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Abstract
In a satellite navigation system, high-precision prediction of satellite clock bias directly determines the accuracy of naviga-
tion, positioning, and time synchronization and is the key to realizing autonomous navigation. To further improve satellite 
clock bias prediction accuracy, we establish a satellite clock bias prediction model by using long short-term memory (LSTM) 
that can accurately express the nonlinear characteristics of the navigation satellite clock bias. Outliers in the original clock 
bias should be preprocessed before using the clock bias for prediction. By analyzing the working principle of the traditional 
median absolute deviations method, the ambiguity of the mathematical model of that method was improved. Experimental 
results show that the improved method is better than the traditional method at detecting gross errors. The single difference 
sequence of the preprocessed satellite clock bias was taken as the research object. First, a quadratic polynomial model was 
fit to the trend term of the single difference sequence. Second, based on the LSTM neural network model and the basic prin-
ciples of supervised learning, a supervised learning LSTM network model (SL-LSTM) was proposed that models cyclic and 
random terms. Finally, the prediction function of the satellite clock bias was realized by extrapolating the model by adding 
a trend term. We adopt the GPS precision satellite clock bias of International GNSS Service data forecast experiments and 
apply wavelet neural network (WNN), autoregressive integrated moving average (ARIMA), and quadratic polynomial (QP) 
models to compare their prediction effects. The average prediction RMSE for 3 h, 6 h, 12 h, 1 d, and 3 d based on the SL-
LSTM improved by approximately −21.80, −1.85, 8.57, 2.27, and 40.79%, respectively, compared with the results of the 
WNN. The average prediction RMSE based on the SL-LSTM improved by approximately 38.23, 65.48, 80.22, 85.18, and 
94.51% compared with the ARIMA results. The average prediction RMSE based on the SL-LSTM improved by approxi-
mately 82.37, 75.88, 67.24, 45.71, and 58.22% compared with the QP results. Compared with the WNN, the SL-LSTM 
method has no obvious advantages in the prediction accuracy and stability in short-term prediction but achieves a better 
long-term prediction accuracy and stability. With an increased prediction duration, the SL-LSTM method is clearly better 
than the other three methods in terms of the prediction accuracy and stability. The results indicated that the quality of satel-
lite clock bias prediction by the SL-LSTM method is better than that of the above three methods and is more suitable for the 
middle- and long-term prediction of satellite clock bias.

Keywords  Navigation satellite clock bias · Gross error · International GNSS Service · Prediction model · Long short-term 
memory · Supervised learning
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SL-LSTM	� Supervised learning long short-term memory
WNN	� Wavelet neural network

Introduction

In global navigation satellite system (GNSS) real-time navi-
gation and positioning, the prediction of the satellite clock 
bias is important for optimizing the clock bias parameters 
of navigation messages to meet the needs of kinematic pre-
cise point positioning and to provide the prior information 
needed for autonomous navigation using satellites (Huang 
et al. 2014). Therefore, research on satellite clock bias (SCB) 
prediction has been the focus of much research. The com-
mon models of clock prediction include quadratic polyno-
mial (QP) models (Huang et al. 2011; Wang et al. 2016a, b, 
c), grey models (GMs) (1,1) (Cui et al. 2005; Liang et al. 
2015; Lu et al. 2008), spectrum analysis (SA) models (Zheng 
et al. 2010; Heo et al. 2010), autoregressive integrated mov-
ing average (ARIMA) models (Xu et al. 2009; Zhao et al. 
2012), Kalman filtering (KF) (Davis et al. 2012; Huang 
et al. 2012), and artificial neural network (ANN) models 
and their corresponding combined models (Lei et al. 2014; 
Wang et al. 2014; 2016a, b, c; Ai et al. 2016). At present, 
these models have obvious advantages and disadvantages in 
clock bias prediction: For example, QP models have simple 
structures and good timeliness, but the prediction errors will 
continue to accumulate with increasing prediction duration, 
making the prediction accuracy and stability decline signifi-
cantly. The accuracy of the model clock bias prediction of 
the GM(1,1), SA, and ARIMA models is better than that of 
the QP models, but the stability of the prediction results is 
affected by the optimization of key parameters in the models. 
The prediction accuracy of KF models is greatly affected by 
the motion characteristics of satellite-borne atomic clocks; 
the short-term prediction accuracy is higher. When the pre-
diction duration increases, the nonlinear characteristics of 
the data have a greater impact on the prediction accuracy. 
In recent years, the application of ANN models in clock bias 
prediction research has increased, and the prediction accu-
racy and stability of clock bias have significantly improved. 
This is because the time–frequency characteristics of sat-
ellite-borne atomic clocks are relatively complex and the 
external environment easily affects atomic clocks, resulting 
in periodic and random changes in the SCB (Huang et al. 
2018). Traditional models have shortcomings in the expres-
sion of nonlinear features of clock bias sequences (Xu et al. 
2017), which makes it difficult to improve the prediction 
accuracy further. However, ANNs are typical “data-driven” 
models that have a good effect on the expression of nonlin-
ear features and have gradually become a research hotspot 
in the field of clock bias prediction. At present, research 
on clock bias prediction using ANN technology is growing, 

but the prediction accuracy still has considerable room for 
improvement. Based on the above discussion, to obtain a 
better prediction accuracy, we propose a supervised learning 
long short-term memory (SL-LSTM) network model based 
on the QP trend fitting term and the basic principles of a 
long short-term memory (LSTM) model for the single differ-
ence sequences of clock bias. The cyclic and random terms 
of single difference sequences of clock bias are modeled, and 
the clock bias prediction function is realized by extrapolat-
ing the model by superimposing the trend term. The clock 
bias prediction results show that the method presented, i.e., 
the SL-LSTM method, has a better prediction effect than 
three commonly used models, especially in terms of the 
high-precision fitting of the cyclic and random terms, which 
is the key to further improving the prediction accuracy.

We first analyze the characteristics of the original clock 
bias data and note that the single difference sequence of 
clock bias is the most suitable for clock bias prediction. An 
improved median absolute deviation (MAD) (Huang et al. 
2021) gross error detection method is adopted to eliminate 
the gross error in the single difference sequence and com-
plete the preprocessing of clock bias data. Then, we improve 
the LSTM structure to solve the shortcomings of LSTM 
models in the prediction of time series data and propose a 
clock bias prediction model (SL-LSTM) based on the basic 
principles of LSTM. The advantages of SL-LSTM in high-
precision modeling of cyclic and random terms are analyzed 
with examples. Finally, we illustrate the accuracy and stabil-
ity of SL-LSTM prediction through two examples, analyze 
the advantages and disadvantages of this method and note 
the aspects needing improvement.

Clock bias preprocessing

The single difference sequence of the SCB can effectively 
express the overall variation trend in the clock bias and can 
easily identify the abnormal points in the clock bias, provid-
ing an important basis for clock bias prediction. Figure 1 
shows the precise clock bias of the 5 min sampling inter-
val of the G-13 GPS satellite provided by the International 
GNSS Service (IGS) center from October 1 to December 14, 
2019. The top panel of Fig. 1 shows the clock bias, and the 
bottom panel shows the single difference sequence. As the 
figure shows, the clock bias line is smooth. The correspond-
ing single difference sequence exhibits a large number of 
gross errors because the SCB has more significant bits, and 
outliers are difficult to quickly identify (Wang et al. 2016a, b, 
c), whereas the single difference sequence outliers are easier 
to recognize. Therefore, it is more convenient to preproc-
ess the single difference sequence of the SCB. Additionally, 
the single difference sequence trend and the periodic and 
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random characteristics are more apparent and more suitable 
for clock bias prediction.

The quality of the SCB directly affects the reliability of 
the performance analysis results of satellite-borne atomic 
clocks and the accuracy of the clock bias prediction (Wang 
et al. 2016a, b, c). Before predicting the clock bias, it is 
necessary to conduct preprocessing, mainly to eliminate 
the gross error. For the SCB L = {l1, l2, ..., li},i = 1, 2, ..., n , 
the single difference sequence corresponding to the SCB 
is ΔL = {Δl1,Δl2, ...,Δlj}, j = 1, 2, ...,m , where m = n − 1 
and Δlj = li+1 − li . The most common gross error detection 
method is the MAD. The mathematical model is:

In (1), k is the median, MAD = Median{
||
|
Δlj − k

||
|
∕0.6745} , 

and the value of the constant n is determined according to 
the need. After the gross error is detected, the preprocessing 
of the clock bias is generally completed by setting the gross 
error value to 0 or another value. Since the gross error detec-
tion method for the clock bias is the main research content, 
it will not be repeated in the repair of the gross error.

The traditional MAD method is inadequate for gross error 
detection (Huang et al. 2021). The essence of the MAD 
method is to determine whether the distance of each Δlj from 
the median ( k ) is beyond the limit. In (1), ||

|
Δlj

||
|
 on the left 

side represents the absolute value of the single difference 
sequence. Only if the left side is ||

|
Δlj − k

||
|
 does (1) mathemat-

(1)
||
|
Δlj

||
|
> (k + n ×MAD)

ically mean the distance between Δlj and the median k . Simi-
larly, when the right term is n ×MAD , the mathematical 
meaning is the threshold distance value to judge whether Δlj 
is a gross error. Therefore, due to the ambiguity in the math-
ematical expression of the traditional MAD method, (1) can 
be modified as:

By adjusting the structure of expression (1), ambiguity 
can be eliminated in (2).

For most single difference sequences, the trend character-
istics are not obvious. The k value in (2) is constant, which 
can more accurately express the characteristics of a single 
difference sequence. When the traditional MAD method is 
used to deal with data with obvious trend characteristics, 
gross error detection is not effective. In fact, if the k value 
constantly changes with the trend, the adoption of a fixed 
value will make it difficult for Δlj to deviate from the k value 
to detect the gross error through the distance constraint con-
dition. Therefore, based on the basic principle of ridge 
regression, we propose to generate a single difference 
sequence trend line consisting of the k value and obtain the 
“dynamic MAD” ( MAD = Median{

||
|
Δlj − k

||
|
∕0.6745} ), 

which can effectively overcome the interference of a partial 
single difference sequence with obvious trend change char-
acteristics on gross error detection. Ridge regression is a 
kind of partial estimation regression method, which is essen-
tially an improved least squares estimation method. Using 
the classical least squares estimation method will cause over-
fitting, while ridge regression can obtain more reliable fitting 
results by losing accuracy. We adopted the existing solutions 
of Huang et al. (2021) by adjusting the MAD mathematical 
model to eliminate the ambiguity of the structure of the tra-
ditional MAD method, using the method of biased estima-
tion (ridge regression), redefining the value of k , and elimi-
nating the influence of the trend. The mathematical model 
of ridge regression is known as 𝜔̂ = (XTX + 𝜆I)−1XTy , and 
the improved MAD model can be obtained by combining 
(2):

In (3), X  is the time series of the single difference 
sequence of the clock bias, y is the series of the single dif-
ference sequence of the clock bias, I is the identity matrix, � 
is the regularization coefficient (usually determined by many 
experiments), and 𝜔̂ is the regression value.

Figure 2 shows the results of the G-06 satellite using fixed 
k value and dynamic k value gross error detection, and the 
solid red line is the k value. The top panel is the result of 
using a fixed k value in (1). The single difference sequences 

(2)
|
|
|
Δlj − k

|
|
|
> n ×MAD

(3)

{
|||
Δlj − k

|||
> n ×MAD

k = 𝜔̂ = (XTX + 𝜆I)−1XTy

Fig. 1   Comparison of the SCB (top) and single difference sequence 
(bottom) of G-13
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of G-06 have significant trend characteristics, while the trend 
line (solid red line) is significantly different from the single 
difference sequence. The bottom panel is the result of the 
dynamic k value. The trend line (solid red line) is basically 
consistent with the trend characteristics of the single differ-
ence sequence. In addition, there are gross errors in the top 
panel that have not been eliminated, while the gross errors in 
the bottom panel have been completely eliminated.

Figure  3 shows the results of the single difference 
sequence preprocessing of the G-25 satellite. The top panel 
shows the data before processing, and there is an obvious 
gross error. The middle panel shows the results of eliminat-
ing the gross error by (1), while the bottom panel shows the 
results of eliminating the gross error by (3). Under the same 
parameter conditions, the gross error is not eliminated by 
(1), while the gross error is eliminated by (3). Therefore, we 
adopt the improved MAD method for data preprocessing.

Basic principles of LSTM

In recent years, the application of deep learning models 
to time series data has become increasingly extensive. A 
deep learning model is a deep neural network model with 
multiple nonlinear mapping levels, and this type of model 
can abstract and extract features of the input signal layer 

by layer and uncover the underlying rules at a deeper level 
(Lecun et al. 2015). Recurrent neural networks (RNNs) 
(Greff et  al. 2016), as special deep learning models, 
introduce the concept of time series into the design of 
the network structures and show stronger adaptability in 
the analysis of time series data than other methods (Wang 
et  al. 2018). As a variant of RNNs, LSTM effectively 
solves the problem of gradient disappearance and gradi-
ent explosion of RNNs and has good application value. For 
example, language modeling is related to text language, 
speech recognition, machine translation, audio and video 
data analysis (Donahue et al. 2015), image caption mod-
eling (Vinyals et al. 2015), pedestrian trajectory prediction 
(Hao et al. 2018), and many other fields. The following is a 
brief introduction to the basic principles of LSTM models.

Hochreiter et al. (1997) first proposed the LSTM model, 
and these models have unique advantages in time series 
data modeling. LSTM uses a single cell to store the long-
term state of time series data and consists of three gates: 
an input gate, a forget gate, and an output gate. Informa-
tion is delivered selectively at each gate. Figure 4 shows a 
structure diagram of an LSTM network.

The input gate determines how much of the model input 
is saved to the cell state and is implemented with (4) and 
(5).

Fig. 2   Comparison between the fixed and dynamic values of k for sin-
gle difference sequence preprocessing of the G-06 satellite. Top: fixed 
value of k, (1). Bottom: dynamic value of k, (3)

Fig. 3   Comparison between the traditional MAD method and the 
improved MAD method for the single difference sequence preproc-
essing of the G-25 satellite. Top: single difference sequence. Middle: 
result processed by (1). Bottom: result processed by (3)
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The current moment xt and the previous moment state 
ht−1 are used as the input gate, and then, the calculated result 
is multiplied by the weight matrix to determine the update 
information through the activation function.

The forget gate determines how much input to the current 
model is forgotten and then saves the rest to the current cell. 
The relevant mathematical expressions are:

The forget gate obtains the input information from the 
current time xt and the previous time state ht−1 and then 
outputs a probability value between 0 and 1. A probability 

(4)it = �(Wi[ht−1, xt] + bi)

(5)C̃t = tanh(Wc[ht−1, xt] + bc)

(6)ft = �(Wi[ht−1, xt] + bf )

(7)Ct = ft ∗ Ct−1 + it ∗ C̃t

value of 1 means that all of the information is reserved, and 
a probability value of 0 means that all of the information is 
abandoned.

The output gate will output a new cell. The relevant math-
ematical expressions are:

First, the sigmoid layer determines what part of the cell 
needs to be output. The cell state is then sent to the “tanh” 
layer, which outputs a probability value between −1 and 1. 
Finally, the probability value is multiplied by the output of 
the sigmoid layer.

In the above equation, W is the weight coefficient matrix, 
b is the bias vector, and � and tanh are sigmoid and hyper-
bolic tangent activation functions, respectively. Furthermore, 
i, f ,C, and o are the input gate, the forget gate, the unit 
state, and the output gate, respectively, and ∗ is Hadamard 
multiplication.

Clock bias prediction model of SL‑LSTM

Figure 5 shows a flowchart of the clock bias prediction. The 
single difference sequence of clock bias includes a trend 
term, a cyclic term, and a random term. The trend term can 
be accurately fit by a quadratic polynomial, which will not be 
repeated in this study. The single difference sequence after 
eliminating the trend term is typical nonlinear time series 
data. According to the basic principles of LSTM, we propose 
an SL-LSTM network-based clock bias prediction method 
that mainly deals with the single difference sequence of the 
clock bias after elimination of the trend term and finally 

(8)ot = �(Wo[ht−1, xt] + bo)

(9)ht = ot ∗ tanh(Ct)

Fig. 4   Model structure of a traditional LSTM neural network

Fig. 5   Pretreatment and SCB 
prediction procedure
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combines this sequence with the fitting results of the trend 
term to obtain the predicted value. The following sections 
present the methods of SL-LSTM model construction and 
parameter selection.

SL‑LSTM model construction

The clock bias is the time series data of the finite sample 
points of a single variable. Due to the superposition of many 
factors, it is difficult to accurately extract the clock bias char-
acteristics according to the influencing factors. Generally, 
by studying and analyzing the graphical characteristics of 
the clock bias, the prediction data of the next moment (time 
period) are obtained by extrapolation via data modeling. 
However, it is difficult to describe the nonlinear character-
istics of the clock bias accurately, so the prediction accuracy 
is limited. The single difference sequence of the clock bias 
has more abstract characteristics, so an LSTM model cannot 
satisfy complex feature expression needs by modeling the 
time series data of a single variable. Second, clock bias pre-
diction generally predicts the clock bias value in the future 
for a period of time, and an LSTM model generally per-
forms a one-step prediction. The above two aspects need to 
be improved as follows:

(1)	  For the single-variable problem of clock bias, we trans-
late the clock bias sequence into a multivariable prob-
lem by means of equal interval translation;

(2)	  For the one-step prediction problem, this paper real-
izes multistep prediction by controlling the spacing and 
transforms the LSTM’s working mode into a super-
vised learning mode. These two aspects are explained 
in detail as follows.

In Fig.  6, the data sequence X = {x1, x2, x3, ..., xt} 
in the upper left is the data of a known single dif-
ference sequence of clock bias, the data sequence 
X̃ = {xt+1, xt+2, xt+3, ..., xn}, s = n − t at the bottom is the 
data of a single difference sequence of clock bias to be 
predicted, and s is the length of the data sequence X̃ to be 
predicted. In this paper, the sequence of single variable X 
is as follows:

Step 1: Given that the length of the predicted data 
sequence X̃ is s , the translation distance of equal spacing 
is set to s and the number of variables is set to v (deter-
mined by many experiments);
Step 2: The single-variable sequence X is divided into 
(v + 1) partially overlapping isometric sequences by 
adjusting parameters s and v . As shown in Fig. 7, by 
adjusting the initial value and the final value of each 
sequence, a moving window of fixed length (the red win-
dow in Fig. 7) is formed. The single-variable sequence is 
evenly divided along the positive time axis.
Step 3: The last sequence is taken as the label set, and the 
first v sequence is taken as the training set; then:

Fig. 6   SL-LSTM training 
model under the supervised 
learning mode, constructed by 
multivariable transformation of 
the single difference sequence. 
Then, the training set is updated 
to generate the prediction model 
to realize clock bias prediction
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where ST is the training set, LT is the label set, and the 
length of both sets is (t − sv) , forming the training model 
(TM) shown in the upper half of Fig. 6. This model can 
be expressed as:

In (11), Flstm represents the calculation method of the 
LSTM model (4–9), and (s, v) represent constant variables, 
which are the length of the predicted data and the number 
of variables, respectively.

The LSTM model is reconstructed into a neural network 
(SL-LSTM) under a supervised learning mode through the 
multivariable processing of a single variable. The math-
ematical model is:

X̃ represents the target data to be predicted and main-
tains the continuity of the time series with the single-var-
iable sequence X . In this paper, LT is added to the end of 
ST  , and the first variable in ST  is removed to form a new 
sample set SP to maintain consistency in the number of 
variables, update the training set, and ensure the partial 
overlap and continuity of the data between variables.

The prediction model (PM) is shown in the bottom half 
of Fig. 6. The figure shows that the training set conver-
sion from the TM to the PM is essentially a horizontal 
substitution between variables (the black arrows shown 
in Fig. 6). Finally, the TM is used to introduce the new 

(10)
ST =

{{x1, x2, ..., xt−sv}
T , {xs+1, xs+2, ..., xt−s(v−1)}

T

..., {x(v−1)s+1, x(v−1)s+2, ..., xt−s}
T}

LT = {xvs+1, xvs+2, ..., xt}
T

(11)TM = Flstm(ST , LT , (s, v))

(12)

SP =
{{xs+1, xs+2, ..., xt−s(v−1)}

T , {x(v−1)s+1, x(v−1)s+2, ..., xt−s}
T

, ..., {xvs+1, xvs+2, ..., xt}
T}

sample set SP and output the prediction set LP , so the PM 
can be expressed as:

In the output LP = {x(v+1)s+1, x(v+1)s+2, ..., xt, xt+1..., xn} of 
(13), {x(v+1)s+1, x(v+1)s+2, ..., xt} is the fitting of known data, 
and {xt+1..., xn} is the prediction of unknown data.

Parameter selection optimization

The method we presented is a model based on the basic 
principles of LSTM. The reasonable selection of param-
eters directly affects the accuracy of model prediction. The 
general practice of setting the hyperparameters of neural 
network models is to use multiple experiments to obtain 
the optimal value, which is not repeated. The key parameter 
we discuss and analyze is the number of variables v . The 
single-variable sequence is converted into a multivariable 
sequence for the purpose of expressing the nonlinear char-
acteristics of the single difference sequence of clock bias 
as accurately as possible. Theoretically, the larger the v is, 
the higher the accuracy, but the lower the computational 
efficiency. Therefore, the selection of the value of v should 
consider the tradeoff between accuracy and computational 
efficiency. The following takes the G-03 satellite as an exam-
ple for analysis and illustration.

The G-03 satellite data from October 1 to December 14, 
2019, has a total of 21,600 sampling points in the 5 min sam-
pling interval of precision clock bias, and the corresponding 
single difference sequence has 21,599 sampling points. The 
first 21,099 sampling points are used as training data, and 
the last 500 sampling points are used as the real values of 
the predicted data for comparative analysis. To analyze the 
optimal value of v , we select a value within the interval of 
v ∈ [3, 20] to conduct experiments through traversal. For the 

(13)PM = TM(SP)

Fig. 7   Process of sequence 
transformation from univariable 
to multivariable
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same hyperparameters, the root-mean-square error (RMSE) 
of the predicted and true values is calculated for different 
values of v.

Figure 8 shows a comparison between the predicted data 
and the real data of the G-03 satellite for v = 3, 7, 14, 20 . 
The solid black line in the figure represents the real data, and 
the solid red line represents the predicted data. The top-left 
panel shows the comparison results for v = 3 . In the figure, 
the fluctuation range of the predicted data is small, and the 
fitting degree of the periodic fluctuations of the real data 
is low. The top-right panel shows the comparison results 
for v = 7 . The fluctuation amplitude of the predicted data 
in the figure is significantly larger than that in the top-left 
panel, but the degree of fitting of the periodic fluctuation 
characteristics is still low. The bottom-left panel shows the 
comparison results for v = 14 . As shown in this figure, the 
predicted data exhibit an obvious fluctuation range and a 
high degree of fitting to the characteristics of the periodic 
fluctuations, and the fit is basically consistent with the fluc-
tuation trend in the real data. The bottom-right panel shows 

the comparison results for v = 20 . The fluctuation amplitude 
and the degree of fitting of the periodic fluctuation charac-
teristics of the predicted data shown in the figure are not 
much different from those shown in the bottom-left panel. 
This finding shows that the accuracy of the predicted values 
increases with an increasing v but decreases when v reaches 
a certain critical value.

Figure 9 shows the variation rule of the RMSE for the 
predicted and true values from v = 3 to v = 20 . As shown 
in the figure, with a continuous increase in the value of v , 
the RMSE continually decreases, indicating that the error 
between the predicted and real values continually decreases; 
that is, the accuracy of the predicted values continually 
improves. However, at v = 14 , the convergence trend in the 
RMSE is obvious, and with further increases in value, the 
decreasing trend in the RMSE further slows; this finding 
indicates that at v = 14 , the accuracy of the predicted values 
is close to optimal, and further increases in the value of v 
produce limited improvement in the accuracy of the pre-
dicted values. Considering the influence of the calculation 

Fig. 8   Prediction results of 
satellite G-03 by the SL-LSTM 
model for different numbers of 
variables (top left: v = 3, top 
right: v = 7, bottom left: v = 14, 
and bottom right: v = 20). The 
solid black line is the G-03 
clock difference, and the solid 
red line is the prediction results
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efficiency, v = 14 was determined to be the best value for 
the G-03 satellite data. To maintain the same experimental 
environment, in the following experiments, v = 14 is used 
as the optimal value for different satellites.

Experiments and analysis

The GPS data from October 1 to December 14, 2019, with 
a 5 min sampling interval precision clock bias provided by 
the IGS data center were used for experiments. Due to miss-
ing data from some satellites, only 21 satellites with good 
continuity were used for the experiments to ensure data con-
tinuity. (3) was used to address the problem of gross errors 
in the SCB. The experimental platform we used was based 
on Google’s second-generation deep learning framework 
TensorFlow (1.0), and a rich model library on GitHub was 
used to build the experimental platform.

Clock bias prediction can generally be divided into short-, 
medium- and long-term predictions. To further evaluate the 
quality of SL-LSTM clock bias prediction, we conduct clock 
bias prediction for 3 h (h), 6 h, 12 h, 1 day (d), and 3 d. The 
experimental data are divided into training and prediction 
sets. Table 1 shows the basic situation of the experimental 
data. The 5 min sampling interval data are adopted, and the 
corresponding numbers of data points in the five forecasted 
time length sets are 36 (3 h), 72 (6 h), 144 (12 h), 288 (1 

d), and 864 (3 d). Through many experiments, the network 
training parameters of the SL-LSTM model are determined 
as follows: the number of input nodes/number of variables 
(14), batch size (100), and training rounds (4000). To main-
tain the consistency in the experimental environment, we 
used the SL-LSTM method in the prediction experiments.

Example 1  Taking satellites G-03 and G-16 as examples, 
we adopt a wavelet neural network (WNN) with a two-layer 
feed-forward architecture, and the number of neurons in the 
hidden layer and the output are 6 and 1, respectively. We 
also adopted the ARIMA, QP, and SL-LSTM methods to 
conduct prediction experiments, used the RMSE and mean 
of the predicted and true values to evaluate the prediction 
accuracy of the algorithms, and used the absolute value of 
the difference between the maximum and minimum errors 
(range) to evaluate the stability of the algorithms.

To comprehensively evaluate the effect of the SL-LSTM 
method under different prediction time conditions, five time 
durations of 3 h, 6 h, 12 h, 1 d, and 3 d were predicted. Fig-
ure 10 shows the error results between the predicted values 
of satellites G-03 (top) and G-16 (bottom) and the true val-
ues. In the figure, the solid red line represents the prediction 
results of the SL-LSTM method, the solid purple line rep-
resents the prediction results of the WNN method, the solid 
blue line represents the prediction results of the ARIMA 
method, and the solid green line represents the prediction 
results of the QP method. Tables 2, 3, 4 show the calculated 
RMSE, mean, and range, respectively, of the satellite predic-
tion results for G-03 and G-16.

Compared with the other three methods, the SL-LSTM 
method has no obvious advantages in the prediction results 
for the G-03 and G-16 satellites for 3 h (Fig. 10 (top left)) 
of clock bias prediction, and its accuracy and stability are 
slightly lower than those of the WNN method (Tables 2, 3, 
4). The same problem exists in the predictions for 6 h (top 
center) and 12 h (top right) of clock bias prediction. This 
finding suggests that the SL-LSTM method does not have 
obvious advantages over the other three methods for short-
term prediction. In particular, the prediction accuracy of the 
WNN method is superior to that of the SL-LSTM method 
for the 3 h duration and only slightly lower than that of the 
SL-LSTM method for the 6 h duration, and the error in the 
cumulative speed is small. The error in the ARIMA method 
accumulates quickly with increasing prediction time.

In the clock bias prediction for 1 d and 3 d (Fig. 10 (bot-
tom left and bottom right, respectively)), the accuracy of 
the SL-LSTM method is obviously better than that of the 
other three methods, the error divergence degree is low, and 
the trend is stable; in contrast, the error divergence rates of 
the other three methods are significantly accelerated. The 
RMSE (10–11 s) of the SL-LSTM method was 5.2366 under 

Fig. 9   RMSE values of the prediction results as a function of the v 
values

Table 1   Basic information of the experimental data

3 h 6 h 12 h 1 d 3 d

Training set size 21,563 21,527 21,455 21,311 20,735
Prediction set size 36 72 144 288 864
Forecast time length 21,059 20,519 19,439 17,279 8639
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Fig. 10   Comparison of the 
prediction errors for 3 h (top 
left), 6 h (top middle), 12 h 
(top right), 1 d (bottom left), 
and 3 d (bottom right) for G-03 
and G-16 based on the WNN, 
ARIMA, QP, and SL-LSTM 
methods
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the conditions of a 3 h duration of the G-03 satellite, and 
the RMSE (10–11 s) was 62.5409 under the conditions of a 
3 d duration, which is an increase of 10.94-fold ((62.5409–
5.2366)/5.2366 = 10.94). The increase for the G-16 satellite 
was 5.39-fold. Those values for the WNN method increased 
by 28.17-fold and 12.27-fold, those for the ARIMA method 
increased by 606.45-fold and 23.41-fold, and those for the 
QP method increased by 4.45-fold and 1.2-fold, respectively. 
Although the error divergence is low, the RMSE is large. 
Further analysis of the variation in the mean and range val-
ues also reflects the above characteristics.

These results suggest that for the G-03 and G-16 satel-
lites, the SL-LSTM long-term prediction accuracy is supe-
rior to those of the other three methods. As the prediction 

time increases, the error accumulation rate is lower than 
those of the other three methods, and this method embod-
ies good stability. For short-term prediction, compared 
with the other three methods, our method exhibits no sig-
nificant advantages, and a more comprehensive evaluation 
of all the available SCB prediction results is needed.

Example 2  To further comprehensively evaluate the predic-
tive ability of the SL-LSTM method, we deal with all 21 
available SCB prediction experiments. The parameter set 
is consistent with that in example 1. The RMSE and mean 
of predicted and true values are used to evaluate the pre-
diction accuracy of the algorithm. The absolute value of 

Table 2   RMSEs of the SCB 
predictions for G-03 and G-16 
based on the WNN, ARIMA, 
QP, and SL-LSTM methods

PRN Model RMSE (10–11 s)

3 h 6 h 12 h 1 d 3 d

G-03 WNN 3.7649 32.0077 26.7675 43.2634 109.8298
ARIMA 5.7633 16.8122 164.1006 477.0719 3500.9480
QP 78.1955 91.6089 147.3996 176.8169 426.2612
SL-LSTM 5.2366 14.0511 33.5721 24.3240 62.5409

G-16 WNN 15.9157 14.0945 75.8728 112.0454 211.2897
ARIMA 72.8421 160.1207 245.6597 552.8732 1778.8029
QP 171.4407 188.5238 185.6278 223.7268 377.3948
SL-LSTM 18.8315 13.7974 79.1086 90.2757 120.4166

Table 3   Means of the SCB 
predictions for G-03 and G-16 
based on the WNN, ARIMA, 
QP, and SL-LSTM methods

PRN Model Mean (10–11 s)

3 h 6 h 12 h 1 d 3 d

G-03 WNN −0.7634 30.9131 −6.1936 −30.5255 −102.2856
ARIMA 4.1568 −8.7098 119.0096 375.3105 2712.6791
QP −78.1168 −91.2044 −145.0904 −173.6757 −415.4478
SL-LSTM −3.2236 11.3073 20.39 −0.7887 −64.0310

G-16 WNN −8.4857 −0.1836 −52.7732 −85.2552 −170.9923
ARIMA 58.2213 137.2143 213.8397 480.9170 1543.1354
QP −170.8645 −187.9289 −179.5369 −215.0194 −355.3486
SL-LSTM 12.7239 4.1054 −66.5814 −61.4027 105.0421

Table 4   Ranges of the SCB 
predictions for G-03 and G-16 
based on the WNN, ARIMA, 
QP, and SL-LSTM methods

PRN Model Range (10–11 s)

3 h 6 h 12 h 1 d 3 d

G-03 WNN 14.2952 40.1126 77.4025 107.4968 191.6107
ARIMA 14.5233 44.2197 345.0547 1010.1076 7403.2882
QP 13.6013 41.3095 77.2943 117.0342 398.3447
SL-LSTM 14.7280 29.1791 78.2841 89.0722 118.1122

G-16 WNN 61.8573 64.5734 186.3020 285.0362 470.4542
ARIMA 173.0427 318.9024 515.0268 986.2335 3105.7576
QP 64.9712 76.8014 172.4580 251.3903 480.9919
SL-LSTM 110.5383 62.4587 168.5586 263.8626 288.2395
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the difference between the maximum and minimum errors 
(range) is used to evaluate the stability of the algorithm.

In example 1, from the perspective of the satellites, we 
analyzed and evaluated the predictive ability of the WNN, 
ARIMA, QP, and SL-LSTM methods for the G-03 and 
G-16 satellites under the conditions of 3 h, 6 h, 12 h, 1 d, 

and 3 d. In example 2, from the perspective of the meth-
ods, we analyze and evaluate their predictive ability for 
the 21 available satellites under the conditions of 3 h, 6 h, 
12 h, 1 d and 3 d. Figure 11 presents the clock bias predic-
tion errors for the five durations. For the predicted result 
statistics, Table 5 shows the RMSE , Mean, and Range for 
the 21 available satellite prediction results, representing 

Fig. 11   Comparison of the 
prediction errors for 3 h (top 
left), 6 h (top middle), 12 h (top 
right), 1 d (bottom left), and 3 d 
(bottom right) for the available 
satellites based on the WNN, 
ARIMA, QP, and SL-LSTM 
methods

Table 5   Statistical results of 
the SCB predictions for the 
available satellites based on 
the WNN, ARIMA, QP, and 
SL-LSTM methods

3 h 6 h 12 h 1 d 3 d

WNN RMSE(10–11 s) 27.1457 44.8904 70.9523 115.5857 270.0857

Mean(10–11 s) 19.1554 34.7654 55.8328 90.3428 235.3666

Range(10–11 s) 68.1000 105.2904 160.9714 251.4857 517.8095

ARIMA RMSE(10–11 s) 53.2328 132.4619 327.9047 762.2904 2915.6619

Mean(10–11 s) 42.7118 108.5519 270.6095 628.4390 2407.7190

Range(10–11 s) 107.3809 259.7619 624.5047 1443.7142 5519.0952

QP RMSE(10–11 s) 186.5904 189.6142 198.0095 208.0809 382.7952

Mean(10–11 s) 184.9714 186.0428 190.1090 187.4809 349.7857

Range(10–11 s) 66.3571 105.7190 171.4571 267.5904 536.3333

LS-LSTM RMSE(10–11 s) 32.8861 45.7252 64.8761 112.9619 159.9000

Mean(10–11 s) 23.7071 32.3780 45.1782 90.0980 119.8904

Range(10–11 s) 82.3790 112.0571 170.8809 258.2380 400.3142
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the average RMSE, average mean, and average range, 
respectively. The mathematical expressions are:

In (14) to (16), n = 21 . Figure 11 shows the prediction 
results of the available satellites for 3 h (upper left), 6 h 
(upper center), 12 h (upper right), 1 d (lower left), and 3 
d (lower right) by using the WNN, ARIMA, QP, and SL-
LSTM methods. In the top-left panel, the distribution of the 
QP method’s prediction error (solid green line) was rela-
tively scattered, while other methods were relatively con-
centrated at approximately 0, indicating that the prediction 
error of the QP method was lower than that of the other 
methods at a duration of 3 h. With increasing duration, the 
prediction error of different methods changed substantially. 
The ARIMA method (solid blue line) diverged faster than 
the other methods, indicating that the stability was not good. 
The divergence speed of the WNN method (solid purple 
line) was slightly higher than that of the SL-LSTM method. 
From the qualitative analysis, the SL-LSTM method was 
superior to the other methods in terms of the prediction 
quality. By combining the statistical analysis of the clock 
bias prediction results shown in Table 5, it can be seen that 
the accuracy advantage of the SL-LSTM clock bias pre-
diction is not obvious for short-term prediction, especially 
the prediction results for 3 h and 6 h. In units of 10–11 s 
and prediction duration of 3 h, the value for the SL-LSTM 
method is 32.8861, which is slightly greater than that of the 
WNN of 27.1457, and significantly smaller than 53.2328 
and 186.5904 obtained for the ARIMA and QP, respectively. 
For the 6 h prediction duration, the value for the SL-LSTM 
method is 45.7252, which is slightly greater than that for the 
WNN (44.8904) and significantly smaller than the ARIMA 
and QP values of 132.4619 and 189.6142, respectively. 
Similarly, the results of the SL-LSTM method for Mean are 
basically the same as those for RMSE , indicating that the 
SL-LSTM method has no obvious advantage in short-term 
prediction accuracy over the WNN, but this method is still 
better than the ARIMA and QP. The SL-LSTM method also 
has no obvious advantage in evaluating the Range value, 
indicating the stability of the predicted results.

With an increase in the prediction time, the accuracy 
of the SL-LSTM method remains at a high level and is 

(14)RMSE =

n∑

i=1

1

n
∗ RMSE

(15)Mean =

n∑

i=1

1

n
∗ Mean

(16)Range =

n∑

i=1

1

n
∗ Range

obviously better than those of the other methods. Particularly 
for the 3 d prediction duration, the RMSE in units of 10–11 s 
for the SL-LSTM is 159.9000, which is obviously less than 
270.0857 achieved for the WNN (270.0857) and signifi-
cantly less than 2915.6619 and 382.7952 for the ARIMA 
and QP, respectively. Similarly, the results of the SL-LSTM 
for Mean are basically consistent with those for RMSE , 
and this method has obvious advantages in evaluating the 
Range value, which indicates the stability of the predicted 
results. These results show that the SL-LSTM method has 
a higher accuracy and stability in long-term prediction than 
the WNN, ARIMA, and QP methods.

Based on Table 5, it can be seen that, in terms of the 
precision and stability of the prediction results (RMSE), the 
proposed SL-LSTM method outperforms the other models 
in the five prediction durations (3 h, 6 h, 12 h, 1 d, and 3 d) 
for most GPS satellite clock types. Specifically, compared 
with the results of the WNN method, the average prediction 
RMSE of the SL-LSTM method improved by approximately 
−21.80, −1.85, 8.57, 2.27, and 40.79% compared with the 
results of the ARIMA method. The average prediction 
RMSE of the SL-LSTM method improved by approximately 
38.23, 65.48, 80.22, 85.18 and 94.51% compared with the 
results of the QP method, and the average prediction RMSE 
of the SL-LSTM method improved by approximately 82.37, 
75.88, 67.24, 45.71 and 58.22%.

Figure 12 shows the clock bias prediction trend varia-
tion, where the horizontal axis is the prediction time length 
(period), and the vertical ordinate values in panels (a–c) 

Fig. 12   Comparison of the SCB prediction results
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present the RMSE , Mean, and Range values, respectively. 
The SL-LSTM method can be used to predict the results 
of changes in the RMSE , Mean, and Range values with the 
prediction time minimum amplitude. The SL-LSTM method 
has better accuracy and stability than the other three meth-
ods, especially compared with the ARIMA method (blue 
line). There is a small gap between the WNN method (purple 
line) and the SL-LSTM method, which indicates that the 
neural network has significant advantages in clock bias pre-
diction, but the accuracy of the WNN predictions increases 
significantly with a continuous increase in the prediction 
duration. The prediction accuracy of the QP method is lower 
than those of the SL-LSTM and WNN methods. In addition, 
under the same experimental conditions, a 3 d prediction 
duration is taken as an example. For the WNN method, the 
whole process takes < 5 min, while the SL-LSTM method 
takes < 3 min, indicating that the time complexity of the SL-
LSTM method is less than that of the WNN method, and the 
SL-LSTM method is better than the WNN method.

Conclusion

Using the single difference sequence of clock bias as the 
research object and an improved MAD method after elimi-
nating gross error data, we propose a SL-LSTM network 
model based on an LSTM network and the basic principles 
of supervised learning. Our model is based on the single 
difference sequence of cyclic and random feature modeling 
and realization of the clock bias prediction function. We 
show that the SL-LSTM method can further improve clock 
bias prediction accuracy and stability through experimental 
comparison and analysis. In summary, our method has the 
following advantages:

(1) The prediction errors of traditional clock bias predic-
tion methods represented by the ARIMA and QP methods 
increase rapidly with an increase in the prediction time, 
while the SL-LSTM method has a significant advantage 
in controlling the accumulation of the prediction errors 
with the prediction time and is more suitable for medium- 
and long-term prediction.
(2) The proposed method has a high degree of reduction 
in the cyclic and random features of the clock bias, which 
is the key to further improving the prediction accuracy.
(3) An LSTM network is an effective tool for dealing 
with time series data. Addressing a typical time series 
data processing problem, we improve an LSTM network 
to realize the effective application of clock bias predic-
tion and achieve good results, and this work makes a 

beneficial attempt to further study the problem of clock 
bias prediction.

There are still some aspects of the method presented in 
this paper that need further study and improvement:

(1) The proposed method needs to be further studied 
in terms of short-term clock prediction accuracy and 
stability.
(2) The proposed method needs to be studied further for 
the training method of parameter selection optimization 
to further enhance the practical value of this method.
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