely generate and release site-wise RS files after apply-
ing a consistent strategy for data check and quality control. 
These RS datasets provide 6–12 hourly atmospheric vertical 
profiles at more than 1500 sites on land covering the period 
from 1938 onward to the present (Li et al. 2020).

In this study, high-quality radiosonde data at near-glob-
ally distributed sites were obtained from the Integrated 
Global Radiosonde Archive (IGRA) via the website (https:// 
www. ncei. noaa. gov/ pub/ data/ igra/). It should be noted that 
we carried out a data screening to remove the stations that 
have less than half of radiosonde observations during the 
period of 2015–2019. Moreover, a quality control scheme 
was also applied to remove the outliers of the IGRA radio-
sonde files. On the one hand, the sounding profiles with the 
uppermost pressure level larger than 300 hPa or two adjacent 
levels exceeding 200 hPa are removed. On the other hand, 
the sounding profiles with more than 8 standard pressure 
levels are only taken into account. After the data screen-
ing and quality control procedures, 5 years (2015–2019) of 
radiosonde data at 596 near-globally distributed sites were 
utilized for the modeling, and the sounding profiles at 609 
sites in 2020 were employed for the validation.

Atmospheric profiles from GPS radio occultations

The Global Positioning System Receiver for Atmospheric 
Sounding (GRAS) onboard low-earth-orbit satellites pro-
vides radio occultation (RO) events with a global distribu-
tion every day. For each RO event, meteorological profiles 
with a high vertical resolution in the neutral atmosphere can 
be derived based on the Abel integral inversion under the 
assumption of local spherical symmetry (Kursinski et al. 
2000). For a detailed introduction to atmospheric profiles 
inversion from GPS RO observations we refer to Kursinski 
et al (1997).

The Constellation Observing System for Meteorology, 
Ionosphere, and Climate (COSMIC) Data Analysis and 
Archive Center (CDAAC) processes and provides atmos-
pheric data and products from a dozen GPS RO missions of 
different low-earth-orbit satellites. In the current study, the 
CDAAC post-processed ''wetPrf'' atmospheric profiles from 
MetOp-A and MetOp-B missions were used, which were 
routinely produced by a one-dimensional variational (1D-
Var) data analysis using European Centre for Medium-Range 
Weather Forecasts (ECMWF) gridded analyses or short-term 
forecasts as background fields. 4 years (2016–2019) of ''wet-
Prf'' atmospheric profiles were used as one part of modeling 
data sources, and the ''wetPrf'' atmospheric profiles in 2020 
were employed for the evaluation. The spatial distribution of 
GPS RO observations for MetOp-A and MetOp-B satellites 
on January 1, 2019, is displayed in Fig. 1. We can see that 
the GRAS for each MetOp satellite can retrieve 650–700 
GPS RO atmospheric profiles with uniform distribution 
across the globe every day, which provides abundant atmos-
pheric state information in marine and polar regions.

ZWD determination with atmospheric profiles

Using the atmospheric profiles from radiosonde data and 
GPS RO observations, the ZWD values at each site can 
be accurately determined by numerically integrating non-
hydrostatic refractivity in the zenith direction from the site 

Fig. 1  Distribution of ZWD 
values derived by the numerical 
integration of GPS RO atmos-
pheric profiles for MetOp-A and 
MetOp-B satellites on January 
1, 2019

https://www.ncei.noaa.gov/pub/data/igra/
https://www.ncei.noaa.gov/pub/data/igra/
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height to the top of the lower atmosphere (Nilsson et al. 
2013):

where Nnh is the non-hydrostatic refractivity in the atmos-
phere, a function of the water vapor pressure and tempera-
ture. Equation (1) can be rewritten as follows:

where T  and e denote the absolute temperature in [K] and 
partial pressure of water vapor in [hPa] in the atmosphere, 
respectively; Rd and Rw represent the specific gas constant 
for dry gases and water vapor, respectively; ki (i = 1, 2, 3) 
are the coefficients of atmospheric refractivity and the ''best-
average'' values determined by Rüeger (2002) are adopted 
in the current study (k1 = 77.6890 K/hPa, k2 = 71.2952 K/
hPa, k3 = 375,463  K2/hPa); Zw is the compressibility factor 
for atmospheric water vapor indicating the deviation of the 
atmosphere from an ideal gas.

ZWD modeling based on RF and BPNN 
approaches

In general, ZWD modeling is based on global atmospheric 
profiles and two machine learning approaches: random for-
est (RF) and backpropagation neural network (BPNN). The 
basic functional formulation for the modeling is presented 
in Table 1. As can be seen from Table 1, the input features 
consist of the day of the year (DOY), latitude (lat), longi-
tude (lon), ellipsoidal height (hgt), surface water vapor pres-
sure (es), and surface temperature (Ts). Note that the surface 
meteorological data used in the modeling are retrieved from 
the lowest level of RS and GPS RO atmospheric profiles. 
The desired model outputs are time-varying ZWD values 
calculated from RS data and GPS RO measurements. More-
over, we can see that both RF-based and BPNN-based mod-
els are suitable for determining time-varying ZWD values at 
sites with access to surface meteorological data.

(1)ZWD = 10−6 ∫
htop

hs

Nnhdh

(2)ZWD = 10−6 ∫
htop

hS

[(

k2 −
Rd

Rw

k1

)
e

T
+ k3

e

T2

]

⋅ Z−1
w
dh

Backpropagation neural network

The backpropagation neural network (BPNN) is a multi-
ple feed-forward neural network, which was proposed by 
Rumelhart et al. (1986). Generally, a BPNN system con-
sists of an input layer, one or multiple hidden layers, and 
an output layer. For a fully connected neural network, each 
layer has a certain number of neurons and each neuron in 
the current layer is directly connected to the neurons of the 
subsequent layer with an activation function. In this study, 
we adopted a three-layer fully connected BPNN structure to 
develop global ZWD models with surface meteorological 
parameters, as presented in Fig. 2. Each neuron in the input 
layers contains station location information and surface tem-
perature and water vapor pressure at a certain epoch; the cor-
responding neuron in the output layers contains ZWD val-
ues obtained from the RS and GPS RO measurements. The 
number of neurons in the hidden layer needs to be optimized.

The main task of the BPNN algorithm is to determine 
the network parameters of the weights and offsets that opti-
mally approximate the relationship between input data-
sets and the desired outputs through a training process. It 
mainly comprises two phases: the forward propagation of 
input signals and the backpropagation of the ''loss'' or error 
signals between model outputs and desired results. For the 
former, information contained in the input datasets enters the 
input layer, propagates through the hidden layer, and finally 
transfers to the output layer. The functional formulation that 
represents the forward propagation of a three-layer BPNN 
system can be written as follows:

where X and Y are the input vectors and the respective output 
vectors, respectively; fIH and fHO are the activation func-
tion that connects each neuron in the current layer and the 
neurons in the subsequent layer; WIH and BIH denote weight 
matrices and offset vectors between the neurons in the input 
and hidden layers; while WHO and BHO represent the weight 
matrices and offset vectors between the neurons in the 

(3)Y = fHO(WHOfIH(WIHX + BIH) + BHO)

Table 1  ZWD modeling schemes through the RF and BPNN regres-
sion analysis

Model Functional formulation

RF-A ZWD = fRF−A(DOY, lat, lon, hgt, es)

RF-B ZWD = fRF−B(DOY, lat, lon, hgt, es,Ts)

BPNN-A ZWD = fBPNN−A(DOY, lat, lon, hgt, es)

BPNN-B ZWD = fBPNN−B(DOY, lat, lon, hgt, es,Ts) Fig. 2  Structure of the BPNN for the tropospheric ZWD modeling
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hidden and output layers. In the modeling, the Nguyen–Wid-
row algorithm was applied to obtain initial weights and off-
sets for the three-layer neural network model (Nguyen and 
Widrow 1990). Moreover, we adopted two activation func-
tions to connect the neurons between adjacent two layers, 
and their formulae are expressed as follows (Yonaba et al. 
2010):

where f1(u) is a hyperbolic tangent function that connects 
the neurons between the input and hidden layers. While f2(u) 
is a linear activation function that connects the neurons in 
the hidden and output layers.

After the forward propagation of input signals, the error 
or ''loss'' signals between model outputs and the desired 
results are derived. If the ''loss'' signals cannot achieve the 
predefined requirement for precision, then the error back-
propagation process would be performed layer-by-layer 
to adjust the network parameters. We adopted the Leven-
berg–Marquardt (L–M) algorithm (Levenberg 1944) to itera-
tively update the weights and offsets for each neuron until 
the minimum mean square error is guaranteed. In this work, 
the maximum number of iterations was set to 2000 and the 
minimum performance gradient was set to 1 ×  10–7. The cost 
function of error signals is presented as follows:

where the defined cost function J(W,B) is the mean loss 
of all training samples, which is affected by the weights 
and offset values for each neuron; EX,Y is the mathematical 
expectation; L[⋅] denotes the loss function of the model esti-
mations and desired results. Based on the gradient descent 
method, the optimal network parameters of the weights and 
offsets can be determined:

where Wi and Wi+1 denote the initial and adjusted weights; 
the corresponding initial and adjusted offset values are rep-
resented by Bi and Bi+1 , respectively; J′

W
 and J′

B
 denote the 

partial derivatives of the cost function with respect to W and 
B, respectively.

Random forest

Random forest (RF) is an ensemble learning approach for 
classification and regression by integrating multiple decision 

(4)f1(u) =
2

1 + e−u
− 1

(5)f2(u) = u

(6)J(W,B) = EX,Y

{
L
[
f (X;W,B),Y

]}

(7)Wi+1 = Wi − �J�
W
(Wi,Bi) = Wi − �∇LW (Wi,Bi)

(8)Bi+1 = Bi − �J�
B
(Wi,Bi) = Wi − �∇LB(Wi,Bi)

trees. Based on the concept of bagging, it generates a set of 
decision trees for training and yields the mode of classes for 
classification or average estimation for regression (Breiman 
2001). Due to the ensemble learning and data-driven mecha-
nism, the RF regression approach is suitable for modeling 
the nonlinear functional relationship and reproducing time-
varying signals.

The RF adopts the bootstrap algorithm to construct multi-
ple homogeneous subsets from the training samples and con-
structs multivariable regression trees for each subset based 
on the decision tree algorithm. For each subset, approxi-
mately two-thirds of the training samples are selected, 
including input vector X ( xi , i = 1, 2, …, N) and desired out-
puts Y ( yi , i = 1, 2, …, N). This subset constructs an input 
space R with dimensions of N × P, where N is the number 
of input samples and P is the number of input features. The 
decision tree aims at constructing a functional formulation 
from input vector X to the desired output vector Y:

Generally, the functional formulation Y = f (X) in the current 
study is realized based on the classification and regression 
tree (CART) algorithm (Lewis 2000). The CART algorithm 
constructs each tree by recursively partitioning the input 
space R into two non-overlapping subspaces (R1, R2) based 
on randomly selected p (p < P) features at current node s, 
and two corresponding splitting subspaces can be defined 
as follows (Xue et al. 2021):

where x(p) is a splitting variable with the feature p and s the 
split node. The optimal feature p and splitting node s are 
determined based on the principle of minimum regression 
error:

where c1 and c2 are the output values of subspace R1 and R2 
for the binary split node, respectively:

The binary partitioning process continues until the stop-
ping criterion is satisfied, that is a node has fewer than a 
minimum number of samples needed for splitting or the par-
tition reaches the maximum depth of the individual trees. 
Finally, the input space R is partitioned into a set of sub-
spaces {R1, R2, …, RM}, and the final output results for the 
constructed CART tree can be calculated by the regression 
model f (X):

(9)Y = f (X,P)

(10)R1(p, s) =
{
X
||
|
x(p) ≤ s

}
,R2(p, s) =

{
X
||
|
x(p) > s

}

(11)min
p,s

[

min
c1

∑

xi∈R1(p,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(p,s)

(yi − c2)
2

]

(12)ĉ1 =
1

NR1

∑

xi∈R1(p,s)

yi, ĉ2 =
1

NR2

∑

xi∈R2(p,s)

yi
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where the I is an indicator function and its value is 1 when 
X ∈ Rm or 0 when X ∉ Rm.

Hyperparameter determination

The number of decision trees for the RF regression and the 
number of neurons in the hidden layer for the BPNN regres-
sion are regarded as the hyperparameter that affects mod-
eling accuracy and generalization ability. In this study, we 
devised a set of decision tree numbers and neuron numbers 
ranging from 5 to 60 with a step of 5 to test the modeling 
accuracy of the RF and BPNN regression models, respec-
tively. The optimal hyperparameters for those ML-based 
models were rigorously determined through the tenfold 
cross-validation (CV) approach. The tested accuracy of the 
ML-based models is represented as the root-mean-square 
(RMS) of ZWD residuals between model outputs and the 
expected results (references), as illustrated in Fig. 3.

As can be seen from Fig. 3, the ZWD modeling accuracy 
improves with the increasing number of decision trees and 
with the increasing number of neurons in the hidden layer, 
indicating ensemble learning can combine multiple learner 
bases to achieve better generalization ability. Moreover, we 
find the ZWD modeling based on BPNN is more sensitive 
to the hyperparameter than that of the RF regression. When 
the number of decision trees varies from 5 to 60, the ZWD 
accuracy has only improved by 0.1 cm for the RF models, 
while it improved by 0.4 cm for the BPNN models when the 
number of neurons in the hidden layer changes from 5 to 60. 
Furthermore, it becomes obvious that the ZWD modeling 
accuracy for the RF and BPNN regression tends to be stable 

(13)Y = f (X,P) =

M∑

m=1

cmI(X ∈ Rm)

when the number of decision trees is larger than 25 and the 
number of neurons in the hidden layer exceeds 40, respec-
tively. Therefore, we fixed the number of decision trees to 
25 and set the number of neurons in the hidden layer to 40 to 
develop ZWD models through the RF and BPNN regression 
analysis, respectively.

Model validation and comparison

In this section, the ML-based ZWD models were validated 
by using global atmospheric profiles from radiosonde data 
and GPS RO measurements in 2020. As a comparison, we 
also assessed several commonly used models and formulae 
for ZWD calculation, which include the model by Saasta-
moinen (1972), the formula by Askne and Nordius (1987), 
a rule of thumb (Böhm and Schuh 2013, Eq. 51, p89), and 
Global Pressure and Temperature 3 (GPT3) (Landskron and 
Böhm 2018). Among them, the Saastamoinen (1972) model 
calculates ZWD values based on es and Ts, while the Askne 
and Nordius (1987) formula determines ZWD values using 
the parameter es, the weighted mean temperature, and the 
water vapor decrease factor. GPT3 can directly estimate 
ZWD at the site in the vicinity of the earth’s surface based 
on the gridded coefficients for meteorological parameters. 
On the other hand, the water vapor pressure in GPT3 can be 
replaced by real observations. This approach is referred to 
as A & N(es) in the following. Moreover, a rule of thumb 
(Böhm and Schuh 2013, Eq. 51, p89) stating that ZWD in 
[cm] approximately equals the water vapor pressure in [hPa] 
is called ZWD-es in the following.

Validation with sounding profiles

In this subsection, the ML-based models and other formulae 
for ZWD determination were evaluated using radiosonde 
data at 609 near-globally distributed sites in 2020. The over-
all statistics of ZWD residuals between the modeled values 
and radiosonde-derived results at all 609 sites are presented 
in Table 2. It should be noted that the surface meteorological 
data used in the ML-based models (RF-A, RF-B, BPNN-A, 
and BPNN-B), ZWD-es, Saastamoinen (1972) model, and 
A&N(es) are retrieved from the lowest data in the sounding 
profiles.

As illustrated in Table 2, the GPT3 model estimates ZWD 
values at all sites with a bias of − 0.5 cm and an overall 
RMS error of 4.2 cm. Considering surface water vapor pres-
sure and surface temperature, the global accuracy of ZWD 
modeling for the ML-based models and other formulae have 
improved with different magnitudes. Taking the integrals of 
sounding profiles as the benchmark, the Saastamoinen and 
ZWD-es achieve absolute biases of 0.7–0.9 cm and over-
all accuracies of 4.1 cm and 4.0 cm, respectively, around 

Fig. 3  Generalization ability of the RF-based and BPNN-based ZWD 
regression models
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0.1–0.2 cm improvement relative to the GPT3. They are 
unable to accurately describe vertical humidity conditions 
in the lower troposphere even with the support of surface 
meteorological information. On the other hand, compared 
to GPT3, the ZWD accuracy gained by the RF and BPNN 
regression analysis approaches has significantly improved 
by taking surface meteorological parameters into account, 
especially surface water vapor pressure. We can see that the 
RF-A and RF-B models better reproduce time-varying ZWD 
signals with biases close to zero and overall agreements of 
3.2 cm and 3.1 cm, respectively. The BPNN-A and BPNN-
B achieve biases of around 0.1 cm and overall RMS errors 
of 3.4 cm and 3.3 cm, respectively. In general, the RF-B is 
superior to the GPT3, Saastamoinen model, ZWD-es, and 
A&N(es), with overall RMS reductions of around 26.0%, 
23.8%, 22.9%, and 12.2%, respectively.

To study the spatial characteristics of ZWD accuracy, 
we calculated site-wise ZWD residuals between modeled 
values and radiosonde data at each epoch in 2020. Then, 
the statistics indicators for these models and formulae were 
derived at each site using the ZWD residuals. Figures 4 and 
5 display site-wise biases and RMS errors of ZWD values 
between model estimations and radiosonde-derived results 
in 2020, respectively.

As illustrated in Fig. 4, the Saastamoinen model and 
ZWD-es overestimate ZWD values by 2–4 cm at a few sta-
tions on the island and coastal areas in low latitudes. On 
the other hand, they exhibit negative biases with absolute 
magnitudes larger than 3 cm in South China, Southeast 
Asia, and northern South America although the surface 
water vapor pressure data are utilized for the ZWD calcula-
tion. A similar spatial distribution of negative anomalies can 
also be observed for GPT3. This phenomenon indicates that 
GPT3, the Saastamoinen model, and ZWD-es are unable 
to well represent the short-term and complex variations of 
atmospheric moisture in regions with monsoon climate and 
tropical rainfall climate patterns. For A&N(es) and BPNN-
based models, we find negative and positive biases with 
absolute magnitudes of 1–3 cm at a few sites even though 

the measured surface water vapor pressure data are provided. 
On the other hand, we reveal that the RF-based models yield 
ZWD values with absolute biases within 1 cm for the major-
ity of sites over the globe. The RF-based and BPNN-based 
models mitigate large positive and negative biases as pre-
sent in GPT3, the Saastamoinen model, and ZWD-es, which 
to some extent indicates they have improved capability to 
model short-term and complex variations of the moisture 
in the troposphere.

Concerning the RMS errors, we can find from Fig. 5 that 
the GPT3 model performs worse in estimating ZWD val-
ues in regions with monsoon climate and tropical rainforest 
climate types, including southeastern China, southeastern 
North America, and southern South America. It has large 
RMS errors exceeding 5.5 cm in regions with monsoon cli-
mate patterns and better than 4.5 cm for the other regions. 
This accuracy distribution is related to the realization of the 
GPT3 model. The model coefficients of the GPT3 are deter-
mined based on the monthly ERA-Interim reanalysis data 
and they only take into account the climatological mean and 
seasonal variations of meteorological variables. Thus, the 
GPT3 model cannot well reproduce short-term, complex, 
and abnormal variations of atmospheric moisture, in par-
ticular in regions with specific climate patterns.

Furthermore, the Saastamoinen model and ZWD-es per-
form better in representing ZWD values at sites in North 
Asia, Europe, and North America in contrast to the GPT3 
model, but they still exhibit large RMS errors of 5.5–8 cm in 
South Asia and northern South America even though surface 
water vapor pressure data are used in the ZWD calculation. 
On the other hand, we find that the ZWD accuracy obtained 
by the ML-based models has improved significantly across 
the globe compared to GPT3 due to the introduction of sur-
face meteorological parameters in the modeling. The RF-
based models (RF-A and RF-B) and BPNN-based models 
(BPNN-A and BPNN-B) yield time-varying ZWD signal 
with accuracies better than 3 cm for the middle and high 
latitudes of the northern hemisphere, while they achieve 
accuracies of 3–5 cm for the regions with monsoon climate 
patterns. In addition, the A&N(es) presents a consistent 
spatial distribution of ZWD accuracy as the RF-based and 
BPNN-based models and outperforms the Saastamoinen 
model and ZWD-es in regions with specific climate types.

To study temporal features of ZWD accuracy, we calcu-
lated sub-daily ZWD residuals between modeled values and 
radiosonde data at each site. Then, the daily biases and RMS 
errors were computed using the ZWD residuals at sites for 
each hemisphere as presented in Fig. 6. Generally, the Saas-
tamoinen model and ZWD-es underestimate ZWD values 
for all seasons in both hemispheres except for the southern 
hemisphere winter. They exhibit daily biases within 2 cm in 
the northern hemisphere and between − 3 cm and 1.5 cm in 
the southern hemisphere. Moreover, the GPT3 model also 

Table 2  Statistics of ZWD differences between modeled values and 
radiosonde-derived results at 609 sites in 2020

Models Bias [cm] STD [cm] RMS [cm] R

GPT3 − 0.48 4.16 4.19 0.92
ZWD-es − 0.71 3.96 4.02 0.92
Saastamoinen − 0.87 3.98 4.07 0.92
A&N(es) 0.12 3.53 3.53 0.94
RF-A 0.04 3.24 3.24 0.95
RF-B 0.04 3.10 3.10 0.95
BPNN-A 0.07 3.42 3.42 0.94
BPNN-B 0.09 3.33 3.33 0.94
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presents daily biases with magnitudes of − 1.5 to 0.5 cm in 
the northern hemisphere and -2 to 0.5 cm in the southern 
hemisphere. On the other hand, the RF-based and BPNN-
based models can estimate time-varying ZWD signals with 
daily biases fluctuating within 0.5 cm in the northern hemi-
sphere and within 1 cm in the southern hemisphere.

Furthermore, the ZWD accuracy of these models 
presents seasonal variations for both hemispheres with 
relatively large/small RMS errors in the summer/winter 
hemispheres. The temporal feature of the ZWD accu-
racy is related to seasonal variations of water vapor in 
the troposphere since the holding capability of atmos-
pheric moisture varies with respect to the air temperature 
according to the Clausius–Clapeyron law. Concerning the 
ZWD modeling with surface meteorological parameters, 
one can see that the RF-based ZWD models considering 

meteorological parameters achieve better daily accuracy 
than other approaches and better represent daily fluctua-
tions of atmospheric water vapor. Moreover, ZWD daily 
accuracy varies from 2 to 5 cm in the northern hemi-
sphere, which is superior to that in the southern hemi-
sphere (RMS: 3–6 cm). The daily accuracy degraded in the 
southern hemisphere relative to the northern hemisphere 
can be attributed to two factors. On the one hand, most 
radiosonde sites in the southern hemisphere are distributed 
in coastal areas and islands, which are frequently affected 
by complex weather conditions. On the other hand, fewer 
sounding profiles are collected in the southern hemisphere 
compared to the northern hemisphere, implying radio-
sonde data used in the modeling are relatively sparse in 
the southern hemisphere.

Fig. 4  Global distribution of 
mean ZWD errors between 
modeled values and radiosonde 
data in centimeters for the year 
2020
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Validation with GPS RO observations

In this subsection, the performance of the ML-based models 
and other formulae for ZWD calculation was validated by 
using global atmospheric profiles obtained from GPS RO 
observations of MetOp-A and MetOp-B satellites in 2020. 
The statistics of ZWD residuals between modeled values and 
GPS RO data are presented in Table 3

As illustrated in Table 3, the GPT3 model estimates 
ZWD values over the globe with a mean bias of 0.3 cm 
and an overall RMS error of 3.2 cm in contrast to GPS RO 
atmospheric profiles in 2020. The Saastamoinen model and 
ZWD-es formulae obtain biases of around 0.5 cm and overall 
accuracies of 3.0 to 3.1 cm. Compared with GPT3, the ZWD 
accuracy gained by both models has slightly improved with 
the support of the surface meteorological data. Neverthe-
less, the improvement in ZWD modeling for both models 

is still limited because the surface meteorological circum-
stance cannot represent the whole vertical distribution of the 
moisture in the lower troposphere. On the other hand, we 
can see that the A&N(es) model taking the vertical humidity 
distribution into account can calculate ZWD values over the 
globe with a bias of − 0.3 cm and an overall RMS error of 
2.6 cm, an accuracy improved by 20.1%, 13.7%, and 20.0% 
in comparison with the GPT3, ZWD-es, and Saastamoinen 
model, respectively. Concerning the ML-based model, we 
can find that RF-A and RF-B models exhibit the best agree-
ment with the integrals of GPS RO atmospheric profiles 
and they yield ZWD estimations with biases close to zero 
and overall accuracies of 2.4 cm. The ZWD accuracy for 
both models has improved by around 19.7%, 21.8%, and 
7.0% in contrast to the ZWD-es, Saastamoinen model, and 
A&N(es), respectively. Moreover, the BPNN-A and BPNN-
B achieve overall agreements of 2.6 cm in comparison with 

Fig. 5  RMS of ZWD residuals 
between modeled values and 
radiosonde data in centimeters 
for the year 2020
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the GPS RO measurements, whose accuracy is identical to 
that of A&N(es). We can see that the RF nonlinear regres-
sion approach is superior to the BPNN method in terms of 
the tropospheric ZWD modeling with surface meteorologi-
cal parameters.

Figure 7 displays the time series of daily ZWD biases 
for these models relative to the GPS RO measurements in 

2020. The upper and lower panels denote the results gained 
by using global atmospheric profiles from GPS RO observa-
tions of the MetOp-A and MetOp-B satellites, respectively. 
As can be seen from Fig. 7, the GPT3 model overestimates 
ZWD values in contrast to the integrals of GPS RO atmos-
pheric profiles for MetOp-A and MetOp-B satellites. It 
exhibits positive daily biases generally varying from 0 to 

Fig. 6  Time series of biases 
and RMS errors for these ZWD 
models in 2020
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0.8 cm throughout the year 2020. In addition, ZWD-es, Saas-
tamoinen, and A&N(es) that are dependent on surface mete-
orological parameters underestimate time-varying ZWD sig-
nals and have positive biases of 0 to 1 cm, 0 to 1 cm, and 0 to 
0.5 cm, respectively. Concerning the ML approaches, we can 
see that the RF-based (RF-A and RF-B) and BPNN-based 
(BPNN-A and BPNN-B) models perform better in modeling 
time-varying ZWD signals and they exhibit relatively small 
biases with magnitudes within 0.3 cm throughout the year 
2020.

Figure 8 shows the daily RMS errors of ZWD model esti-
mations relative to the GPS RO observations in 2020. The 
upper and lower panels denote the results validated based 
on the GPS RO atmospheric profiles of the MetOp-A and 
MetOp-B satellites, respectively. We can see that the GPT3 
empirical model estimates time-varying ZWD values with 

daily RMS errors of 3.0–4.0 cm throughout the year 2020. 
The relatively worse accuracy of GPT3 is due to its model 
coefficients of meteorological variables, which cannot well 
reflect the humidity distribution and variations in the lower 
troposphere, especially short-term fluctuations. Compared 
with the GPT3 model, the Saastamoinen model and ZWD-es 
determine ZWD based on the surface meteorological data 
and obtain daily accuracies of 2.8–3.7 cm during the year 
2020. Furthermore, we can find that daily accuracy gained 
by the ML-based models and A&N(es) is superior to other 
traditional ZWD models based on surface meteorological 
data. For example, the RF-based models (RF-A and RF-B) 
yield time-varying ZWD signals with daily RMS errors fluc-
tuating between 2.0 and 2.7 cm throughout the year 2020, 
which has improved by 0.8 to 1.0 cm in contrast to the Saas-
tamoinen model and ZWD-es. This effect appears because 
they take into account the vertical humidity distribution fea-
tures or the relationship between ZWD and the meteorologi-
cal parameters at different heights of the troposphere.

Conclusions

The tropospheric zenith wet delay is a crucial parameter 
for space geodetic and meteorological applications. In this 
study, global modeling of the tropospheric ZWD was real-
ized based on the surface meteorological data obtained from 
radiosonde data and GPS RO measurements through two 
ML regression approaches: the RF and BPNN. The per-
formance of the ML-based models and other formulae for 

Table 3  Statistics of ZWD residuals of these models and formulae in 
contrast to GPS RO measurements in 2020

Models Bias [cm] STD [cm] RMS [cm] R

GPT3 0.28 3.22 3.23 0.92
ZWD-es − 0.45 2.95 2.99 0.94
Saastamoinen − 0.45 3.04 3.07 0.93
A&N(es) − 0.27 2.57 2.58 0.95
RF-A − 0.01 2.39 2.39 0.96
RF-B − 0.02 2.36 2.36 0.96
BPNN-A − 0.03 2.60 2.60 0.95
BPNN-B − 0.05 2.54 2.54 0.95

Fig. 7  Daily ZWD biases 
between model estimations and 
GPS RO measurements in 2020
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ZWD calculation was validated by using global atmospheric 
profiles from sounding data and GPS RO measurements in 
2020. Our results show that the RF-B can achieve a bias 
close to zero and an overall accuracy of 3.1 cm in compari-
son with the radiosonde-derived results and 2.4 cm in con-
trast to the GPS RO measurements of the MetOp satellites. 
The ZWD accuracy for RF-B has improved by 23.8% against 
Saastamoinen and 12.2% against A&N(es) when radio-
sonde data are used in the validation, while its accuracy has 
improved by 21.8% against Saastamoinen and 7% against 
A&N(es) when GPS RO data are employed in the valida-
tion. Furthermore, the RF-based models can achieve better 
accuracy in terms of global modeling for the tropospheric 
ZWD than the BPNN-based approaches and other formulae 
with surface meteorological parameters. Concerning the 
spatial features of accuracy, the ML-based models clearly 
mitigate the negative biases in regions with monsoon climate 
and tropical rainforest climate patterns. Compared with the 
GPT3 empirical model, the accuracy of the ZWD modeling 
based on ML approaches has significantly improved across 
the globe by taking into account the surface meteorologi-
cal parameters, especially in regions with monsoon climate 
types.
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