Skip to main content
Log in

The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) combined with nonequilibrium Green’s function (NEGF) formalism are used to investigate the effects of substitutional doping by nitrogen and sulfur on transport properties of AGNR-pentalene-AGNR nanojunction. A considerable spin filtering capability in a wide bias range is observed for all systems, which may have potential application in spintronics devices. Moreover, all model devices exhibit a negative differential effect with considerable peak-to-valley ratio. Thus, our findings provide a way to produce multifunctional spintronic devices based on nitrogen and sulfur doped pentalene-AGNR nanojunctions. The underlying mechanism for this interesting behavior was exposed by analyzing the transmission spectrum as well as the electrostatic potential distribution. In addition, a system doped with an odd number of dopant shows a rectifying efficiency comparable to other systems. The above findings strongly imply that such a multifunctional molecular device would be a useful candidate for molecular electronics.

The graphene-pentalene-graphene molecular junction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  2. Taylor J, Guo H, Wang J (2001) Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C60 device. Phys Rev B 63:121104

    Article  Google Scholar 

  3. Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218–221

    Article  CAS  Google Scholar 

  4. Kim T, Liu ZF, Lee C, Neaton JB, Venkataraman L (2014) Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc Natl Acad Sci U S A 111:10928–10932

    Article  CAS  Google Scholar 

  5. Wan HQ, Xu Y, Zhou GH (2012) Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. J Chem Phys 136:184704

    Article  Google Scholar 

  6. Batra A, Darancet P, Chen QS, Meisner JS, Widawsky JR, Neaton JB, Nuckolls C, Venkataraman L (2013) Tuning rectification in single-molecular diodes. Nano Lett 13:6233–6237

    Article  CAS  Google Scholar 

  7. Li V, Zhang ZH, Zhang JJ, Tian W, Fan ZQ, Deng XQ, Tang GP (2013) Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-σ-a molecular diode. Org Electron 14:958–965

    Article  CAS  Google Scholar 

  8. Pramanik A, Sarkar S, Sarkar P (2012) Doped GNR p−n junction as high performance NDR and rectifying device. J Phys Chem C 116:18064–18069

    Article  CAS  Google Scholar 

  9. Chakrabarty S, Wasey AHMA, Thapa R, Das GP (2015) First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device. AIP Adv 5:087163

    Article  Google Scholar 

  10. Asadi K, Katsouras I, Harkema J, Gholamrezaie F, Smits ECP, Biscarini F, Blom PWM, de Leeuw DM (2012) Organic field-effect transistors as a test-bed for molecular electronics: a combined study with large-area molecular junctions. Org Electron 13:2502–2507

    Article  CAS  Google Scholar 

  11. Wan HQ, Zhou BH, Chen XW, Sun CQ, Zhou GH (2012) Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J Phys Chem C 116:2570–2574

    Article  CAS  Google Scholar 

  12. Zeng MG, Shen L, Cai YQ, Sha ZD (2010) Feng YP, Perfect spin-filter and spin-valve in carbon atomic chains. Appl Phys Lett 96:042104

    Article  Google Scholar 

  13. Ni Y, Yao KL, Tang CQ, Gao GY, Fu HH, Zhu SC (2014) Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv 4:18522–18528

    Article  CAS  Google Scholar 

  14. Huang J, Xu K, Lei SL, Su HB, Yang SF, Li QX, Yang JL (2012) Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. J Chem Phys 136:064707

    Article  Google Scholar 

  15. Caliskan S, Laref A (2014) Spin transport properties of n-polyacene molecules (n=1–15) connected to Ni surface electrodes: theoretical analysis. Sci Rep 4:7363

    Article  CAS  Google Scholar 

  16. Zu F, Liu Z, Yao K, Gao G, Fu H, Zhu S, Ni Y, Peng L (2014) Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction. Sci Rep 4:4838

    Article  CAS  Google Scholar 

  17. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552

    Article  CAS  Google Scholar 

  18. Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011–16021

    Article  CAS  Google Scholar 

  19. Liu R, Ke SH, Baranger HU, Yang W (2005) Intermolecular effect in molecular electronics. J Chem Phys 122:044703

    Article  Google Scholar 

  20. Kaneko S, Murai D, Marques-Gonzalez S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K, Manabu K (2016) Site-selection in single-molecule junction for highly reproducible molecular electronics. J Am Chem Soc 138:1294–1300

    Article  CAS  Google Scholar 

  21. Hao H, Zheng XH, Song LL, Wang RN, Zeng Z (2012) Electrostatic spin crossover in a molecular junction of a single molecule magnet Fe2. Phys Rev Lett 108:017202

    Article  Google Scholar 

  22. Wu QH, Zhao P, Chen G (2015) Magnetic transport properties of DBTAA-based nanodevices with graphene nanoribbon electrodes. Org Electron 25:308–316

    Article  Google Scholar 

  23. Carrascal D, García-Suarez VM, Ferrer J (2012) Impact of edge’ shape on the functionalities of graphene-based single-molecule electronics devices. Phys Rev B 85:195434

    Article  Google Scholar 

  24. Zeng J, Chen KQ (2013) Spin filtering, magnetic and electronic switching behaviors in manganese porphyrin-based spintronic devices. J Mater Chem C 1:4014–4019

    Article  CAS  Google Scholar 

  25. Ning ZY, Zhu Y, Wang J, Guo H (2008) Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions. Phys Rev Lett 100:056803

    Article  Google Scholar 

  26. Rocha AR, García-suárez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4:335–339

    Article  CAS  Google Scholar 

  27. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Pentacene-based organic thin-film transistors. IEEE Trans Electron Devices 44:1325–1331

    Article  CAS  Google Scholar 

  28. Nelson SF, Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1998) Temperature-independent transport in high-mobility pentacene transistors. Appl Phys Lett 72:1854–1856

    Article  CAS  Google Scholar 

  29. Pramanik A, Mandal B, Sarkar S, Sarkar P (2014) Effect of edge states on the transport properties of pentacene–graphene nanojunctions. Chem Phys Lett 597:1–5

    Article  CAS  Google Scholar 

  30. Li X, Cao L, Li HL, Wan H, Zhou G (2016) Spin-resolved transport properties of a pyridine-linked single molecule embedded between zigzag-edged graphene nanoribbon electrodes. J Phys Chem C 120:3010–3018

    Article  CAS  Google Scholar 

  31. Rauba JMC, Strange M, Thygesen KS (2008) Quantum conductance of 4,4-bipyridine molecular junctions: role of electrode work function and local d band. Phys Rev B 78:165116

    Article  Google Scholar 

  32. Yuan S, Wang S, Wang Y, Ling Q (2017) Effect of molecular structure on spin-dependent electron transport in biferrocene-based molecular junctions: a first-principles study. J Comput Electron 16:340–346

    Article  CAS  Google Scholar 

  33. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  34. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  35. Adak O, Korytar R, Joe AY, Evers F, Venkataraman L (2015) Impact of electrode density of states on transport through pyridinelinked single molecule junctions. Nano Lett 15:3716–3722

    Article  CAS  Google Scholar 

  36. Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293

    Article  CAS  Google Scholar 

  37. Lee CG, Park S, Ruoff RS, Dodabalapur A (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95:023304

    Article  Google Scholar 

  38. Pengfei L, Caiyun C, Jie Z, Shaojuan L, Baoquan S, Qiaoliang B (2014) Graphene-based transparent electrodes for hybrid solar cells. Front Mater 1:26

    Google Scholar 

  39. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803

    Article  Google Scholar 

  40. Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  Google Scholar 

  41. Zhang A, Wu Y, Ke SH, Feng YP, Zhang C (2011) Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology 22:435702

    Article  Google Scholar 

  42. Koskinen P, Malola S, Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502

    Article  Google Scholar 

  43. Kobayashi Y, Fukui KI, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406

    Article  Google Scholar 

  44. Lin HH, Hikihara T, Jeng HT, Huang BL, Mou CY, Hu X (2009) Ferromagnetism in armchair graphene nanoribbons. Phys Rev B 79:035405

    Article  Google Scholar 

  45. Jacob J, Sax S, Piok T, List EJW, Grimsdale AC, Mullen K (2004) Ladder-type pentaphenylenes and their polymers: efficient blue-light emitters and electron-accepting materials via a common intermediate. J Am Chem Soc 126:6987–6995

    Article  CAS  Google Scholar 

  46. Zhu X, Mitsui C, Tsuji H, Nakamura E (2009) Modular synthesis of 1H-indenes, dihydro-s-indacene, and diindenoindacene—a carbon-bridged p-phenylenevinylene congener. J Am Chem Soc 131:13596–13597

    Article  CAS  Google Scholar 

  47. Kawase T, Fujiwara T, Kitamura C, Konishi A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Shinamura S, Mori H, Miyazaki E, Takimiya K (2010) Dinaphthopentalenes: pentalene derivatives for organic thin-film transistors. Angew Chem 122:7894–7898

    Article  Google Scholar 

  48. Dai G, Chang J, Zhang W, Bai S, Huang KW, Xu J, Chi C (2015) Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chem Commun 51:503–506

    Article  CAS  Google Scholar 

  49. Yang Z, Wang D, Liu X, Xu LC, Xiong S, Xu B (2014) Magnetic and quantum transport properties of small-sized transition-metal-pentalene sandwich cluster. J Phys Chem C 118:29695–29703

    Article  CAS  Google Scholar 

  50. Singh NB, Bhattacharya B, Sarkar U (2014) A first principle study of pristine and BN−doped graphyne family. Struct Chem 25:1695–1710

    Article  CAS  Google Scholar 

  51. Bhattacharya B, Singh NB, Mondal R, Sarkar U (2015) Electronic and optical properties of pristine and boron–nitrogen doped graphyne nanotubes. Phys Chem Chem Phys 17:19325–19341

    Article  CAS  Google Scholar 

  52. Bhattacharya B, Sarkar U (2016) The effect of boron and nitrogen doping in electronic magnetic and optical properties of graphyne. J Phys Chem C 120:26793–26806

    Article  CAS  Google Scholar 

  53. Sarkar U, Bhattacharya B, Seriani N (2015) First principle study of sodium decorated graphyne. Chem Phys 461:74–80

    Article  CAS  Google Scholar 

  54. Bhattacharya B, Sarkar U, Seriani N (2016) Electronic properties of homo and hetero bilayer graphyne: the idea of a nanocapacitor. J Phys Chem C 120:26579–26587

    Article  CAS  Google Scholar 

  55. Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829

    Article  CAS  Google Scholar 

  56. Bhattacharya B, Sarkar U (2016) Graphyne–graphene (nitride) heterostructure as nanocapacitor. Chem Phys 478:73–80

    Article  CAS  Google Scholar 

  57. Zou F, Zhu L, Yao K (2015) Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons. Sci Rep 5:15966

    Article  CAS  Google Scholar 

  58. Mandal B, Sarkar S, Pramanik A, Sarkar P (2012) Electronic structure and transport properties of sulfur-passivated graphene nanoribbons. J Appl Phys 112:113710

    Article  Google Scholar 

  59. Ordejón P, Artacho E, Soler JM (1996) Self−consistent order−n density−functional calculations for very large systems. Phys Rev B 53:R10441–−R10444

    Article  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  61. Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74:613–616

    Article  Google Scholar 

  62. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  63. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

  64. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215

    Article  Google Scholar 

  65. Sarkar S, Pramanik A, Sarkar P (2016) Quantum transport behavior of Ni-based dinuclear complexes in presence of zigzag graphene nanoribbon as electrode. Chem Phys 478:173–177

    Article  CAS  Google Scholar 

  66. Kawase T, Nishida J (2015) π-extended pentalenes: the revival of the old compound from new standpoints. Chem Rec 15:1045–1059

    Article  Google Scholar 

  67. Tayo BO (2015) Band gap engineering in finite elongated graphene nanoribbon heterojunctions: tight-binding model. AIP Adv 5:087121

    Article  Google Scholar 

  68. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730

    CAS  Google Scholar 

Download references

Acknowledgments

We dedicated this work to celebrate the 60th birthday of Prof. Pratim K. Chattaraj. Miss Barnali Bhattacharya would like to thank CSIR for providing a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Sarkar.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(DOCX 4572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Mondal, R. & Sarkar, U. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis. J Mol Model 24, 278 (2018). https://doi.org/10.1007/s00894-018-3818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3818-1

Keywords

Navigation