Skip to main content

Advertisement

Log in

Effect of phototherapy with light-emitting diodes (890 nm) on tendon repair: an experimental model in sheep

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effect of phototherapy with 890-nm light-emitting diodes (LEDs) on the healing of experimentally induced tendinitis in sheep was evaluated in this study. Partial tenotomies measuring 0.2 cm wide × 0.5 cm long were performed on the second third of the superficial digital flexor tendons of 10 healthy sheep. The animals were divided into two groups: “treated” (TG), treated with LEDs at the aforementioned wavelength, and “control” (CG), a control group treated with a placebo. Kinesiotherapy, which consisted of 5-min walks on grassy ground, was performed on both groups. B-mode and power Doppler ultrasonographies (US) were performed to evaluate the tendon healing process during the first 14 days after surgery and on the 21st and 28th postoperative days. Biopsies were performed on day 28 for the histopathological assessment of neovascularisation and the pattern of the tendon fibres. The absence of lameness and a significant improvement (p < 0.05) in the sensitivity to pain during palpation were observed in the treated group. Furthermore, a significant reduction in oedema and an increased number of vessels (p < 0.05) were observed in this group with the B-mode and power Doppler US, respectively. No significant difference in the evolution of the lesion was found. There was a histological difference (p < 0.05) in neovascularisation in the treated group. Phototherapy with 890-nm light-emitting diodes decreases the inflammatory process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Contran RS, Kumar V, Robbins SL (2005) Fundamentos de Robbins: patologia estrutural e funcional [Robbins fundamentals: structural and functional pathology]. Guanabara Koogan, Rio de Janeiro

  2. Salate ACB (2002) Síndromes por overduse em tendão de calcâneo [Overuse syndromes in the Achilles tendon]. Fisioterapia Brasil 3:351–355

    Google Scholar 

  3. Peloso JG, Mundy GD, Honnas CM, Moyer W (1996) Epidemiologic study of musculoskeletal injuries in racing thoroughbred horses in Kentucky. Annu Convention Am Assoc Equine Pract 42:284–285

    Google Scholar 

  4. Sodatis JJ, Goodfellow DB, Wilber JH (1997) End to end operative repair of Achilles tendon rupture. Am J Sports Med 25:90–95

    Article  Google Scholar 

  5. Dahlgren LA, Mohamed HO, Nixon AJ (2005) Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res 23:84–92

    Article  CAS  PubMed  Google Scholar 

  6. Madison JB (1995) Acute and chronic tendinitis in horses. Compend Contin Educ Pract Vet 17:853–856

    Google Scholar 

  7. Gaughan EM, Gift LJ, De Bowes BR, Roush J (1995) The influence of sequential intratendinous sodium hyaluronate on tendon healing in horses. Vet Comp Orthop Traumatol 8:40–45

    Google Scholar 

  8. Wilson AM, Goodship AE (1994) Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 27:899–905

    Article  CAS  PubMed  Google Scholar 

  9. Enwemeka CS, Reddy GK (2000) The biological effects of laser therapy and other physical modalities on connective. Laser Ther 12:19–22

    Google Scholar 

  10. Parizotto NA (1998) Ação do laser de hélio-neônio sobre o processo de reparo tecidual: um estudo do colágeno por microscopia eletrônica de varredura, microscopia de força atômica e espectroscopia por infravermelho [The action of a helium neon laser on the tissue repair process: a collagen study by scanning electron microscopy, atomic force microscopy and infrared spectroscopy]. Doctoral Dissertation, School of Electrical Engineering and Computing, Unicamp

  11. Mcdonough MS, Baxter DG (2007) Principles of electrotherapy in veterinary physiotherapy. In: Stubbs N, Goff L, McGowan MC (eds) Animal physiotherapy. Blackwell, Oxford, pp 182–186

    Google Scholar 

  12. Low L, Reed A (2001) Eletroterapia explicada: princípios e prática [Electrotherapy explained: principles and practice]. Manole, Barueri

    Google Scholar 

  13. Veçoso CM (1993) Laser em fisioterapia [Laser in physiotherapy]. Ed. Lovise, São Paulo

  14. Al-Watban FAH, Andres BL (2003) Polychromatic LED therapy in burn healing of non-diabetic and diabetic rats. J Clin Laser Med Surg 21:249–258

    Article  PubMed  Google Scholar 

  15. Corazza AV (2005) Fotobiomodulação comparativa entre o Laser e LED de baixa intensidade na angiogênese de feridas cutâneas de ratos [Comparative photobiomodulation between the LED and low-intensity laser in the angiogenesis of skin wounds in rats]. Master’s Thesis, University of São Paulo at São Carlos School of Engineering

  16. Karu T (1988) Molecular mechanism of therapeutic effect of low intensity laser irradiation. Lasers Life Sci 2:53–74

    Google Scholar 

  17. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry 69:81–90

    CAS  PubMed  Google Scholar 

  18. Keegan KG, Dent EV, Wilson DA, Janicek J, Kramer J, Lacarrubba A, Walsh DM, Cassels MW, Esther TM, Schiltz P, Frees KE, Wilhite CL, Clark JM, Pollit CC, Shaw R, Norris T (2010) Repeatability of subjective evaluation of lameness in horses. Equine Vet J 42:92–97

    Article  CAS  PubMed  Google Scholar 

  19. Genovese R, Rantanen NW, Simpson BS, Simpson DM (1990) Clinical experience with quantitative analysis of superficial digital flexor tendon injuries in thoroughbred and standard bred racehorses. Vet Clin N Am Equine Pract 6:129–145

    CAS  Google Scholar 

  20. Risselada M, Kramer M, Saunders JM, Verleyen P, Bree HV (2006) Power Doppler assessment of the neovascularization during uncomplicated fracture healing of long bones in dogs and cats. Vet Radiol Ultrasound 47:301–306

    Article  PubMed  Google Scholar 

  21. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–937

    Article  CAS  PubMed  Google Scholar 

  22. SAS Institute (2009) SAS/STAT user’s guide. Version 9.2. SAS Institute Inc., Cary, NC

  23. Alves ALG (1998) Influência da beta-aminopropionitrila associada à atividade física na reparação de equinos após agressão pela colagenase. Análise ultrassonográfica e morfológica [Influence of beta-aminopropionitrile associated with physical activity in the repair of horses following collagenase aggression. Sonographic and morphological analysis]. Doctoral Dissertation, School of Veterinary Medicine and Animal Husbandry, São Paulo State University

  24. Williams IF (1984) Studies on the pathogenesis of equine tendinitis following collagenase injury. Res Vet Sci 36:326–338

    CAS  PubMed  Google Scholar 

  25. Yamada ALM, Alves ALG et al (2009) Comparação de diferentes doses de colagenase em modelo de indução de tendinite para eqüinos: estudo clínico e ultra-sonográfico [Comparison of different doses in collagenase-induced equine tendinitis: clinical and ultrasonographic study]. Cienc Rural 39:1124–1130

    Article  Google Scholar 

  26. Alves ALG, Stewart AA, Dudhia J, Kasashima Y, Goodship AE, Smith RKW (2011) Cell-based therapies for tendon and ligament injuries. Vet Clin N Am Equine Pract 27:315–333

    Article  CAS  Google Scholar 

  27. Casalechi HL, Marques ACF, Silva EAP, Aimbire F, Marcos RL, Lopes-Martins RAB, Carvalho PTC, Albertini R (2014) Analysis of the effect of phototherapy in model with traumatic Achilles tendon injury in rats. Lasers Med Sci 29:1075–1081

    Article  PubMed  Google Scholar 

  28. Basford J, Sheffield C, Harmsen W (1999) Laser therapy: a randomised, controlled trial of the effects of low-intensity Nd: YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil 80:647–652

    Article  CAS  PubMed  Google Scholar 

  29. Vasseljen O, Hoeg N, Kjeldstad B, Johnsson A, Larsen S (1992) Low level laser versus placebo in the treatment of tennis elbow. Scand J Rehabil Med 24:37–42

    PubMed  Google Scholar 

  30. Klein RG, Eek BC (1990) Low-energy laser treatment and exercise for chronic low back pain: double blind controlled trial. Arch Phys Med Rehabil 71:34–37

    CAS  PubMed  Google Scholar 

  31. Vecchio P, Cave C, King V, Adebajo AO, Smith M, Hazelman BL (1993) A double-blind study of the effectiveness of low-level laser treatment of rotator cuff tendinitis. Br J Rheumatol 32:740–742

    Article  CAS  PubMed  Google Scholar 

  32. Cidra-Filho FJ, Mezzardo-Martins L, Martins DF, Santos ARS (2014) Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med Sci 29:695–702

    Article  Google Scholar 

  33. Kitchen SS, Partridge CJ (1991) A review of low-level laser therapy. Part I: background, physiological effects and hazards. Physiotherapy 7:161–170

    Article  Google Scholar 

  34. Albertini R, Aimbire FS, Correa FS, Ribeiro W, Cogo JC, Antunes E, Teixeira AS, Nucci G, Neto CHCF, Zângaro RA, Lopes-martins RA (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw oedema. J Photochem Photobiol B 74:101–107

    Article  CAS  PubMed  Google Scholar 

  35. Schindl A, Schindl M, Schindl L (1997) Phototherapy with low intensity laser irradiation for a chronic radiation ulcer in a patient with lupus erythematosus and diabetes mellitus. Br J Dermatol 137:840–884

    Article  CAS  PubMed  Google Scholar 

  36. Trelles M, Mayayo E (1997) Bone fracture consolidates faster with low power laser. Lasers Surg Med 7:36–45

    Article  Google Scholar 

  37. Genovese WJ (2000) Revisão laser [Laser review]. Pancast, São Paulo

    Google Scholar 

  38. Kawano Y, Utsunomiya-Kai Y, Kentaro K, Miyakawa I, Ohshiro T, Narahara H (2012) The production of VEGF involving MAP kinase activation by low level laser therapy in human granulosa cells. Laser Ther 21:269–274

    Article  PubMed Central  PubMed  Google Scholar 

  39. Xavier M, David DR, Souza RA, Arrieiro AN, Miranda AN, Miranda H, Santana ET, Silva JA, Salgado MA, Aimbire F, Albertini R (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med 42:553–558

    Article  PubMed  Google Scholar 

  40. Machado MVM, Vulcano LC, Hussni CA, Alves ALG (2000) Efeito da laserterapia em tendinite experimental no tendão flexor digital superficial em equinos: estudo histológico e ultrassonográfico [Effects of laser therapy on experimental tendinitis in horses: ultrasonographic and histologic study]. Arch Vet Sci 5:111–115

    Google Scholar 

  41. Tsai W, Hsu C, Pang J, Lin M, Chen Y, Liang F (2012) Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression. PLos ONE 7:1–7

    Google Scholar 

  42. Xavier M, Souza R, Pires V, Santos A, Aimbire F, Junior J, Albertini R, Villaverde A (2014) Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats. Lasers Med Sci 29:85–90

    Article  PubMed  Google Scholar 

  43. Reddy GK, Stehno Bittel L, Enwemeka CS (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen 9:248–255

    Article  CAS  PubMed  Google Scholar 

  44. Saperia D, Glassberg E, Lyons R (1987) mRNA level in cutaneous wounds treated with helium-neon laser. Proposed mechanism of enhanced wound healing. Biochem Biophys Res Commun 138:1123–1128

    Article  Google Scholar 

  45. Mikail SC (2008) Avaliação da terapia do laser de arsenito de gálio em tendinite de cavalos Puro Sangue Inglês de corrida [Evaluation of gallium arsenide laser for treatment of equine tendinitis]. Master’s Thesis, University of São Paulo, São Paulo

  46. Casalechi HL, Nicolau RA, Casalechi VL, Silveira-Júnior L, Paula AMB, Pacheco MTT (2009) The effects of low level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 24:659–665

    Article  PubMed  Google Scholar 

  47. Leja C, Geminiani A, Caton J, Romanos G (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28:1435–1440

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the staff of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science, UNESP - Univ Estadual Paulista “Julio de Mesquita Filho”, Botucatu for their help in handling the animals and the Coordinating Body Enhancement Person (CAPES) for the master’s degree scholarship.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study has received approval of the SVMAS-SPSU Ethics Committee on Animal Use (protocol number 272/2011- CEUA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Liz Garcia Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mattos, L.H.L., Álvarez, L.E.C., Yamada, A.L.M. et al. Effect of phototherapy with light-emitting diodes (890 nm) on tendon repair: an experimental model in sheep. Lasers Med Sci 30, 193–201 (2015). https://doi.org/10.1007/s10103-014-1641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1641-1

Keywords

Navigation