Skip to main content
Log in

Spectral Diversity of Fluorescent Proteins from the Anthozoan Corynactis californica

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Color morphs of the temperate, nonsymbiotic corallimorpharian Corynactis californica show variation in pigment pattern and coloring. We collected seven distinct color morphs of C. californica from subtidal locations in Monterey Bay, California, and found that tissue– and color–morph-specific expression of at least six different genes is responsible for this variation. Each morph contains at least three to four distinct genetic loci that code for these colors, and one morph contains at least five loci. These genes encode a subfamily of new GFP-like proteins, which fluoresce across the visible spectrum from green to red, while sharing between 75% to 89% pairwise amino-acid identity. Biophysical characterization reveals interesting spectral properties, including a bright yellow protein, an orange protein, and a red protein exhibiting a “fluorescent timer” phenotype. Phylogenetic analysis indicates that the FP genes from this species evolved together but that diversification of anthozoan fluorescent proteins has taken place outside of phylogenetic constraints, especially within the Corallimorpharia. The discovery of more examples of fluorescent proteins in a non-bioluminescent, nonsymbiotic anthozoan highlights possibilities of adaptive ecological significance unrelated to light regulation for algal symbionts. The patterns and colors of fluorescent proteins in C. californica and similar species may hold meaning for organisms that possess the visual pigments to distinguish them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19:716–723

    Article  Google Scholar 

  • Arbeloa FL, Ojeda PR, Arbeloa IL (1989) Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions. J Luminescence 44:105–112

    Article  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989

    Article  PubMed  CAS  Google Scholar 

  • Berntson EA, France SC, Mullineaux LS (1999) Phylogenetic relationships within the Class Anthozoa (Phylum Cnidaria) based on nuclear 18S rDNA sequences. Mol Phylogenet Evol 13:417–433

    Article  PubMed  CAS  Google Scholar 

  • Bessette PH, Daugherty PS (2004) Flow cytometric screening of cDNA expression libraries for fluorescent proteins. Biotechnol Prog 20:963–967

    Article  PubMed  CAS  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    Article  PubMed  CAS  Google Scholar 

  • Brakefield PM, French V (1999) Butterfly wings: the evolution of development of colour patterns. BioEssays 21:391–401

    Article  Google Scholar 

  • Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Carlgren O (1949) A survey of the Ptychodactiaria, Corallimorpharia and Actinaria. Kungliga Svenska Vetenskapsakademiens Handlingar 1:1–129

    Google Scholar 

  • Chadwick NE (1987) Interspecific aggressive behavior of the corallimorpharian Corynactis californica (Cnidaria: Anthozoa): effects on sympatric corals and sea anemones. Biol Bull 173:110–125

    Article  Google Scholar 

  • Chadwick NE, Adams C (1991) Locomotion, asexual reproduction, and killing of corals by the corallimorpharian Corynactis californica. Hydrobiologia 216/217:263–269

    Article  Google Scholar 

  • Cott HB (1957) Adaptive coloration in animals. Methuen, London

    Google Scholar 

  • Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Article  Google Scholar 

  • Dunn DF (1982) Cnidaria. In: Parker SP (ed) Synopsis and classification of living organisms. McGraw-Hill, New York

    Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Surette MG, Wolf PE, Stock J, Leibler S (1997) Photoactivation turns green fluorescent protein red. Current Biol 7:809–812

    Article  CAS  Google Scholar 

  • France SC, Rosel PE, Agenbroad JE, Mullineaux LS, Kocher TD (1996) DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two subclass organization of the Anthozoa (Cnidaria). Mol Mar Biol Biotechnol 5:15–28

    PubMed  CAS  Google Scholar 

  • Gilmore AM, Larkum AWD, Salih A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M, Woesik RV (2003) Simultaneous time-resolution of the emission spectra of fluorescent proteins and zooxanthellae chlorophyll in reef-building corals. Photochem Photobiol 77:515–523

    Article  PubMed  CAS  Google Scholar 

  • Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990—11995

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696—704

    Article  PubMed  Google Scholar 

  • Haddock SHD, Dunn CW, Pugh PR, Schnitzler CE (2005) Bioluminescent and red fluorescent lures in a deep-sea siphonophore. Science 309:263

    Article  PubMed  CAS  Google Scholar 

  • Haderlie EC, Hand C, Gladfelter WB (1980) Cnidaria (Coelenterata): the sea anemones and allies. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford

    Google Scholar 

  • Hand C (1954) The sea anemones of central California. Part I. The corallimorpharian and athenarian anemones. Wasmann J Biol 12:345–375

    Google Scholar 

  • Hansson L-A (2004) Plasticity in pigmentation induced by conflicting threats from predation and UV radiation. Ecology 85:1005–1016

    Article  Google Scholar 

  • Holts LJ, Beauchamp KA (1993) Sexual reproduction in the corallimorpharian sea anemone Corynactis californica in a central California kelp forest. Mar Biology 116:129–136

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Ip D, Chan S-H, Allen M, Bycroft M, Wan D, Wong K-B (2004) Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from the Cnidaria tube anemone Cerianthus sp. Acta Crystallographica Section D Biol Crystallography 60:340–341

    Article  CAS  Google Scholar 

  • Ip DT, Wong KB, Wan DC (2007) Characterization of novel orange fluorescent protein cloned from Cnidarian tube anemone Cerianthus sp. Mar Biotechnol 9:469–478

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049

    Article  PubMed  CAS  Google Scholar 

  • Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    Article  PubMed  CAS  Google Scholar 

  • Kawaguti S (1944) On the physiology of reef corals. VI. Study on the pigments. Palau Trop Biol Stn Stud 2:617–673

    Google Scholar 

  • Kawaguti S (1969) The effect of green fluorescent pigment on the productivity of the reef corals. Micronesica 5:313

    Google Scholar 

  • Keane T, Creevey C, Pentony M, Naughton T, Mcinerney J (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biol 6:29

    Article  CAS  Google Scholar 

  • Kelmanson IV, Matz MV (2003) Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Mol Biol Evol 20:1125–1133

    Article  PubMed  CAS  Google Scholar 

  • Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 99:4256–4261

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Google Scholar 

  • Limbaugh C, North W (1956) Fluorescent, Benthic, Pacific Coast invertebrates. Nature 178:497–498

    Article  CAS  Google Scholar 

  • Losey GS, Mcfarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 3:433–454

    Article  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334

    Article  PubMed  CAS  Google Scholar 

  • Marshall NJ (2000) Communication and camouflage with the same "bright" colours in reef fish. Philos Trans Royal Soc London B 355:1243–1248

    Article  CAS  Google Scholar 

  • Marshall NJ, Jennings K, Mcfarland WN, Loew ER, Losey GS (2003a) Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia 3:455–466

    Article  Google Scholar 

  • Marshall NJ, Jennings K, Mcfarland WN, Loew ER, Losey GS (2003b) Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 3:467–480

    Article  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  PubMed  CAS  Google Scholar 

  • Matz MV, Lukyanov KA, Lukyanov SA (2002) Family of the green fluorescent protein: journey to the end of the rainbow. BioEssays 24:953–959

    Article  PubMed  CAS  Google Scholar 

  • Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 82:345–350

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103:9096–9100

    Article  PubMed  CAS  Google Scholar 

  • Meroz-Fine E, Brickner I, Loya Y, Ilan M (2003) The hydrozoan coral Millepora dichotoma: speciation or phenotypic plasticity? Mar Biol 143:1175–1183

    Article  Google Scholar 

  • Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TWJ (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557

    Article  PubMed  CAS  Google Scholar 

  • Muntz L, Norton TA, Ebling FJ, Kitching JA (1972) The ecology of Lough Ine. XVIII. Factors controlling the distribution of Corynactis viridis Allman. J Anim Ecol 41:735–750

    Article  Google Scholar 

  • Notredame C, Higgins D, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  PubMed  Google Scholar 

  • Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’angelo C, Salih A, Maslakova S, Bulina M, Schirmbeck R, Nienhaus GU, Matz MV, Wiedenmann J (2007) Contributions of host and symbiont pigments to the coloration of reef corals. Eur J Biochem 274:1102–1122

    CAS  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    PubMed  CAS  Google Scholar 

  • Rambaut A (2007) FigTree, a graphical viewer of phylogenetic trees. Available at: http://tree.bio.ed.ac.uk/software/figtree/

  • Relyea RA (2004) Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85:172–179

    Article  Google Scholar 

  • Salih A, Larkum A, Cox G, Köhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  PubMed  CAS  Google Scholar 

  • Schlichter D, Meier U, Fricke HW (1994) Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99:124–131

    Article  Google Scholar 

  • Schmieder RW (1991) Ecology of an underwater island. Cordell Expeditions, Walnut Creek

    Google Scholar 

  • Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  • Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647

    Article  PubMed  CAS  Google Scholar 

  • Simms D, Cizdziel PE, Chomczynski P (1993) TRIzol: a new reagent for optimal single-step isolation of RNA. Focus (Life Technologies) 15:99–102

    Google Scholar 

  • Smith S (2007) Available at: http://code.google.com/p/phyutility

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods).Version 4.0b10. Sinauer & Associates, Sunderland

    Google Scholar 

  • Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, Zhao X, Lukyanov S, Matz M, Kim S, Weissman I, Siebert P (2000) "Fluorescent timer": protein that changes color with time. Science 290:1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Tupen JW (1999) Shell form and color variability in Alia carinata (Neogastropoda: Columbellidae). Veliger 42:249–259

    Google Scholar 

  • Ugalde JA, Chang BSW, Matz MV (2004) Evolution of coral pigments recreated. Science 305:1433

    Article  PubMed  CAS  Google Scholar 

  • Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289–296

    Article  PubMed  CAS  Google Scholar 

  • Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Ward WW (2002) Fluorescent proteins: who’s got ’em and why? In: Stanley PE, Kricka LJ (eds) Bioluminescence and chemiluminescence. World Scientific, Singapore

    Google Scholar 

  • Ward WW (2005) Biochemical and physical properties of green fluorescent protein. In: Chalfie M, Kain S (eds) Green fluorescent protein: properties, applications and protocols, 2nd ed. Wiley-Liss, Hoboken, New Jersey

  • West HH (1979) Pigmentation in the sea anemone Corynactis californica. Comp Biochem Physiol B 64:195–200

    Article  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

  • Wicksten M (1989) Why are there bright colors in sessile marine invertebrates? Bull Mar Sci 45:519–530

    Google Scholar 

  • Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler K-D, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). PNAS 99:11646–11651

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus G (2004) Identification of GFP-like proteins in non-bioluminescent, azooxanthellate Anthozoa opens new perspectives for bioprospecting. Mar Biotech 6:270–277

    CAS  Google Scholar 

  • Wilgenbusch J, Warren D, Swofford DL (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at: http://ceb.csit.fsu.edu/awty/

  • Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc Natl Acad Sci USA 98:462–467

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  • Zmasek C, Eddy S (2001) ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 17:383–384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Laura Figoski (MBARI) and Maureen Downing (University of Chicago) for help with expression and purification of the FPs; Denis Klimov, Zbigniew Kolber, and Ken Johnson from MBARI and Keith Moffatt from University of Chicago provided equipment used in spectroscopic quantification; the authors also thank Kenneth Coale and Jon Geller of MLML for academic support and Jason Felton for assistance in the field; Mike Lassner, Claus Krebber, and Steve Bass from Maxygen for their enthusiastic support during the initial stages of this project; and two anonymous reviewers for insightful comments that improved the manuscript. Supported in part by the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Keenan or Steven H. D. Haddock.

Additional information

Christine E. Schnitzler and Robert J. Keenan contributed equally to this work.

Data deposition footnote: The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession numbers for the genes and gene products discussed in this paper are: ccalRFP1 (AY823226); ccalYFP1 (AY823227); ccalRFP2 (DQ065851); ccalGFP1 (DQ065852); ccalOFP1 (DQ065853); ccalGFP3 (DQ899732)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzler, C.E., Keenan, R.J., McCord, R. et al. Spectral Diversity of Fluorescent Proteins from the Anthozoan Corynactis californica . Mar Biotechnol 10, 328–342 (2008). https://doi.org/10.1007/s10126-007-9072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9072-7

Keywords

Navigation