Skip to main content
Log in

Nitrogen Fixation by Termites in Tropical Forests, Thailand

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Nitrogen (N) fixed by termites was evaluated as a N input to decomposition processes in two tropical forests, a dry deciduous forest (DDF) and the neighboring dry evergreen forest (DEF), Thailand. A diverse group of termite species were assayed by acetylene reduction method and only the wood/litter-feeding termites were found to fix N. More intensive samplings of two abundant species, Microcerotermes crassus and Globitermes sulphureus, were done across several seasons, suggesting N fixation rates of 0.21 and 0.28 kg ha−1 y−1 by termites in the DDF and DEF, respectively. Also, estimates of asymbiotic N fixation rates were 0.75 and 3.95 kg ha−1 y−1. N fixed by termites and by asymbiotic fixers is directly supplied to decomposers breaking down dead plant material and could be a major source of their N. N fixed by termites was 7–22% of that fixed by termites and asymbiotic fixers. Although N fixed by termites is a small input compared to other inputs, this N is likely important for decomposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abe T. 1980. Studies on the distribution and ecological role of termites in a lowland rain-forest of West Malaysia. 4. The role of termites in the process of wood decomposition in Pasoh-Forest-Reserve. Revue d’Ecologie et de Biologie du Sol 17:23–40

    Google Scholar 

  • Benemann JR. 1973. Nitrogen fixation in termites. Science 181:164–5

    CAS  Google Scholar 

  • Bentley BL. 1984. Nitrogen fixation in termites – fate of newly fixed nitrogen. J Insect Physiol 30:653–5

    Article  CAS  Google Scholar 

  • Bignell DE, Eggleton P. 2000. Termites in ecosystems. In: Abe T, Bignell DE, Higashi M, Eds. Termite: evolution, society, symbioses, ecology. Dordrecht: Kluwer Academic. p 363–87

    Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas KL. 1997. Termites as mediators of carbon fluxes in tropical forests: Budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD, Eds. Forests and Insects. London: Chapman and Hall. p 109–34

    Google Scholar 

  • Breznak JA. 1975. Symbiotic relationships between termites and their intestinal microbiota. In: Jennings DH, Lee DL, Eds. Symbiosis: 29th Symposium of the Society for Experimental Biology. Cambridge: Cambridge University Press. p 559–80

    Google Scholar 

  • Breznak JA. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–43

    Article  CAS  PubMed  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC. 1973. Nitrogen fixation in termites. Nature 244:577–80

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–45

    Article  CAS  Google Scholar 

  • Collins NM. 1980. The distribution of soil macro fauna on the west ridge of Gunung Mount Mulu Sarawak. Oecologia 44:263–75

    Article  Google Scholar 

  • Curtis AD, Waller DA. 1997. Variation in rates of nitrogen fixation in termites: response to dietary nitrogen in the field and laboratory. Physiol Entomol 22:303–9

    Article  Google Scholar 

  • Curtis AD, Waller DA. 1998. Seasonal patterns of nitrogen fixation in termites. Funct Ecol 12:803–7

    Article  Google Scholar 

  • Edwards PJ. 1982. Studies of mineral cycling in a montane rain forest in New Guinea 5. Rates of cycling in throughfall and litter fall. J Ecol 70:807–28

    CAS  Google Scholar 

  • Eggleton P. 2000. Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M, Eds. Termite: evolution, society, symbioses, ecology. Dordrecht: Kluwer Academic. p 25–51

    Google Scholar 

  • Eggleton P, Bignell DE. 1995. Monitoring the response of tropical insects to changes in the environment: troubles with termites. In: Harrington R, Stork NE, Eds. Insects in a changing environment. London: Academic Press. p 478–97

    Google Scholar 

  • Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, Davies RG, Maryati M. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Philos Trans Roy Soc Lond B Biol Sci 354:1791–802

    CAS  Google Scholar 

  • Fittkau EJ, Klinge H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14

    Google Scholar 

  • Frey SD, Elliott ET, Paustian K, Peterson G. 2000. Fungal translocation as a mechanism of exogenous nitrogen inputs to decomposing surface residues in a no-tillage agroecosystem. Soil Biol Biochem 32:689–98

    Article  CAS  Google Scholar 

  • Hall JH, Matson PA. 2003. Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecol Monogr 73:107–29

    Google Scholar 

  • Hardy RW, Burns RC, Holsten RD. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPP. 1988. Nitrogen limitation of production and decomposition in prairie mountain meadow and pine forest. Ecology 69:1009–16

    Google Scholar 

  • Jordan CF. 1985. Nutrient Cycling in Tropical Forest Ecosystems: Principles and their Application in Management and Conservation. Chichester: John Wiley and Sons. 190 p

    Google Scholar 

  • Konaté S, Le Roux X, Verdier B, Lepage M. 2003. Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Funct Ecol 17:305–14

    Google Scholar 

  • Lovelock M, Obrien RW, Slaytor M. 1985. Effect of laboratory containment on the nitrogen metabolism of termites. Insect Biochem 15:503–10

    CAS  Google Scholar 

  • Martius C. 1994. Diversity and ecology of termites in Amazonian forests. Pedobiologia 38:407–28

    Google Scholar 

  • Nardi JB, Mackie RI, Dawson JO. 2002. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–63

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Waller DA, Gordon AS. 1992. Variation in acetylene-reduction (nitrogen-fixation) rates in Reticulitermes spp. (Isoptera; Rhinotermitidae). VA J Sci 43:333–8

    Google Scholar 

  • Prestwich GD, Bentley BL, Carpenter EJ. 1980. Nitrogen sources for Neotropical nasute termites Nasutitermes ephratae and Rhynchotermes perarmatus fixation and selective foraging. Oecologia 46:397–401

    Google Scholar 

  • Rohrmann GF, Rossman AY. 1980. Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 20:61–73

    CAS  Google Scholar 

  • Roisin Y. 2000. Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M, Eds. Termite: evolution, society, symbioses, ecology. Dordrecht: Kluwer Academic. p 95–119

    Google Scholar 

  • Schaefer DA, Whitford WG. 1981. Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia 48:277–83

    Article  Google Scholar 

  • Son Y. 2001. Non-symbiotic nitrogen fixation in forest ecosystems. Ecol Res 16:183–96

    Article  CAS  Google Scholar 

  • Strigel G, Ruhiyat D, Prayitno D, Sarmina S. 1994. Nutrient input by rainfall into secondary forests in East Kalimantan, Indonesia. J Trop Ecol 10:285–8

    Google Scholar 

  • Sylvester-Bradley R, Bandeira AG, de Oliveira LA. 1978. Fixação de nitrogênio (redução de acetileno) em cupins (Insecta: Isoptera) da Amazônia Central. Acta Amazonica 8:621–7

    CAS  Google Scholar 

  • Tayasu I, Sugimoto A, Wada E, Abe T. 1994. Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–31

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea – How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Waller DA. 2000. Nitrogen fixation by termite symbionts. In: Triplett EW, Ed. Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Wymondham: Horizon Scientific Press. p 225–36

    Google Scholar 

  • Waller DA, Breitenbeck GA, La Fage JP. 1989. Variation in acetylene-reduction by Coptotermes formosanus (Isoptera, Rhinotermitidae) related to nest source and termite size. Sociobiology 16:191–6

    Google Scholar 

  • Wood TG, Sands WA. 1978. The role of termites in ecosystems. In: Brian MV, Ed. Production ecology of ants and termites. Cambridge: Cambridge University Press. p 245–92

    Google Scholar 

  • Yamada A, Inoue T, Sugimoto A, Takematsu Y, Kumai T, Hyodo F, Fujita A, Tayasu I, Klangkaew C, Kirtibutr N, Kudo T, Abe T. 2003. Abundance and biomass of termites (Insecta: Isoptera) in dead wood in a dry evergreen forest in Thailand. Sociobiology 42:569–85

    Google Scholar 

Download references

Acknowledgements

We thank the National Research Council of Thailand, the people who are working at Sakaerat Environmental Research Station, T. Johjima, Y. Hongoh, C. Boontong, S. Trakulnaleamsai, and N. Noparatnaraporn for their kind cooperation. We thank the chemical analysis section of RIKEN for the elemental analyses, M. B. Wamalwa, I. Tayasu, and two anonymous reviewers for their helpful comments on the manuscript, and A. Haraguchi and R. Araki for improving the English of the manuscript. This work was supported by Grant-in-Aid (09NP1501) for Creative Basic Research from Japan Ministry of Education, Culture, Sports, Science and Technology, and in part by grants from the Bioarchitect Research Program and the Eco Molecular Science Research Program from RIKEN. The first author (A. Y.) was also supported by a grant from the Junior Research Associate Program from RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriya Ohkuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, A., Inoue, T., Wiwatwitaya, D. et al. Nitrogen Fixation by Termites in Tropical Forests, Thailand. Ecosystems 9, 75–83 (2006). https://doi.org/10.1007/s10021-005-0024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0024-7

Keywords

Navigation