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Abstract
This study investigates the inertial stability properties and phase error of numerical time integration schemes in several 
widely-used ocean and atmospheric models. These schemes include the most widely used centered differencing (i.e., leap-
frog scheme or the 3-time step scheme at n-1, n, n+1) and 2-time step (n, n+1)  1st-order Euler forward schemes, as well as 
 2nd-stage and  3rd- and  4th-stage Euler predictor-corrector (PC) schemes. Previous work has proved that the leapfrog scheme 
is neutrally stable with respect to the Coriolis force, with perfect inertial motion preservation, an amplification factor (AF) 
equal to unity, and a minor overestimation of the phase speed. The  1st-order Euler forward scheme, on the other hand, is 
known to be unconditionally inertially unstable since its AF is always greater than unity. In this study, it is shown that  3rd- and 
 4th-order predictor-corrector schemes 1) are inertially stable with weak damping if the Coriolis terms are equally split to n+1 
(new value) and n (old value); and 2) introduce an artificial computational mode. The inevitable phase error associated with 
the Coriolis parameter is analyzed in depth for all numerical schemes. Some schemes (leapfrog and  2nd-stage PC schemes) 
overestimate the phase speed, while the others  (1st-order Euler forward,  3rd- and  4th-stage PC schemes) underestimate it. 
To preserve phase speed as best as possible in a numerical model, alternating a scheme that overestimates the phase speed 
with a scheme that underestimates the phase speed is recommended. Considering all properties investigated, the leapfrog 
scheme is still highly recommended for a time integration scheme. As an example, a comparison between a leapfrog scheme 
and a  1st-order Euler forward scheme is presented to show that the leapfrog scheme reproduces much better vertical thermal 
stratification and circulation in the weakly-stratified Great Lakes.

Keywords Inertial stability · Phase error · Great Lakes · Euler forward scheme · Centered differencing scheme · Predictor-
corrector scheme · FVCOM

1 Introduction

There are three types of numerical or computational stability 
issues associated with time integration and spatial-discre-
tization schemes in ocean and atmospheric general circula-
tion models. The first stability type is the well-known fast 
gravity wave stability, which usually applies to the external 
mode if a model is split into a fast gravity wave mode and 
a slow wave mode. The fast gravity wave constraint is the 
Courant-Friedrichs-Lewy (CFL) criterion, which is used to 
ensure that a linear model is stable (Beckers and Deleersni-
jder 1993; Wang 1996). The second stability type is linked 
to non-linear terms, often referred to as non-linear instability 
associated with spatial discretization. The non-linear insta-
bility is often controlled by the energy-conserving spatial 
numerical schemes (Wang 1996). The third stability type, 
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which is least known and therefore often overlooked, is the 
inertial instability associated with Coriolis parameter (f) as 
a result of Earth’s rotation (O’Brien 1986; Wang and Ikeda 
1997a). The inertial instability is associated with time inte-
gration schemes linking to the Coriolis terms, often in the 
external mode of the mode-split models (Beckers 1999). 
Although the CFL criterion (usually ranging from several 
to tens of seconds) is much stricter (smaller) than the time 
step constraint for inertial stability (i.e., |F|=|f|Δt≤1; Δt<104 
seconds), the inertial instability can still occur if the Corio-
lis terms are incorrectly discretized in time in a numerical 
scheme, leading to inconsistencies with the original physical 
system (i.e., differential equations). This inertial stability is 
not explicitly discussed in user’s manuals in most hydrody-
namic models, as if to imply that the models automatically 
or naturally meet the inertial stability criterion as long as 
the CFL criterion is met. Unfortunately, some widely-used 
models have issues with inertial instability that go unnoticed 
by novice users, creating substantial, propagating errors in 
f-related physical processes.

Wang (1996) proposed that global stability should be 
used to gauge the stability of a model, which includes the 
three types of stabilities mentioned above as well as any 
other physical constraints in a model (e.g., hmin+ζmax>0, 
where hmin is water depth and ζmax is surface water elevation 
along the coast). Wang and Ikeda (1997a) further defined 
that the inertial stability is constrained by both a numeri-
cal constraint (|F|=|f|Δt≤1, which is automatically met as 
long as the CFL criterion is met) and a physical constraint, 
such that the amplification factor (AF) or eigenvalue (𝜆) of
the discretized scheme must be equal to or less than unity, 
i.e., |𝜆|≤1, where |𝜆|=1 is defined neutrally stable and |𝜆|<1
is stable with damping. Using the inertial stability crite-
rion, Wang and Ikeda (1997a) found that the Euler forward 
scheme used in ECOM_si (Estuarine and Coastal Ocean 
Model with semi-implicit scheme, Blumberg 1991) is iner-
tially unstable, which was replaced with a stable 2nd-stage 
predictor-corrector scheme (Wang and Ikeda 1997b).

Nowadays, ocean and atmospheric models are made open 
to broad users. Users often take it for granted that all the 
released models are ready to be applied to their research and 
applications, without understanding the stability properties of 
the numerical schemes used in the models. It should be kept 
in mind that the substantial differences of geophysical fluid 
dynamics (GFD) from non-rotating ordinary fluid mechanics 
(OFM) are 1) rotation and 2) stratification. Particularly in the 
oceans, the vertical stratification is much stronger and more 
permanent, than in the atmosphere and freshwater lakes, where 
frequent deep convection can homogenize density stratifica-
tion. Rotation in the GFD not only leads to the challenge of 
inertial instability of a numerical scheme (O’Brien 1986; 
Wang and Ikeda 1997a, b), but also inevitably introduces 
phase error in any f-related waves such as inertial waves, 

coastal trapped waves, tides, Rossby waves, and large-scale 
planetary waves. Therefore, correct and accurate discretization 
of the Coriolis terms is essential for any models to reproduce 
realistic physical processes related to f. It is noted that spatial 
discretization also affects the wave properties, leading to error 
in phase and amplitude of a wave (Wang 1996). These pro-
cesses range from turbulence and small-scale mixing to inertial 
motion (Austin 2013) to large-scale planetary waves, because 
they all contain the Coriolis parameter. Therefore, a numerical 
scheme that is computationally stable in the non-rotating sys-
tem is not necessarily a stable scheme in the rotating system. 
In other words, stability, truncation error, and consistency of a 
stable numerical scheme in the non-rotating system (Lemarie 
et al. 2015) should be re-examined in the rotating system.

Since the 1990s, several ocean and atmospheric models were 
widely used, such as Princeton Ocean Model (POM, Blumberg 
and Mellor 1987), Regional Ocean Model System (ROMS, 
Song and Haidvogel 1994), MITgcm (Adcroft et al. 2009), 
Finite Volume Community Ocean Model (FVCOM, Chen et al. 
2013), Modular Ocean Model (MOM, Griffies et al. 2009) and 
Weather Research and Forecast Model (WRF, Skamarock et al. 
2008). However, some models introduce several new time inte-
gration schemes that were not discussed by Wang and Ikeda 
(1997a). For example, FVCOM uses 2-time step,  1st-order 
Euler forward scheme in the internal (slow wave) mode, and the 
 4th-stage Runge-Kutta scheme in the external (fast wave) mode. 
The ROMS and MITgcm also have several options for time inte-
gration schemes (Shchepetkin and McWilliams 2005), which 
include the leapfrog scheme (default), Euler forward scheme, 
and  3rd-stage Adams-Bashforth scheme.

In this paper, we focus only on the inertial instability and its 
associated phase error caused by the discretized differencing 
schemes, compared to their analytical (original continuum) 
solutions. The major purpose of this study is to investigate 
inertial instability (i.e., computational instability of the iner-
tial mode) of widely used time integration schemes and the 
related phase error associated with the Coriolis parameter. 
Though the phase error exists in all time-integration schemes, 
it can be minimized if we understand the sources of the error. 
Differences in integration scheme performance (and stability) 
are illustrated using FVCOM, with model results generated 
using the default  1st-order Euler forward scheme compared to 
those generated using a newly implemented  2nd-order leapfrog 
scheme in the Laurentian Great Lakes.

2  Inertial instability and diffusive behavior 
observed in the default schemes 
in FVCOM

Instability issues in FVCOM were first identified when 
implementing the model in the Laurentian Great Lakes. 
The model was run using default time integration schemes, 
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such that the external mode is solved using a  4th-stage 
Runge-Kutta scheme and the internal mode is solved using 
a  1st-order Euler forward scheme. The realistic 5-lake 
model simulation was forced using 3-hourly NARR (North 
American Regional Reanalysis) atmospheric data with a 
cold start on January 1, 1995 where u=v=0 and T=2oC 
everywhere. Although the model was able to reproduce 
reasonable, albeit overly diffuse, surface temperatures in 
each lake, physically unrealistic oscillations were observed 
in near-surface currents throughout the year. Instability 
was especially pronounced in the stratified period (Fig. 1; 
day 182, 241), when simulations showed high-speed cur-
rent “fronts” propagating across the deeper waters of Lakes 

Superior, Michigan, Huron, and Ontario. Importantly, 
modeled current speeds and directions were inconsistent 
with weak atmospheric forcing, and oscillations did not 
match well-established lake seiche periods or structures. 
Simulated oscillations were only suppressed in especially 
shallow waters, like Lake Erie (mean depth: 19m), where 
bottom friction was able to dampen inertial instabilities. 
Model results highlighted significant flaws in FVCOM 
parameterizations, motivating additional work to identify 
and correct issues with the default model framework.

Model instability is commonly addressed by increas-
ing the vertical and horizontal viscosity, which effectively 
stabilizes the model by dampening spurious current and 

Fig. 1  Simulated lake surface 
temperature superimposed with 
lake currents at 10m. Examples 
of artificially amplified inertial 
currents (i.e., unstable inertial 
motion) are shown for day 182 
(June 2; upper panel) and day 
241 (August 30; lower) in 1995
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temperature oscillations. While this method is effective, it 
leads to unrealistically high mixing rates, and the viscosity 
required for stabilization may even be larger than physically 
permitted. Viscosity stabilization also leads to “smearing” 
of physical processes, reducing (or eliminating) physically 
meaningful temperature and current gradients. This issue 
is especially problematic in permanently stratified oceans, 
where strong density gradients control many physical and 
biogeochemical processes. Instead of using excessive viscos-
ity to treat the symptoms of model instability, the underlying 
cause of the instabilities should be addressed directly. Here, 
we hypothesize that instabilities observed in FVCOM are 
driven by unstable time integration schemes, which manifest 
as computational instability in the inertial mode.

This hypothesis was tested using an idealized FVCOM 
simulation in Lake Erie. The model was initialized with 
homogeneous temperature (4 °C) and current (u=v=0) fields 
and external forcing was limited to heat flux (~80  Wm-2) 
in a circular area in the central basin (Fig. 2a). As such, 
buoyancy with inertial motions was the driving force in the 
development of horizontal velocity fields. Two model runs 
were conducted for 40 days under the same thermal forc-
ing with both the default (Fig. 2b) and leapfrog (Fig. 2c) 
scheme. The difference between the default and leapfrog 
time integration schemes (Fig. 2d) shows obvious warming 
inside the circle, while along the edge of the circle warming 
and cooling are alternative. The result indicate that default 
integration schemes produce overly diffusive behavior in 
temperature (Fig. 2d), which may be directly linked to the 

truncation error, as will be discussed shortly in “Application 
to the Great Lakes: Improving vertical thermal stratification” 
and Appendix C. Below, we provide a theoretical analysis 
of the inertial stability of various time integration schemes 
“Theoretical analysis of inertial stability”, culminating in a 
recommendation to use the leapfrog scheme to improve iner-
tial stability. The leapfrog scheme is then applied to FVCOM 
simulations in the Great Lakes “Application to the Great 
Lakes: Improving vertical thermal stratification”, followed 
by a proposed phase error correction “Proposed phase error 
correction” and study conclusions “Conclusions and future 
efforts”.

3  Theoretical analysis of inertial stability

To reveal the inertial instability in time integration schemes, 
we introduce a well-known, simplified, pure inertial oscil-
lation equations (system), which are imbedded in both 2D 
and 3D shallow equations, with no viscosity (or friction) as 
follows:

or

(1)
�u

�t
− fv = 0,

�v

�t
+ fu = 0

(1’)
�w

�t
+ ifw = 0

Fig. 2  Simulated Lake Erie 
temperature distribution on 
day 40 using the default (b) 
and leapfrog (c) schemes 
of FVCOM, and the differ-
ence between the default and 
leapfrog schemes (c) with an 
idealized warming of 80W/m2) 
on the circle (a).
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where w=u+iv, a complex velocity with i2=-1 and f is the 
Coriolis frequency (=2Ωsinφ~10-4 s-1, where φ is the lati-
tude and Ω=7.292x10-5 s-1). The reasons we chose this pure 
inertial model are 1) this inertial model is embedded in the 
2-D shallow water equations and the 3-D Reynolds stress-
averaged geophysical fluid dynamic system, 2) the analytical 
solution is known and can be objectively compared to the 
differencing equations, and 3) unlike the advection-diffusion 
equation, the pure inertial system has no dissipation (friction 
or viscosity) so it can be used to examine time integration 
schemes in an accurate manner.

The exact solution to Eq. 1 is

The amplitude of the exact solution is always unity 
with no viscosity, i.e. |w(t)|=√[u(t)2+v(t)2]≡1. This is 
the true criterion to gauge any time integration scheme 
in the differencing equations used by ocean and atmos-
pheric models with Coriolis force (i.e., in a rotating sys-
tem) (Wang and Ikeda 1997a). Therefore, if a numeri-
cal scheme discretizing (partial differential equations, 
PDEs) dynamic system (1) preserves the inertial motion 
with an amplitude of unity (i.e., AF=1), it is defined 
as neutral inertial stability. If the AF for a numerical 
scheme is less than unity, it is defined as a stable scheme 
with numerical damping and if AF is larger than unity, it 
is defined an unstable scheme for the inertial oscillatory 
(rotational) system.

It must be pointed out that the inertial wave frequency 
is f, irrespective of the wave numbers; thus, it is a non-
dispersive wave. Therefore, theoretically, under no viscos-
ity condition, the clockwise (anticyclonic) inertial wave/
motion [Eq. (1)], once it is excited, will continue forever 
with unity amplitude. Therefore, the discretized numerical 
scheme of Eq. (1), under no viscosity condition, should 
preserve both the inertial motion without decaying and the 
non-dispersive property.

Wang and Ikeda (1997a) have investigated the inertial 
instability and phase error of a pure inertial motion with 

(2)(u, v) =
[
cos(ft),− sin(ft)

]
, or w = e−ift

a linear friction (dissipation) using a centered differencing 
scheme, first-order Euler schemes, and second-stage predic-
tor-corrector schemes. The results can be applied to a pure 
inertial system without friction by simply removing the fric-
tion terms. Since these three schemes have been investigated 
in depth in Wang and Ikeda (1997a) and Durran (2010), they 
will not be repeated here. However, for the sake of complete-
ness and comparison, we list these schemes in Table 1, 2, 
3, 4 and 5 and use the results for comparison throughout 
this study.

3.1  Third‑stage Euler forward predictor‑corrector 
scheme

In the default scheme of FVCOM, Euler forward, two-time 
stepping (n+1, n),  3rd- or  4th-stage Runge-Kutta scheme is 
used in the external mode with Coriolis terms placed at time 
step n. Since Rung-Kutta scheme (along with Adams-Bash-
forth scheme) belongs to the same family of the predictor-
corrector scheme, we use the simplified predictor-corrector 
scheme applied to pure inertial system (1) to reveal the sta-
bility property of FVCOM.

The derivation of stability analysis is shown in detail in 
Appendix A. If β=0, 1/2, and 1, the amplification factor (AF, 
i.e., eigenvalue, λ) becomes

The  3rd-stage Euler forward scheme (β=0) has an unsta-
ble error growth rate of 1+F2/2, equivalent to the  1st-order 
Euler forward scheme described in Wang and Ikeda 
1997a, see their Fig. 8) and Table 2, since it uses the same 
old value (at n) for its corrector scheme. When β=0.5, 
unlike the  2nd-stage Euler centered scheme (Table 2), the 
 3rd-stage Euler centered scheme is stable with a weak 
dampening and AF decreasing to ~1-F4/8, which clas-
sifies the  3rd-stage Euler centered (β=0.5) scheme as a 

(3)

∣ λ1,2 ∣=

⎧⎪⎨⎪⎩

√
1 + F2 ≈ 1 +

1

2
F2 > 1, β = 0√

1 − F4∕4 + F6∕16 ≈ 1 −
1

8
F4 < 1, β = 0.5√

1 − F2 − F4 + F6 ≈ 1 −
1

2
F2 < 1, β = 1

Table 1  The names of the most commonly used ocean and atmospheric general circulation models, their time difference schemes, and the man-
ners of discretizing the Coriolis term, f 

Name of the models References Time-differencing scheme/the Coriolis term, f

POM;
ROMS;
HICOM;
MOM
(Wang and Ikeda 1997a)

Blumberg and Mellor (1987); Song and Haidvogel (1994); 
Bleck et al. (2002); Griffies et al. (2009)

Centered/leapfrog differencing:
un+1−un−1

2Δt
− fvn = 0, v

n+1−vn−1

2Δt
+ fun = 0

FVCOM Chen et al. (2013) Internal mode: 2-time step Euler forward:
un+1−un

Δt
− fvn = 0, v

n+1−vn

Δt
+ fun = 0,

External mode:  3rd or  4th-stage Runge-Kutta
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stable scheme. In other words, in a rotating system, the 
 3rd-stage predictor-corrector (PC) scheme is better than the 
 2nd-stage Euler PC scheme in terms of accuracy, although 
inertial waves are slightly dampened with this scheme. 
When β=1, similar to the  2nd-stage scheme (Table 2), the 
AF of the  3rd-stage Euler backward scheme is smaller than 
unity; the scheme is stable but with significant dampening 
of the inertial waves.

The phase error due to this scheme can be expressed as, 
by inserting (20) to (16),

Note that, similar to the  2nd-order centered/leapfrog 
schemes (Table 2), the  3rd-stage predictor-corrector scheme 
also introduces a computational mode, as shown in Eq. (20) 
and Eq. (4). This computational mode adds a weakness to 
the  3rd-stage predictor-corrector scheme, which should be 
controlled numerically using a frequency filter similar to the 
Robert-Asselin-William (RAW) filter (Asselin 1972; Wil-
liams 2009).

(4)
�1,2

−f
=

∓1

F
arc tan

[
F
(
1 − β2F2

)
1 − �F2

]

Figure 3 shows the normalized inertial wave frequency 
(ω1, physical solution; Fig. 3a) versus F=f∆t . Both forward 
(β=0) and backward (β=1) schemes produce slower fre-
quency, and the centered scheme (β=0.5) has a much better 
fit to the exact solution, although still slightly slower than the 
exact solution. The unphysical computational mode is just 
symmetric to the physical solution, but around the line of -1 
(Fig. 3b), indicating that the artificial waves rotate cycloni-
cally (opposite to the physical solution). Figure 4 shows 
the inertial wave frequencies for both physical (ω1, physi-
cal solution) and computational (ω2, non-physical solution) 
modes for the centered scheme (β=0.5). Therefore, a filter, 
similar to the RAW filter discussed above, should be applied 
to control non-physical waves and avoid non-physical modes 
ruining the physical solution, further discussion of which is 
beyond the scope of this paper.

3.2  Fourth‑stage Euler predictor‑corrector scheme

The derivation of the stability analysis is shown in Appendix 
B. When β=0, 0.5, and 1, the AF becomes

Table 2  A summary of inertial stability and phase errors of different time integration schemes for inertial oscillation, F=fΔt, where f is the 
Coriolis parameter, and Δt is the time step for model integration

Time integration scheme AF, modulus of eigenvalue, |𝜆|, of inertial
motion. β=0, 0.5, and 1 is the Euler forward, 
centered, and backward scheme, respectively.

Inertial stability 
feature

Artificial 
comput. 
mode?

Normalized phase fre-
quency ω/(-f); O: Overes-
timate, U: Underestimate

Centered differencing, leapfrog
(Wang and Ikeda 1997a; Durran 

2010)

∣λ1, 2 ∣ ≡1 Neutral Yes ω1,2/(-f) =
±1

F
arc tan

F√
1−F2

;
Overestimate

Euler forward scheme
(Wang and Ikeda 1997a; Durran 

2010) �𝜆� =
⎧⎪⎨⎪⎩

�
1 + F2

� 1

2 > 1, if 𝛽 = 0

1, if 𝛽 = 0.5�
1 + F2

�− 1

2 < 1, if 𝛽 = 1   

Uncond. Unstable,
Neutral,
Damping

No ω/(−f)=
1

F
arc tan

[
F

1−�(1−�)F2

]
;

Underestimate

2nd-stage Euler forward PC 
scheme

(Wang and Ikeda 1997a) �𝜆� =

⎧⎪⎪⎨⎪⎪⎩

√
1 + F2 ≈ 1 + F2∕2 > 1, if 𝛽 = 0√
1 + F4∕4 ≈ 1 + F4∕8 > 1, if 𝛽 = 0.5√
1 − F2 + F4∕4 ≈ 1 −

F2

2
< 1, if 𝛽 = 1,

1, if 𝛽 = 0.5 + F2∕8   

Uncond. unstable,
Weakly unstable,
Damping,
Neutral

No ω/(−f)=
1

F
arc tan

(
F

1−�F2

)
;

β=0: Underestimate;
β=0.5, 1: Overestimate

3rd-stage Euler forward PC 
scheme �λ1,2 ∣=

⎧
⎪⎪⎨⎪⎪⎩

√
1 + F2 ≈ 1 +

1

2
F2 > 1, β = 0�

1 − F4∕4 + F6∕16 ≈ 1 −
1

8
F4 < 1, β = 0.5√

1 − F2 − F4 + F6 ≈ 1 −
1

2
F2 < 1, β = 1

  

Uncond. unstable,
Weakly damping,
Damping

Yes ω1,2/(-f) =
∓1

F
arc tan

F(1−β2F2)
1−�F2

;
Underestimate

4th-stage Euler forward PC 
scheme �λ1,2 ∣=

⎧
⎪⎪⎨⎪⎪⎩

√
1 + F2 ≈ 1 + F2∕2 > 1, β = 0�

1 −
1

16
F6 +

1

32
F8 ≈ 1 −

F6

32
< 1, β = 0.5√

1 − F2 + F4 ≈ 1 −
1

2
F2 < 1, β = 1

  

Uncond. unstable,
Weakly damping,
Damping

Yes ω1,2/(-f) =
∓1

F
 arc tan F(1−�2F2)

1−� F2+�3F4
;

Underestimate
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It is noted that the  4th-stage Euler forward scheme (β=0) 
has an unstable error growth rate of 1+F2/2, identical to the 
 1st-order Euler forward scheme shown in Table 2, which uses 
the same old value (at n) for its predictor and corrector steps. 
When β=0.5, the  4th-stage Euler centered scheme is stable, 
similar to the  3rd-stage scheme, but with weaker dampen-
ing than the  3rd-stage scheme since the AF decreases to 
~1-F6/32. When β=1, the AF of the  4th-stage Euler backward 

(5)��λ1,2�� =
⎧
⎪⎨⎪⎩

√
1 + F2 ≈ 1 + F2∕2 > 1, β = 0�
1 −

1

16
F6 +

1

32
F8 ≈ 1 −

F6

32
< 1, β = 0.5√

1 − F2 + F4 ≈ 1 −
1

2
F2 < 1, β = 1

scheme is smaller than unity (i.e., stable) but always with 
significant dampening of the inertial waves.

In a similar way, we obtain two frequency roots by insert-
ing (31) to (16):

with the normalized phase error defined as

Note that the second mode is a computational mode, similar 
to that produced by the leapfrog scheme and the  3rd-stage Euler 
scheme (Table 2). Figure 5 shows the normalized inertial wave 
frequency (ω1, physical solution; Fig. 5a) versus F=fΔt. Both for-
ward (β=0) and backward (β=1) schemes produce slower phase 
speeds, particularly for the Euler backward scheme. The cen-
tered scheme (β=0.5) has a much better fit to the exact solution, 
although still slightly slower than the exact solution. The unphysi-
cal mode is symmetric to the physical solution, but around the 
line of -1 (Fig. 5b). Figure 6 shows the inertial wave frequencies 
for both physical (ω1) and computational (ω2, non-physical) solu-
tions for the centered scheme only (β=0.5). Therefore, a filter, 
similar to the RAW filter, should be applied to remove non-phys-
ical waves and prevent the non-physical solution from ruining the 
physical solution, which is beyond the scope of this paper.

Figure 7 summarizes the physical frequencies from 
all five schemes with β=0.5. Both the leapfrog and 
 2nd-stage Euler PC schemes (Wang and Ikeda 1997a) 
overestimate the phase frequency. While the  1st-order 

(6)�1,2 = arc tan

[
±F

(
1 − �2F2

)
1 − � F2 + �3F4

]

(7)�1,2∕(−f ) =
∓1

F
arc tan

[
F
(
1 − �2F2

)
1 − � F2 + �3F4

]

a)

b)
3rd-stage predictor-corrector Euler ꞷ

3rd-stage predictor-corrector Euler ꞷ

Fig. 3  The normalized frequencies of the  3rd-stage predictor-corrector 
(PC3) scheme for β=0 (forward), 0.5 (centered), and 1 (backward) 
(which is the ratio of frequency of the differencing scheme to that of 
the exact solution) against F. The values lower (higher) than the solid 
line (ω/(-f)=1) indicate the under- (over-) estimation by the numeri-
cal scheme. Note that the negative values indicate the waves rotating 
cyclonically, in the opposite direction to the true waves rotating anti-
cyclonically. The upper (lower) panel shows the physical (artificial 
numerical) solution

3rd-stage predictor-corrector Euler 

Fig. 4  Same as Fig. 3, except for both physical (rotating anticycloni-
cally) and artificial computational (rotating cyclonically) solutions for 
β=0.5 (centered) only



414 Ocean Dynamics (2023) 73:407–429

1 3

Euler centered (Wang and Ikeda 1997a) and  4th-stage 
Euler centered schemes underestimate the phase fre-
quency, the  3rd-stage centered Euler scheme produces 
a relatively better phase frequency than the other two, 
although with a slight underestimation.

4  Application to the Great Lakes: Improving 
vertical thermal stratification and 
circulation

The hydrodynamic model used in this study is based on the 
unstructured grid FVCOM (Chen et al. 2013), version 3.1.6. 
FVCOM solves the primitive equations using the model 
splitting method: The external mode solves vertically inte-
grated transport equations in which water elevation is solved 
explicitly using a shorter time step, while the internal mode 
solves 3-D governing equations using a longer time step. 
Both internal and external modes include the Coriolis terms, 

differing from Princeton Ocean Model (POM; Blumberg and 
Mellor 1987) in which the Coriolis terms are applied only 
to external mode.

FVCOM solves the flux form of the governing equations 
in unstructured triangular volumes using a discrete-flux 
scheme following the finite volume approach. This model 
was applied to simulation of Great Lakes circulation and 
ecosystem using excessive vertical mixing (Luo et al. 2012; 
Bai et al. 2013; Rowe et al. 2015; Anderson et al. 2018)

The default time integration schemes in FVCOM are 
the  4th-stage (modified) Runge-Kutta (RK4) method for 
the external mode, and the  1st-order Euler forward scheme 
with the Coriolis terms discretized at time n for the inter-
nal mode. As mentioned above, the Euler forward scheme 
(Tables 1 and 2; Wang and Ikeda 1997a) is inertially uncon-
ditionally unstable, because the AF (or the eigenvalue of the 
differencing equations) is always greater than one: |𝜆|=1+
f2Δt2>1. The Euler forward scheme can be made stable by 
using excessively high viscosity, which, nevertheless, can 
smooth all the realistic physical phenomena such as mes-
oscale eddies (Wang and Ikeda 1997b). Similarly, very large 
diffusivity coefficients can diffuse horizontal and vertical 
thermohaline structures such as vertical stratification and 
ocean fronts (Luo et al. 2012; Bai et al. 2013). Therefore, in 
addition to keeping the original default schemes untouched, 
we implemented the centered differencing (leapfrog) scheme 
with the RAW filter (Beletsky and Schwab 2001; Wang et al. 
2010; Fujisaki et al. 2012, 2013; Dupont et al. 2012) to both 
modes of FVCOM (Fujisaki-Manome and Wang 2016) 
because both modes in FVCOM suffer inertial instability. 
Therefore, both modes in the modified version have neutral 
inertial stability, and the improvement affects both internal 
(baroclinic flow) and external (barotropic flow) mode.

a)

b)

4th-stage predictor-corrector Euler ꞷ

4th-stage predictor-corrector Euler ꞷ

Fig. 5  Same as Fig. 3, except for the  4th-stage Euler (PC4) scheme for 
β=0 (forward), 0.5 (centered), and 1 (backward)

4th-stage predictor-corrector Euler 

Fig. 6  Same as Fig.  5, except for both physical solution (rotating 
anticyclonically) and artificial computational mode (rotating cycloni-
cally) for β=0.5 (centered) only
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Note that both FVCOM and POM use mode-split 
approach. However, POM includes the Coriolis terms only in 
the external mode, while FVCOM applies the Coriolis terms 
to both external and internal modes. If numerical schemes 
are stable, the physical processes can be reproduced with 
both POM and FVCOM, because the adjustment between 2D 
and 3D systems is conducted for each time step. However, 
the default schemes are inertially unstable in both modes in 
FVCOM, smaller internal and external time steps must be 
used, along with excessive viscosity, to avoid model blowup. 
This is why the common ratio of the external to internal 
time step is ~10 in the default schemes, while ~20 in the 
leapfrog scheme.

Thus, in this work, FVCOM was modified such that the 
model could be run using one of two different time inte-
gration schemes: (1) the default schemes or 2) the leapfrog 
scheme proposed above.

The modified FVCOM with centered differencing has 
been successfully applied to the Great Lakes and coastal 
ocean with validation using measurements (Wang et al. 
2015; Bai et al. 2020; Cannon et al. 2023, this issue). Can-
non et al. (2023) ran this revised FVCOM with the leap-
frog scheme, coupled with an ice model, from 1979 to 2021 
without any data nudging and assimilation, unlike Xue et al. 
(2017) and many others who nudged observed water tem-
perature to the model temperature.

Figure 8 shows the simulated vertical temperature profiles 
over a seasonal cycle of 1998 in south central Lake Michigan 
under the 3-hourly forcing of North America regional rea-
nalysis (NARR). The observed temperature shows a strong 
thermocline with a mixed layer depth around 20m (Fig. 8a). 
Using the default schemes of FVCOM (RK4 scheme for the 
external mode and the  1st-order Euler forward scheme for the 
internal mode), the temperature profile drifts significantly 

away from the measurement (Fig. 8b) with a single year of 
simulation. This can be attributed excessively large verti-
cal and horizontal viscosity produced in the turbulence clo-
sure models to dampen the inertial instability (Wang and 
Ikeda 1997b) and first-order truncation error induced by the 
first-order Euler forward scheme in the internal mode. The 
truncation error is the physically meaningful bi-harmonic 
viscosity (mixing), as shown in Appendix C. The excessive 
viscosity then destroys the intensified (physical) thermo-
cline. This is why the temperature structure disperses over 
both the time and with depth (i.e., the entire water column). 
Indeed, the thermocline is nearly destroyed, and the upper 
mixed layer depth is very small or shallow--less than 5m. 
Figure 8c shows the same simulated temperature, but with 
the centered differencing scheme in both internal and exter-
nal modes, similar to POM and ROMS. It is clear that the 
centered differencing scheme reproduces much better tem-
perature structure and stronger thermoclines than the origi-
nal default schemes, even though the modelled thermocline 
steepness is still slightly weaker than observations. Figure 8c 
compares very well with the measurement (Fig. 8a), while 
default schemes destroy the stratification with diffusive ver-
tical temperature structure, i.e., weak vertical temperature 
stratification.

We ran the five-lake model (Bai et al. 2013) with both 
default and centered differencing schemes from 2012-2018 
with no ice. The setting and forcing (NARR) remain identi-
cal in both cases, except for the different time integration 
schemes. Vertical viscosity was calculated using the 2.5 tur-
bulence closure model, while the horizontal viscosity was 
calculated using the Smagorinsky parameterization.

Figure 9 shows seasonal average lake surface tempera-
tures (LST) for summer and autumn in 2015 (Fig.  9a) 
modeled using both schemes. Both simulated LST distri-
butions look similar. However, the difference between the 
default schemes and the leapfrog scheme for all four sea-
sons (Fig. 9b) shows that the Euler forward scheme produces 
significant larger warming in spring and summer across all 
five lakes. Maximum warming occurs in summer, with dif-
ferences as high as 2 – 2.5 oC, in deep waters. In autumn, 
warming produced by the default schemes occurs in deep 
waters and cooling occurs in shallow waters. The default 
schemes produce excessive cooling up to 1.5oC in winter, 
compared to the leapfrog scheme, indicating that the default 
schemes reproduce excessive ice in winter due to the cold 
bias.

To validate the difference between the default schemes 
and leapfrog scheme with no surface wind-wave mixing, we 
chose a thermistor chain mooring deployed in western Lake 
Superior (see the western mooring in Fig. 1 of Titze and 
Austin 2014; Austin and Elmer 2021) during May to Decem-
ber 2012. The observed temperature structure shows that the 
summer mixed layer depth is ~25m, and the thermocline is 

All schemes ( ꞷ where applicable)
1st-order Euler
Leapfrog
2nd-stage
3rd-stage
4th-stage

Fig. 7  Enlarged comparison (between  10-1<F<100=1) of phase fre-
quencies of all physical solutions in the numerical schemes discussed
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located between 25 and 40m (Fig. 10a). The model with the 
leapfrog scheme reproduces a similar mixed layer (depth: 
~20m) and thermocline thickness (20 - 30m) with no wave 
mixing (Fig. 8b).

Temperature differences between each scheme and 
the observations are shown in Figure  10(c, d). The 
default schemes produce excessive warming not only 
in the upper layer, but also in the lower layer (Fig. 10c), 
while the leapfrog scheme produces warming only in 
the upper layer (Fig. 10d). The upper layer warming 
is likely due to heat flux calculations, while the lower 

layer warming observed with the default schemes is 
linked to scheme truncation error that is equivalent 
to bi-harmonic mixing, as shown in Appendix C. This 
indicates that the mass is not conserved in the default 
schemes, as shown in Appendix C.

Figure 11 shows the simulated 10-m current distribution 
using the leapfrog scheme on day 182 and 241 of 1995, 
which can be vividly compared to the simulation using the 
default schemes shown in Fig. 1. The inertial instability 
disappears in Fig. 11, because the leapfrog scheme is of 
neutrally inertial stability and of second order accuracy 
in time that does not produce numerical viscosity. The 
systematic validation of lake circulation, thermal structure 
using both satellite and in-situ measurements can be found 
in Bai et al. (2013), Li et al. (2021), and Cannon et al. 
(2023, this issue).

5  Proposed phase error correction

When considered in conjunction with Wang and Ikeda 
(1997a), the above investigation suggests that the Coriolis 
parameter used in the shallow water equations (i.e., in a 
rotating system) inevitably introduces phase errors during 
model integration, regardless of integration schemes. The 
differencing equations produce phase errors due to discre-
tization at every time step of model integration (O’Brien 
1986; Zhang et al. 1987; Wang and Ikeda 1997a; Durran 
2010), with errors accumulated (and compounded) over the 
entire model run duration. The true frequency, f, of a non-
dispersive inertial wave is strictly held in the corresponding 
differential equations. Thus, phase error resulting from any 
numerical schemes should be minimized.

To make a quantitative comparison, Table 3 shows 
the relative phase error associated with Coriolis fre-
quency (f) in the following form: [ω1,2/(-f)-1]x100 (%). 
The negative (positive) values indicate that the phase 
of a numerical scheme is slower (faster) than the true 
inertial frequency. It is clear that the phase derived from 
the Euler forward scheme, PC3, and PC4 schemes is 
slower than the physical solution, while leapfrog and 
 2nd-stage PC schemes produce faster phase speeds than 
the physical solution.

Generally speaking, a coastal ocean model time step 
ranges from a few to tens of seconds in the external model 
(fast wave), and ~100 seconds in the internal mode. Thus, 
we take these two time steps, Δt=10s and 100s, as illustra-
tive examples. When Δt=10s, phase error produced by the 
leapfrog and PC2 schemes is +2x10-5 %, which is twice 
that derived from the Euler PC3 and PC4 schemes (-1x10-

5%). Similarly, when Δt=100s, error produced by both the 
leapfrog and PC2 schemes is again double that derived from 
the Euler forward, PC3, and PC4 schemes (+1.67x10-3 % vs 

a

c

b

Fig. 8  Time-depth temperature time series of 1998 in southern cen-
tral Lake Michigan (at mooring CM1): (a) Observation in 1998 
(Anderson et al. 2021); (b) FVCOM model simulation with its origi-
nal default schemes: Euler forward scheme in the internal mode, and 
 4th-stage Runge-Kutta scheme in the external mode; (c) FVCOM 
model simulation with leapfrog scheme
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-0.83x10-3 %). This relative error is two orders of magnitude 
larger than that when Δt=10s. The same feature can be seen 
when Δt=1000s, and so on and so forth.

The phase error can significantly affect simulation results, 
especially for simulations of physical processes associated 
with the inertial frequency, including currents, tides, storm 
surges, and Rossby waves. When a model uses the leapfrog 
and PC2 schemes (see Fig. 5, and Wang and Ikeda 1997a), 
the phases (exemplified by peaks and troughs) of these 
waves are always faster than the observed waves. Contra-
rily, when a model uses the Euler forward, PC3, or PC4 
schemes, the phases of these waves are always slower than 
the observed waves (see Fig. 8 of Rowe et al. 2015). Based 
on Table 3, phase error in PC3 is almost identical to PC4 
when Δt<400 s. As Δt increases, the phase error in PC3 is 

smaller than that in PC4. As to AF, although PC4 is more 
accurate than PC3 (F2: 1-F6/32<1 vs. 1-F4/8<1), with each 
performing as weakly damping schemes, the accuracy of 
PC3 is sufficient for most model applications. For example, 
if Δt=100s, F=10-2; then PC3’s AF=1-F4/8≈1-10-7, while 
PC4’s AF=1-F6/32≈1-10-13. Therefore, considering both AF 
and phase error, PC3 schemes are advantageous compared 
to PC4. Another benefit of the PC3 scheme is that the PC3 
schemes save one-step calculation and storage compared to 
PC4.

In order to cancel the (faster) phase error introduced by 
the leapfrog scheme, Ford et al. (1990) and Wang (1998) 
alternatively used the Euler backward scheme once after 
every 20 steps of integration using the leapfrog scheme to 
slow down the phase of tidal waves and current. The idea 

Fig. 9  FVCOM-simulated lake 
surface temperature (LST) using 
default (Euler forward) scheme 
(upper panel of Fig. 8a) and 
leapfrog scheme (lower panel 
of Fig. 8a) in summer (JAS) 
and autumn (OND). The LST 
difference between the default 
schemes and the leapfrog 
scheme in four seasons (Fig. 9b)
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is to correct the wave phase that is accelerated using the 
leapfrog scheme by the Euler scheme that slows down the 
wave phase. Although data assimilation methods are widely 
used to correct the model behavior toward the observation, 
it is highly recommended that before using data assimila-
tion to constrain a model, the model should be physically 
correct and numerically accurate. The physical correctness 
includes model parameters, mixing schemes, and param-
eterizations of some sub-scale physical processes, etc. The 
numerical accuracy should include a very basic principle, 
that is, the model should be neutrally stable or least damp-
ing. If a model cannot reproduce basic ocean circulation, 
temperature and salinity structure, including stratification 
and fronts, without data assimilation (i.e., the model has 

strong drift away from the observation), then the model must 
be either extremely dissipative (AF<1) or unstable (AF>1). 
In other words, if a model is unable to accurately reproduce 
basic circulation, temperature and salinity structure without 
the help of a strong data assimilation (i.e., nudging), then the 
model should not be used for a forecast system before both 
physical correctness and numerical accuracy in the model 
are guaranteed.

A possible application of Table 3 is to program an exist-
ing model to reduce the phase error. For example, if a model 
uses a PC3 scheme for the time integration at Δt=100s 
for 20 time steps, which slows down the wave phase by 
-0.00083%x20=-0.0166%, one can alternatively use a PC2 
scheme for the time integration in a single time step with 

Fig. 10  a) Observed water tem-
perature during May 12-Decem-
ber 12, 2012 in Lake Superior; 
b) FVCOM-simulated lake tem-
perature using leapfrog scheme; 
Lake temperature difference c) 
between the default (Euler for-
ward) schemes and observation, 
and d) between the leapfrog 
scheme and observation
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Δt=300s to correct the phase error because the wave phase 
is accelerated in the PC2 scheme by 0.015%. Alternatively, if 
a model uses the second-order leapfrog scheme for the time 
integration at Δt=100s for 10 time steps, which accelerates 
the wave phase by 0.00167%x10=0.0167%, then one uses 
the first-order Euler centered scheme for the time integra-
tion once at Δt=400s to correct the phase error because the 
wave phase is slowed down in the Euler centered scheme by 
-0.0133%. This latter method was previously employed by 
both Ford et al. (1990) and Wang (1998).

If an ocean tidal model is run for one day continuously 
without any correction (or data assimilation) using the 
Euler forward (PC3 or PC4) scheme with ∆t=100 seconds, 
the simulated wave phase would have a 51 second (~1 
minute) lag to the observed tidal wave. In a similar way, 
if an ocean model with an Euler forward (PC3 or PC4) 
scheme is used to simulate ocean circulation with mes-
oscale eddies (i.e., Rossby waves), the propagation of the 

eddies would have a 51 second lag to the observed eddies 
over a one-day simulation. That means that one-month 
simulations would cause 25 minutes of lag, and one-year 
simulations would result in about 5 hours of lag. The phase 
lag would become more serious by accumulation if the 
model is spun up for 10 years (50 hours of lag) and applied 
to predict or project multi-year and decadal conditions of 
ocean circulation with mesoscale eddies.

To provide more possible options for using Euler for-
ward and backward schemes, Table 4 and Table 5 provide 
the phase errors when β=0, and β=1, respectively vs leap-
frog scheme. One can use these alternative schemes to 
minimize the phase error in the model simulations.

In summary, a model with inertial instability cannot 
simulate correct dynamic phenomena, since the model 
always needs excessive numerical viscosity to stabilize the 
simulation, which would drift away from the observation. 
Similarly, to run a model without correcting the phase, the 

Table 3  A summary of the 
dependence of phase errors 
of different time integration 
schemes on time step for inertial 
oscillation for the  1st-order 
Euler centered (β=0.5),  2nd-
order centered (leapfrog) 
differencing schemes, PC2, 
PC3, and PC4: F=fΔt, where f 
is the Coriolis parameter (taken 
 10-4  s-1), and Δt (in seconds) 
is the time step for each model 
integration. The error is given 
by the normalized error, ω/(-f), 
relative to the true solution, 1, 
i.e., [ω/(-f) -1]x100 %. Positive 
(negative) values indicate the 
faster (slower) phase speed than 
the exact solution

F Δt Euler Leapfrog PC2 PC3 PC4
β=0.5 β=0.5 β=0.5 β=0.5

0.0001 1 -0.0000001 0.0000002 0.0000002 -0.0000001 -0.0000001
0.0005 5 -0.0000021 0.0000042 0.0000042 -0.0000021 -0.0000021
0.001 10 -0.00001 0.00002 0.00002 -0.00001 -0.00001
0.002 20 -0.00003 0.00007 0.00007 -0.00003 -0.00003
0.003 30 -0.00007 0.00015 0.00015 -0.00007 -0.00008
0.004 40 -0.00013 0.00027 0.00027 -0.00013 -0.00013
0.005 50 -0.00021 0.00042 0.00042 -0.00021 -0.00021
0.006 60 -0.0003 0.0006 0.0006 -0.0003 -0.0003
0.007 70 -0.00041 0.00082 0.00082 -0.00041 -0.00041
0.008 80 -0.00053 0.00107 0.00107 -0.00053 -0.00053
0.009 90 -0.00067 0.00135 0.00135 -0.00067 -0.00068
0.01 100 -0.00083 0.00167 0.00167 -0.00083 -0.00083
0.02 200 -0.00333 0.00667 0.00667 -0.00333 -0.00333
0.03 300 -0.0075 0.01501 0.015 -0.00749 -0.0075
0.04 400 -0.01333 0.02669 0.02665 -0.01331 -0.01335
0.05 500 -0.02083 0.04171 0.04164 -0.02079 -0.02086
0.06 600 -0.02998 0.0601 0.05994 -0.0299 -0.03006
0.07 700 -0.0408 0.08185 0.08155 -0.04065 -0.04095
0.08 800 -0.05328 0.10698 0.10646 -0.05303 -0.05354
0.09 900 -0.06742 0.13549 0.13467 -0.06701 -0.06783
0.1 1000 -0.08321 0.16742 0.16616 -0.08259 -0.08383
0.2 2000 -0.33135 0.67896 0.65855 -0.32144 -0.34125
0.3 3000 -0.74003 1.56422 1.45825 -0.69047 -0.78955
0.4 4000 -1.30222 2.87921 2.53184 -1.1479 -1.45609
0.5 5000 -2.00853 4.71976 3.82922 -1.63816 -2.37635
0.6 6000 -2.84774 7.25018 5.28177 -2.09341 -3.59184
0.7 7000 -3.80719 10.77107 6.80221 -2.43365 -5.14841
0.8 8000 -4.87341 15.9119 8.28778 -2.56487 -7.09576
0.9 9000 -6.03246 24.41883 9.62775 -2.3741 -9.48918
1 10000 -7.27048 57.07963 10.71487 -1.72063 -12.39419
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modeled phase speed of the f-related waves can also drift 
away (i.e. accelerate or decelerate) from the observed wave 
phase speed. A small instability and a small phase error at 
each time step can be accumulated to create large errors, 
with increased drift from observations over long-term inte-
grations. This is particularly critical to seasonal predic-
tion, decadal projection, and long-term climate projection 
(Cannon et al. 2023, this issue). Nevertheless, it can also 
seriously affect the prediction skills for a short-term (5- to 
7-day) forecast of storm surges (Anderson et al. 2018) if a 
model drifts away from observations too quickly.

6  Conclusions and future efforts

The inertial stability is defined by both time-step con-
straint (F=|f|Δt≤1) and physical constraint, in which the 
eigenvalue or AF must not be greater than unity, with 
neutral stability ideally defined as AF≡1. Since the CFL 
condition for surface gravity waves (or internal wave, 
Lemarie et al. 2015) is much stricter than F=|f|Δt≤1, the 
time constraint is not an issue for inertial stability. Based 
on the above investigations of numerical schemes on the 
discretization of Coriolis terms, AF, and phase errors, the 
following conclusions may be drawn:

1) The two time-step Euler forward scheme (β=0) is always 
inertially unconditionally unstable, since the AF is 
always 1+F2/2>1 (see Table 3 of Wang and Ikeda 1997a 
and Table 2.2 of Durran 2010). To cure this problem, the 
velocity in the Coriolis terms must be split into both the 
old value (at n) and the new or predicted value (at n+1) 
(i.e., β=0.5 with an equal weight), which is the Euler 
centered scheme (see chap. 2 of Durran 2010).

2) Although the  1st-order and  2nd-stage Euler schemes pro-
duce a sole physical solution, the  3rd- and  4th-stage Euler 
forward PC schemes produce both a physical solution 
and a computational mode. The computational mode 
should be effectively controlled using a frequency fil-
ter, similar to the RAW filter for the centered differenc-
ing scheme, rather than simply by increasing viscosity, 
which would dampen other physical processes.

3) No matter what numerical schemes are used in the rotat-
ing system (i.e., f≠0), phase error is inevitably intro-
duced in the discretized differencing equation. The leap-
frog scheme and the  2nd-stage predictor-corrector (PC2) 
scheme overestimate (accelerate) the phase speed in any 
waves associated with Coriolis parameter. The  1st-order 
Euler forward, PC3 and PC4 schemes always underes-
timate (decelerate) the phase speed. To overcome this 
intrinsic shortcoming, the only solution is to alterna-
tively use one scheme of overestimating phase speed 
and the other scheme of underestimating it. The alter-
native ratio depends on the magnitude of phase error 
shown in Tables 3-5. Note that data assimilation can 
pull the model back to the observed data, but it cannot 
substantially cure the inherent phase error in the numeri-
cal scheme. A model’s deficiency should be cured from 
the root cause, rather than from the symptom.

4) Although the PC4 schemes are more accurate than the 
PC3 schemes, PC3 schemes are sufficiently accurate and 
the phase error of PC3 is smaller than that of PC4.

Table 4  Same as Table  3, except for β=0 (Euler forward schemes). 
Note that the PC2, PC3 and PC4 schemes with β=0 are identical to 
the  1st-order Euler forward scheme

F Δt Euler Leapfrog
β=0.0

0.0001 1 -0.0000003 0.0000002
0.0005 5 -0.0000083 0.0000042
0.001 10 -0.00003 0.00002
0.002 20 -0.00013 0.00007
0.003 30 -0.0003 0.00015
0.004 40 -0.00053 0.00027
0.005 50 -0.00083 0.00042
0.006 60 -0.0012 0.0006
0.007 70 -0.00163 0.00082
0.008 80 -0.00213 0.00107
0.009 90 -0.0027 0.00135
0.01 100 -0.00333 0.00167
0.02 200 -0.01333 0.00667
0.03 300 -0.02998 0.01501
0.04 400 -0.05328 0.02669
0.05 500 -0.08321 0.04171
0.06 600 -0.11974 0.0601
0.07 700 -0.16285 0.08185
0.08 800 -0.21252 0.10698
0.09 900 -0.2687 0.13549
0.1 1000 -0.33135 0.16742
0.2 2000 -1.30222 0.67896
0.3 3000 -2.84774 1.56422
0.4 4000 -4.87341 2.87921
0.5 5000 -7.27048 4.71976
0.6 6000 -9.93008 7.25018
0.7 7000 -12.75343 10.77107
0.8 8000 -15.65738 15.9119
0.9 9000 -18.5761 24.41883
1 10000 -21.46018 57.07963
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5) The Great Lakes FVCOM with default integration 
schemes (external mode: RK4; internal mode:  1st-order 
Euler forward) produces an overly diffusive thermo-
cline and excessively shallow upper mixed layer, while 
the leapfrog scheme produces a steeper, more strongly 
stratified thermocline. LST is significantly warm biased 
in the summer and spring under the default integration 
schemes, with  cool biases in the winter. Compared to 
measurements in western Lake Superior, model results 
from the default integration schemes produced exces-
sively warm water temperatures in the deeper layers. 
Biases are linked to  a1st-order truncation error related to 
the bi-harmonic viscosity generated from by the default 
Euler forward schemes compared to the non-physical, 
 2nd-order truncation error produced by the leapfrog 
scheme (Appendix C). The lake circulation simulated 
by the leapfrog scheme (Fig. 11) is free of inertial insta-

bility, compared to that simulated by the default schemes 
(Fig. 1)

  In this study, we apply the simplified predictor-cor-
rector schemes to the pure inertial system [Eq. (1)] to 
prove that FVCOM default schemes, which treat the 
Coriolis terms at time (n) explicitly in both modes, are 
inertially unstable. This led to our implementation of 
the leapfrog scheme in FVCOM, which led to dramatic 
improvements in model stability, especially over long 
model runs. Several other time integration schemes 
may also produce stable, or quasi-stable simulations 
in FVCOM, but additional analysis would be required 
before implementation. For example, we did not make an 
effort to examine the overall stability criteria of  3rd- and 
 4th-stage Runge-Kutta schemes in the rotating system 
(Ketcheson 2010). However, stability areas and criteria 

Table 5  Same as Table 3, 
except for β=1 (Euler backward 
schemes)

F Δt Euler Leapfrog PC2 PC3 PC4
β=1.0 β=1.0 β=1.0 β=1.0

0.0001 1 -0.0000003 0.0000002 0.0000007 -0.0000003 -0.0000003
0.0005 5 -0.0000083 0.0000042 0.0000167 -0.0000083 -0.0000083
0.001 10 -0.00003 0.00002 0.00007 -0.00003 -0.00003
0.002 20 -0.00013 0.00007 0.00027 -0.00013 -0.00013
0.003 30 -0.0003 0.00015 0.0006 -0.0003 -0.0003
0.004 40 -0.00053 0.00027 0.00107 -0.00053 -0.00053
0.005 50 -0.00083 0.00042 0.00167 -0.00083 -0.00083
0.006 60 -0.0012 0.0006 0.0024 -0.0012 -0.0012
0.007 70 -0.00163 0.00082 0.00327 -0.00163 -0.00163
0.008 80 -0.00213 0.00107 0.00427 -0.00213 -0.00213
0.009 90 -0.0027 0.00135 0.0054 -0.0027 -0.0027
0.01 100 -0.00333 0.00167 0.00667 -0.00333 -0.00333
0.02 200 -0.01333 0.00667 0.02667 -0.01333 -0.01335
0.03 300 -0.02998 0.01501 0.06002 -0.02998 -0.03006
0.04 400 -0.05328 0.02669 0.10672 -0.05328 -0.05354
0.05 500 -0.08321 0.04171 0.16679 -0.08321 -0.08383
0.06 600 -0.11974 0.0601 0.24026 -0.11974 -0.12104
0.07 700 -0.16285 0.08185 0.32715 -0.16285 -0.16526
0.08 800 -0.21252 0.10698 0.42748 -0.21252 -0.21661
0.09 900 -0.2687 0.13549 0.5413 -0.2687 -0.27526
0.1 1000 -0.33135 0.16742 0.66865 -0.33135 -0.34135
0.2 2000 -1.30222 0.67896 2.69769 -1.30222 -1.46222
0.3 3000 -2.84774 1.56422 6.15008 -2.84774 -3.65773
0.4 4000 -4.87341 2.87921 11.1048 -4.87341 -7.43332
0.5 5000 -7.27048 4.71976 17.60052 -7.27048 -13.51844
0.6 6000 -9.93008 7.25018 25.52521 -9.93008 -22.86406
0.7 7000 -12.75343 10.77107 34.45016 -12.75343 -36.54112
0.8 8000 -15.65738 15.9119 43.4928 -15.65738 -55.23913
0.9 9000 -18.5761 24.41883 51.41558 -18.5761 -77.84249
1 10000 -21.46018 57.07963 57.07963 NaN -100
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for Runge-Kutta (as well as Adams-Bashforth) schemes 
were largely derived in a non-rotating system, thus a 
systematic analysis would be required to re-examine 
the stability areas and criteria of these two-time step-
ping, Euler forward schemes before implementation in 
FVCOM.

  In addition to stability, the energy-conservation of 
time-space discretization schemes (Wang 1996) should 
also be considered for conducting long-term simulations 
using FVCOM (Cannon et al. 2023). It is worth noting 
that for a pure advection scenario in a two-time step-
ping, Euler forward scheme, energy cannot be conserved 
(see Appendix D). The discretized solution for the pure 
advection is unstable without the help of viscosity/dif-
fusivity, since the eigenvalue (or the AF) of the 2-time 
stepping Euler forward (upwind) scheme is always 
greater than unity (see the derivation of Appendix D). 
Therefore, a joint examination of both time integration 
schemes and spatial discretization schemes in a f-plane 
should be conducted to guarantee both stability and 
energy conservation for the 2-time stepping Euler for-
ward Runge-Kutta (and Adams-Bashforth) schemes. It is 
noted that the flux form of the advection terms is energy 

conserving in the continuum medium, which is not guar-
anteed in a discretization medium, which depends on 
both time and spatial differencing schemes used (see 
Appendix D).

  We have discussed the phase errors caused by differ-
ent time integration schemes to represent the pure Corio-
lis terms in “Proposed phase error correction”. However, 
the spatial discretization scheme of a model may also 
cause phase error of inertial motion. For example, A 
model with Arakawa A- and B-grids preserves the non-
dispersive property of the inertial frequency (i.e., true 
inertial frequency, f, is independent of wavenumber or 
grid size), while the C-grid scheme degrades the non-
dispersive frequency in continuum medium into disper-
sive frequency in the differencing equations, because fc 
= f cos2(𝛼x ∆x/2) cos2(𝛼y ∆y/2), which is dependent on 
wavenumber and grid sizes (see Wang 1996; Beckers 
1999), where fc is the inertial frequency in the C-grid 
model, 𝛼x and 𝛼y are wavenumbers, and ∆x and ∆y are 
the grid sizes, respectively in the x and y direction. As 
long as ∆x and ∆y are not zero, the inertial frequency in 
a C-grid model is always dispersive, depending on wave 
number and grid size, leading to decreasing propagation 
speeds and dampening the amplitude of inertial waves. 
This is due to the fact that in the C-grid, an average of 
velocity u and v to the common grid is needed to calcu-
late the Coriolis terms. As such, in a C-grid model, the 
high-resolution grids are strongly required in order to 
minimize dispersion of inertial-related wave frequency.

  Phase errors in the f-plane are also affected by bot-
tom friction and vertical and horizontal viscosity (Wang 
and Ikeda 1997a), and by bottom topography (such as 
sloping bottom; Wang and Ikeda 1997b) and geometry. 
Therefore, high-resolution models with accurate topog-
raphy (including seamounts) and geometry (includ-
ing small islands etc.) will produce relatively accurate 
phases for propagating waves in the f-plane.

Appendix A: Stability and phase 
error analysis of third‑stage Euler 
predictor‑corrector scheme

The  1st-order Euler scheme for the pure inertial system (1) is 
as follows:

and the  2nd-stage predictor scheme is in a similar way:

(8)
un+1∗−un

Δt
− fvn = 0,

vn+1∗−vn

Δt
+ fun = 0

(9)
un+1∗∗−un

Δt
− f

[
βvn+1∗ + (1 − �)vn

]
= 0,

vn+1∗∗−vn

Δt
+ f

[
βun+1∗ + (1 − �)un

]
= 0;

Fig. 11  Same as Fig. 1, but with the centered differencing (leapfrog) 
scheme: Simulated lake current at 10m. No artificially amplified iner-
tial current (i.e., unstable inertial motion) was observed on day 182 
(June 2;upper panel) and day 241 (August 30; lower) in 1995
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Then, the  3rd-stage corrector scheme can be obtained by

Then, we have from (8)

and from (9) we have

where F=fΔt. So, the corrector scheme of (10) becomes

So, we have the following two equations

To investigate the inertial stability of Eq. (14), following 
Wang (1996) and Wang and Ikeda (1997a), the von Neu-
mann or Fourier method is used. The solution to the differ-
encing Eq. (14) has the following Fourier wave form

where V0=u0+iv0, 𝜆=exp(i𝜔Δt), i, 𝜔, Δt, and n are constant 
initial amplitude, eigenvalue, imaginary number, wave fre-
quency, integration time step, and step number, respectively. 
Note that ω may be a complex number, i.e. ω = ωr + i ωi, 
|λ| = 1 when the imaginary part of wave phase is zero, i.e. 
ωi = 0 and λ > 1 with ωi < 0 leads to an instability with 

(10)
un+1−un

Δt
− f

[
βvn+1∗∗ + (1 − �)vn

]
= 0,

vn+1−vn

Δt
+ f

[
βun+1∗∗ + (1 − �)un

]
= 0.

(11)un+1∗ = un + Fvn,

vn+1∗ = vn − Fun;

(12)

un+1∗∗ = un + F
[
βvn+1∗ + (1 − �)vn

]
= un + F

[
β(vn − Fun) + (1 − �)vn

]
= un + F

[
βvn − �Fun + vn − βvn

]
=
(
1 − �F2

)
un + Fvn

vn+1∗∗ = vn − F
[
βun+1∗ + (1 − �)un

]
= vn − F

[
β
[
un + Fvn

]
+ (1 − �)un

]
= vn − F

[
βun + �Fvn + un − βun

]
= −Fun +

(
1 − �F2

)
vn

(13)

un+1 = un + F
[
βvn+1∗∗ + (1 − �)vn

]
= un + F

{
β
[
−Fun +

(
1 − βF2

)
vn
]
+ (1 − �)vn

}
= un + F

{
−βF un + �

(
1 − � F2

)
vn + vn − �vn

}
= un − β F2 un − β2F3 vn + F vn

=
(
1 − β F2

)
un + F

(
1 − β2F2

)
vn

vn+1 = vn − F
[
βun+1∗∗ + (1 − �)un

]
= vn − F

{
β
[(
1 − βF2

)
un + Fvn

]
+ (1 − β)un

}
= vn − F

{
βun − β2F2un + �Fvn + un − �un

}
= vn + β2F3un − �F2vn − Fun

= −F
(
1 − β2F2

)
un +

(
1 − �F2

)
vn

(14)
un+1 −

(
1 − β F2

)
un − F

(
1 − β2F2

)
vn = 0,

F
(
1 − β2F2

)
un + vn+1 −

(
1 − �F2

)
vn = 0.

(15)wn = (un, vn) =
(
u0, v0

)
ei�nΔt = V0�

n

exponential growth with time t. The phase error caused by 
the Coriolis force (or earth rotation) can be expressed as

Inserting (15) into (14) yields, through some manipula-
tions, we have the following matrix

Since |||
U0

V0

||| ≠ 0, the left matrix determinant must be zero, 
i.e.,

or

The solution to (19) yields two roots or solutions

The square of amplification factor (20) becomes

and so, as long as f is non-zero, this scheme is stable (i.e., 
|λ|≤1), if, and only if, the following conditions are respected:

Taking the norm of (20) yields

If β=0, 1/2, and 1, AF becomes

Inserting (20) to (16) leads to

(16)tan (�Δt) =
Im(�)

Re(�)

(17)
|||||
� −

(
1 − � F2

)
, −F

(
1 − �2F2

)

F
(
1 − �2F2

)
, � −

(
1 − �F2

)
|||||
|||||
U0

V0

|||||
= 0.

(18)
[
λ −

(
1 − β F2

)]2
+ F2

(
1 − β2F2 = 0

)2
= 0,

(19)
�2 − 2

(
1 − β F2

)
λ +

(
1 − β F2

)2
+ F2

(
1 − β2F2

)2
= 0,

(20)

λ1,2 =

2
(
1 − β F2

)
±

√
4
(
1 − β F2

}2
− 4

[(
1 − β F2

)2
+ F2

(
1 − β2F2

)2]

2

=
(
1 − β F2

)
±

√(
1 − β F2

)2
−
(
1 − β F2

)2
− F2

(
1 − β2F2

)2]

=
(
1 − β F2

)
± iF

(
1 − β2F2

)

(21)|�|2 = (
1 − β F2

)2
+
(
1 − β2F2

)2
F2,

(22)� ≥
3

8
= 0.375, and F2 ≤

1∕2 + (2� − 3∕4)1∕2

β2

(23)

��λ1,2�� =
��

1 − β F2
�2

+ F2
�
1 − β2F2

�2

=

�
1 − 2β F2 + β2F4 + F2

�
1 − 2 β2F2 + β4F4

�

=
√
1 − 2β F2 + β2F4 + F2 − 2 β2F4 + β4F6

=
√
1 + (1 − 2β) F2 − β2F4 + β4F6

(24)

∣ λ1,2 ∣=

⎧⎪⎨⎪⎩

√
1 + F2 ≈ 1 +

1

2
F2 > 1, β = 0√

1 − F4∕4 + F6∕16 ≈ 1 −
1

8
F4 < 1, β = 0.5√

1 − F2 − F4 + F6 ≈ 1 −
1

2
F2 < 1, β = 1
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Appendix B: Stability and phase error 
analysis of the fourth‑stage Euler 
predictor‑corrector scheme

The first and second predictor steps for PC4 are the same as 
PC3 [see (8) and (9)].

The  3rd-stage predictor scheme is as follows:

Then, the  4th-stage corrector scheme can be written as:

Through some algebraic operations, (26) becomes

Then, the corrector step (27) yields

(25)
�1,2

−f
=

∓1

F
arc tan

[
F
(
1 − β2F2

)
1 − �F2

]

(26)
un+1∗∗∗−un

Δt
− f

[
βvn+1∗∗ + (1 − �)vn

]
= 0,

vn+1∗∗∗−vn

Δt
+ f

[
βun+1∗∗

]
+ (1 − �)un

]
= 0;

(27)
un+1−un

Δt
− f

[
βvn+1∗∗∗ + (1 − �)vn

]
= 0,

vn+1−vn

Δt
+ f

[
βun+1∗∗∗ + (1 − �)un

]
= 0.

(28)

un+1∗∗∗ = un + F
[
βvn+1∗∗ + (1 − �)vn

]
= un + F

{
β
[
−Fun +

(
1 − βF2

)
vn
]
+ (1 − �)vn

}
= un + F

{
−βF un + �

(
1 − � F2

)
vn + vn − �vn

}
= un − β F2 un − β2F3 vn + F vn

=
(
1 − β F2

)
un + F

(
1 − β2F2

)
vn

vn+1∗∗∗ = vn − F
[
βun+1∗∗ + (1 − �)un

]
= vn − F

{
β
[(
1 − βF2

)
un + Fvn

]
+ (1 − β)un

}
= vn − F

{
βun − β2F2un + �Fvn + un − �un

}
= vn + β2F3un − �F2vn − Fun

= −F
(
1 − β2F2

)
un +

(
1 − �F2

)
vn

(29)

un+1 = un + F
[
βvn+1∗∗∗ + (1 − �)vn

]

= un + F
{
β
[
−F[[1 − βF2

)
un +

(
1 − βF2

)
vn
]
+ (1 − �)vn

}

= un + F
{
−βF

(
1 − βF2

)
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(
1 − � F2

)
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}
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(
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) (
1 − β F2 + β3F4
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(
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)
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vn+1 = vn − F
[
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]
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{
β
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1 − βF2

)
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(
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)
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}
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(
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(
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)
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So, we have the following two equations

i.e., in a matrix form by inserting (15) into (30),

Since |||
U0

V0

||| ≠ 0, the left matrix determinant must be zero, 
such that

i.e.,

Solving the second-order Eq. (33) gives two roots:

So, the square of amplification factor becomes

and, as long as f is non-zero, and after some algebraic manip-
ulations, it can be easily proved that a necessary condition 
for the inertial stability is β≥1/2. Furthermore, taking the 
norm of (34) yields

Therefore, If β=0, 1/2, and 1, AF becomes

Inserting (34) into (16) yields

(30)
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)
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Appendix C: Truncation errors 
for the  1st‑order Euler forward and leapfrog 
schemes

To show the truncation error in time integration scheme, 
simplified diffusion equations are extracted from the shallow 
water equations:

Using the Taylor expansion

i.e., (41) is also represented as

Then, (39) becomes

In the  1st-order Euler forward scheme, the term �t
2!

�2u

�t2
 , 

the first order accuracy truncation error, is just simply dis-
carded in the differencing equation (numerical scheme). 
Nevertheless, this neglected term contains meaningful 
physical processes, as shown below.

Taking derivative on (39) with respect to t gives

Then, the truncation error becomes

where �2 =
(

�2

�x2
+

�2

�y2

)
 is the Laplacian operator. Inserting 

(39) and (40) to (46) yields

(39)
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+
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+
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+…
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Since f ~  10-4  s-1<<1, the last terms in (47) can be 
neglected compared to -fv in (44). Then the truncation 
error (47) becomes

In a similar manner of operation, the truncation error of 
v-component (40) becomes

Note that the truncation errors in (48) and (49) are physi-
cally meaningful, which are the bi-harmonic horizontal viscos-
ity! These terms should not be neglected in order to maintain 
the original physical processes in the differential Eqs. (39) 
and (40). In other words, neglecting truncation error terms in 
(48) and (49) in the differencing equations destroys the energy 
balance in (39)-(40) and mass balance (in the temperature and 
salinity equations, not shown here, but can be easily derived 
using the same approach) in the original differential equations 
(system) in the  1st-order Euler forward scheme.

Plugging (48) into (44) yields

In the similar way, we can have the approximation of (40) 
as follows

We can see that differencing Eqs. (50) and (51) are con-
sistent with the original (physical) differential Eqs. (39) and 
(40), respectively, as long as ∆t is not zero. In other words, 
the original physical processes are distorted by neglecting the 
horizontal bi-harmonic mixing or by adding an extra mixing/
viscosity term, Δt

2
A
h

2
�
4
u, to the differencing equation sys-

tem, leading to destroying the conservation of both energy 
(dynamic equations, as discussed here) and mass (temperature/
salinity equations). Neglecting the biharmonic mixing in the 
differencing equations means that the  1st-order Euler forward 
scheme must make up this mixing equivalent to the amount of 
its truncation error within its numerical scheme to make the 
scheme stably running.

The similar conclusions can be obtained to the  1st-order 
upwind scheme in space (not shown here). Therefore, the 
 1st-order scheme in time (Euler scheme) and in space (upwind 
scheme) should be avoided, at least for long-term simulation, 
or should be used cautiously.

Since we used leapfrog scheme to replace the default 
schemes, it is necessary, by the way, to examine the trunca-
tion error in comparison to the above analysis.
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Similarly, we have the Taylor expansion

Subtracting (53) from (52) [i.e., (52) minus (53)] yields

Then, (39) becomes

Taking �
2

�t2
 on (39) and �

�t
 on (40) yields

Inserting (57) into (56) gives

Again, since f ~  10-4  s-1<<1, the first two terms on the 
right hand side of (58) can be neglected compared to �u

�t
 in 
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Plugging (45)

into (59), we have

by neglecting f �v
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 term, since f ~  10-4  s-1<<1.
Inserting (39) into (61), we have
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Now, it is safe to neglect fv term, because of f ~  10-4 
 s-1<<1. Then (62) becomes

or

So (55) becomes

In the similar way, we can have the approximation of (40) 
as follows

As we can see, truncation error of the leapfrog scheme 
is of cubing the Laplacian viscosity (65-66), i.e., two orders 
(accuracy) of magnitude higher than the bi-harmonic viscosity 
in the Euler forward scheme (50-51). Thus, it is very safe to 
neglect the second order truncation error in (54) in the leapfrog 
scheme. Note that the global truncation error (GTE) discussed 
above differs from the amplification (or amplitude) error (AR) 
in stability analyses in Appendices A, B, and C. GTE measures 
the order of accuracy in a differencing scheme in both time 
and space discretization, while AE measures the stability in 
a differencing scheme in time discretization such as ampli-
fying (AF>1, unstable), neutral (AF=1, neutral stable), and 
dampening (AF<1,  stable, but dissipative). AE gauges speed 
of decay or growth around AF=1 (neutral stability) in a time 
integration scheme in terms of the order of accuracy, i.e., con-
vergence to or divergence from AF=1.   It should be pointed 
out that even though the 3rd- and 4th-stage predictor-corrector 
schemes in Appendixes A and B increase the local truncation 
error (LTE), the truncation error is still of 1st-order accuracy 
under the 2-time stepping, Euler forward scheme framework. 

Appendix D: Stability analysis of pure 
advection system for combined time‑spatial 
discretization

A pure 1-D advection equation can be written as

For simplicity, this nonlinear system can be linearized
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First‑order in both time and space

The differencing scheme for  1st-order Euler forward in time 
and  1st-order upwind scheme in space can be written as

Assume the Fourier form of waves as follows

where u0 is the amplitude, i is the imaginary number, 𝛼 is
wave number, k is the k-th grid, ∆x, ꞷ is the wave frequency, 
n is the n-th time step, ∆t, and λ= exp(iꞷ∆t) is the eigenvalue 
i.e. the amplification factor (AF).

Substituting (70) into (69) gives

Then, taking the absolute value of (71) yields

Since | cos2(𝛼∆x)| ≤1, |λ|≥1. In other words, except 
for the two wavenumbers, 𝛼 =arc cos(±1)/∆x, |λ|>1. So 
this numerical scheme for the pure advection system is 
unstable.

First‑order in time and second‑order in space

The differencing scheme for the  1st-order Euler forward in 
time and  2nd-order centered scheme in space can be written 
as

Substituting (70) into (73), and through some algebra 
operations, we have

Then, taking the absolute value of (74) yields

Therefore, the scheme is unstable for the pure advection 
equation.

Second‑order in both time and space

The differencing scheme for the  2nd-order leapfrog in time 
and  2nd-order centered scheme in space can be written as
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Substituting (70) into (76), and through some algebra 
operations, we have

Since a=1, b= -i 2ū∆t/∆x sin(𝛼∆x), and c=-1, the stand-
ard solution to a quadratic equation is

The solutions to the quadratic equation on λ (77) are

Then, taking the absolute value of (78) yields |λ1,2 |=1. 
Therefore, the scheme is neutral stable for the pure advec-
tion equation.

Second‑order in time and first‑order in space

The differencing scheme for the  2nd-order leapfrog in time 
and  1st-order Euler forward (upwind) scheme in space can 
be written as

Substituting (70) into (79), and through some algebra 
operations, we have

Since a=1, b= 2ū∆t/∆x [(cos(𝛼∆x)-1) -i sin(𝛼∆x)], and 
c=-1, the solutions to the quadratic equation on λ (80) are

i.e.,

Then, taking the absolute value of (82), through some 
algebra operations, yields

So, the physical solution λ1 and the computational mode 
λ2 are
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Therefore, the scheme is stable for the pure advection 
equation, while the computational mode is still unstable.

In summary, a pure advection scheme with  2nd-order 
accuracy both in time (leapfrog) and space (centered) con-
serves energy, because it does not need viscosity to be sta-
ble. However, the scheme with leapfrog scheme in time and 
 1st-order Euler forward (upwind) scheme in space can guar-
antee a stable physical solution, but not the computational 
mode. By contrary, the pure advection scheme with the Euler 
forward scheme in time is always unstable with either the 
Euler forward (upwind) or the centered scheme in space. In 
other words, the Euler forward scheme in time needs extra 
viscosity (diffusion) to be conditionally stable, which is the 
typical advection diffusion equations (system). Although 
the centered differencing scheme produces a computational 
mode in time and 2∆x short waves in space, which can be 
removed with certain filters (Zhang et al. 1987), its  2nd-order 
accuracy and energy-conserving property (Wang 1996) pos-
sess major advantages, compared to the two-time stepping 
schemes.
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