Skip to main content
Log in

When finite becomes infinite: convergence properties of vibrational spectra of oligomer chains

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a computational study of convergence properties of vibrational IR and Raman spectra for a series of increasingly long units of polyethylene, cis- and trans-polyacetylenes, and polyynes. Convergent behavior to the spectra of infinitely long polymers was observed in all cases when chains reached lengths of approximately 60 carbon atoms, both with respect to the positions of the bands and to their intensities. The vibrational spectra of longer chains are practically indistinguishable. The convergence rate depends on the degree of the π conjugation in a studied system: Vibrational spectra for oligoethylenes converge noticeably faster than the spectra for the conjugated systems. The slowest convergence is observed for skeletal motions of the oligomer chains, which may require more than a hundred carbon atoms in the chain to show deviations smaller than 1 cm−1 to the corresponding solid-state calculations. The results suggest that the boundary between the properties of finite and infinite molecular systems fades away for a surprisingly small number of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aljibury AL, Snyder RG, Strauss HL, Raghavachari K (1986) The structure of n-alkanes: high precision ab initio calculation and relation to vibrational spectra. J Chem Phys 84:6872–6878

    Article  CAS  Google Scholar 

  2. Kofranek M, Lischka H, Karpfen A (1992) From butadiene to polyacetylene: an ab initio study on the vibrational spectra of polyenes. J Chem Phys 96:982–996

    Article  CAS  Google Scholar 

  3. Yang S, Kertesz M, Zolyomi V, Kurti J (2007) Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne. J Phys Chem A 111:2434–2441

    Article  CAS  Google Scholar 

  4. Yang S, Kertesz M (2008) Linear Cn clusters: are they acetylenic or cumulenic? J Phys Chem A 112:146–151

    Article  CAS  Google Scholar 

  5. Choi CH, Kertesz M (1997) The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene. J Chem Phys 107:6712–6721

    Article  Google Scholar 

  6. Pulay P (1995) Analytical derivative techniques and the calculation of vibrational spectra. In: Yarkony D (ed) Modern electronic structure theory. Part II. World Scientific, Singapore, pp 1191–1240

    Chapter  Google Scholar 

  7. Delgado-Venegas RI, Mejía-Rodríguez D, Flores-Moreno R, Calaminici P, Köster AM (2016) Analytic second derivatives from auxiliary density perturbation theory. J Chem Phys 145:224103

    Article  Google Scholar 

  8. Flores-Moreno R, Köster AM (2008) Auxiliary density perturbation theory. J Chem Phys 128:134105

    Article  Google Scholar 

  9. Li WF, Irle S, Witek HA (2010) Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. ACS Nano 4:4475–4486

    Article  CAS  Google Scholar 

  10. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  11. Eisler S, Slepkov AD, Elliott E, Luu T, McDonald R, Hegmann FA, Tykwinski RR (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127:2666–2676

    Article  CAS  Google Scholar 

  12. Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Energetics and structure of glycine and alanine based model peptides: approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem Phys 263:203–219

    Article  CAS  Google Scholar 

  13. Krüger T, Elstner M, Schiffels P, Frauenheim T (2005) Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J Chem Phys 122(1–5):114110

    Article  Google Scholar 

  14. Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys Status Solidi B 217:357–376

    Article  CAS  Google Scholar 

  15. Witek HA, Irle S, Morokuma K (2004) Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. J Chem Phys 121:5163–5170

    Article  CAS  Google Scholar 

  16. Witek HA, Morokuma K (2004) Systematic study of vibrational frequencies calculated with the self-consistent-charge density-functional tight-binding method. J Comput Chem 25:1858–1864

    Article  CAS  Google Scholar 

  17. Małolepsza E, Witek HA, Morokuma K (2005) Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method. Chem Phys Lett 412:237–243

    Article  Google Scholar 

  18. Witek HA, Morokuma K, Stradomska A (2005) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. II. Infrared spectra. J Theor Comput Chem 4:639–655

    Article  CAS  Google Scholar 

  19. Witek HA, Morokuma K, Stradomska A (2004) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. I. Raman spectra. J Chem Phys 121:5171–5178

    Article  CAS  Google Scholar 

  20. Małolepsza E, Witek HA, Irle S (2007) Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20–C36. J Phys Chem A 111:6649–6657

    Article  Google Scholar 

  21. Małolepsza E, Lee YP, Witek HA, Irle S, Lin CF, Hsieh HM (2009) Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42. Int J Quantum Chem 109:1999–2011

    Article  Google Scholar 

  22. Witek HA, Trzaskowski B, Małolepsza E, Morokuma K, Adamowicz L (2007) Computational study of molecular properties of aggregates of C60 and (16, 0) zigzag nanotube. Chem Phys Lett 446:87–91

    Article  CAS  Google Scholar 

  23. Gaus M, Chou CP, Witek HA, Elstner M (2009) Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. J Phys Chem A 113:11866–11881

    Article  CAS  Google Scholar 

  24. Witek HA, Irle S, Zheng G, de Jong W, Morokuma K (2006) Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C28, C60, and C70. J Chem Phys 125(1–15):214706

    Article  Google Scholar 

  25. Kazachkin DV, Nishimura Y, Witek HA, Irle S, Borguet E (2011) Dramatic reduction of IR cross-sections for molecules adsorbed in single wall carbon nanotubes. J Am Chem Soc 129:8191–8198

    Article  Google Scholar 

  26. Li WF, Andrzejak M, Witek HA (2012) Evolution of physical properties of conjugated systems. Phys Status Solidi B 249:306–316

    Article  CAS  Google Scholar 

  27. Witek HA, Irle S (2016) Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 100:484–491

    Article  CAS  Google Scholar 

  28. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684

    Article  CAS  Google Scholar 

  29. Chou CP, Li WF, Witek HA, Andrzejak M (2011) Vibrational spectroscopy of linear carbon chains. In: Nemes L, Irle S (eds) Spectroscopy, dynamics and molecular theory of carbon plasmas and vapors. World Scientific, Hackensack, pp 375–415

  30. Shirakawa H, Ikeda S (1971) Infrared spectra of poly(acetylene). Polym J 2:231–244

    Article  CAS  Google Scholar 

  31. Hirata S, Iwata S (1997) Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine. J Chem Phys 107:10075–10084

    Article  CAS  Google Scholar 

  32. Lichtmann LS, Imhoff EA, Sarhangi A, Fitchen DB (1984) Resonance Raman spectra of cis (CH)x and (CD)x. J Chem Phys 81:168–184

    Article  CAS  Google Scholar 

  33. Mulazzi E (1985) Polarized resonant Raman scattering spectra from stretched trans polyacetylene. Theory. Solid State Commun 55(9):807–810

    Article  CAS  Google Scholar 

  34. Tiziani R, Brivio GP, Mulazzi E (1985) Resonant Raman scattering spectra of trans-(CD)x: evidence for a distribution of conjugation lengths. Phys Rev B 31(6):4015–4018

    Article  CAS  Google Scholar 

  35. Tabata H, Fujii M, Hayashi S, Doi T, Wakabayashi T (2006) Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 44:3168–3176

    Article  CAS  Google Scholar 

  36. Krimm S, Liang CY, Sutherland GBBM (1956) Infrared spectra of high polymers. II. Polyethylene. J Chem Phys 25:549–562

    Article  CAS  Google Scholar 

  37. Nielsen JR, Woollett AH (1957) Vibrational spectra of polyethylenes and related substances. J Chem Phys 26:1391–1400

    Article  CAS  Google Scholar 

  38. Nielsen JR, Holland RF (1961) Dichroism and interpretation of the infrared bands of oriented crystalline polyethylene. J Mol Spectrosc 6:394–418

    Article  CAS  Google Scholar 

  39. Brown RG (1963) Raman spectra of polyethylenes. J Chem Phys 38:221–225

    Article  CAS  Google Scholar 

  40. Hirata S, Iwata S (1998) Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene. J Chem Phys 108:7901–7908

    Article  CAS  Google Scholar 

  41. Snyder RG (1967) A revised assignment of the B2g methylene wagging fundamental of the planar polyethylene chain. J Mol Spectrosc 23:224–228

    Article  CAS  Google Scholar 

  42. Snyder RG (1969) Raman spectrum of polyethylene and the assignment of the B2g way fundamental. J Mol Spectrosc 31:464–465

    Article  CAS  Google Scholar 

  43. Rakovic D, Stepanyan SA, Gribov LA, Panchenko YN (1982) The solution of the inverse spectroscopic problem for the IR spectra of trans- and cis-hexatrienes. J Mol Struct 90:363–377

    Google Scholar 

  44. Kim JY, Furukawa Y, Sakamoto A, Tasumi M (2002) Raman studies on the self-localized excitations in lightly and heavily doped trans-polyacetylene with sodium. J Phys Chem A 106:8876–8882

  45. Hendra PJ, Agbenyega JK (1993) The Raman spectra of polymers, 1st edn, chap C. Wiley, Chichester, p 6

  46. Hummel DO (1991) Atlas of polymer and plastics analysis, 3rd edn. Wiley-VCH, Munich

  47. Khlifi M, Paillous P, Delpech C, Nishio M, Bruston P, Raulin F (1995) Absolute IR band intensities of diacetylene in the 250–4300 cm−1 region: implications for Titan’s atmosphere. J Mol Spectrosc 174:116–122

    Article  CAS  Google Scholar 

  48. Shindo F, Benilan Y, Guillemin JC, Chaquin P, Jolly A, Raulin F (2003) Ultraviolet and infrared spectrum of C6H2 revisited and vapor pressure curve in Titan's atmosphere. Planet Space Sci 51:9–17

    Article  CAS  Google Scholar 

  49. Shindo F, Benilan Y, Chaquin P, Guillemin JC, Jolly A, Raulin F (2001) IR spectrum of C8H2: integrated band intensities and some observational implications. J Mol Spectrosc 210:191–195

    Article  CAS  Google Scholar 

  50. Nishimura Y, Lee YP, Irle S, Witek HA (2014) Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH)n (n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. J Chem Phys 141:094303

    Article  Google Scholar 

Download references

Acknowledgments

Ministry of Science and Technology, Taiwan (MOST 105-2113-M-009-018-MY3) and the Center for Emergent Functional Matter Science of National Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project funded by the Ministry of Education, Taiwan. We are grateful to the National Center for High-performance Computing, Taiwan for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henryk Witek or Stephan Irle.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, CP., Witek, H. & Irle, S. When finite becomes infinite: convergence properties of vibrational spectra of oligomer chains. J Mol Model 24, 288 (2018). https://doi.org/10.1007/s00894-018-3824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3824-3

Keywords

Navigation