Skip to main content
Log in

Towards a comprehensive understanding of the Si(100)-2×1 surface termination through hydrogen passivation using methylamine and methanol: a theoretical approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory, we explored the termination process of Si (100)-2 × 1 reconstructed surface mechanistically through the dehydrogenation of small molecules, considering methyl amine and methanol as terminating reagents. At first, both the terminating reagents form two types of adduct through adsorption on the Si (100)-2 × 1 surface, one in chemisorption mode and the other via physisorption, from which the dehydrogenation process is initiated. By analyzing the activation barriers, it was observed that termination of the Si-surface through the dehydrogenation is kinetically almost equally feasible using either reagent. We further examined in detail the mechanism for each termination process by analyzing geometrical parameters and natural population analysis charges. From bonding evaluation, it is evident that hydrogen abstraction from adsorbates on the Si-surface is asymmetric in nature, where one hydrogen is abstracted as hydride by the electrophilic surface Si and the other hydrogen is abstracted as proton by the neucleophilic surface Si. Moreover, it was also observed that hydride transfer from adsorbate to the Si-surface occurs first followed by proton transfer. Overall, our theoretical interpretation provides a mechanistic understanding of the Si (100)-2 × 1 reconstructed surface termination by amine and alcohol that will further motivate researchers to design different types of decorated semiconductor devices.

Surface termination process of Si(100)-2×1 through formation of non-polar Si–H bonds via dehydrogenation of methylamine and methanol as terminating reagents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bent SF (2002) Surf Sci 500:879–903

    Article  CAS  Google Scholar 

  2. Filler MA, Bent SF (2003) Prog Surf Sci 73:1–56

    Article  CAS  Google Scholar 

  3. Lu X, Lin MC (2002) Int Rev Phys Chem 21:137–184

    Article  CAS  Google Scholar 

  4. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Nature 405:665–668

    Article  CAS  Google Scholar 

  5. Loscutoff PW, Bent SF (2006) Annu Rev Phys Chem 57:467–495

    Article  CAS  Google Scholar 

  6. Peelle BR, Krauland EM, Wittrup KD, Belcher AM (2005) Langmuir 21:6929–6933

    Article  CAS  Google Scholar 

  7. Estephan E, Larroque C, Cuisinier FJG, Bálint Z, Gergely C (2008) J Phys Chem B 112:8799–8805

    Article  CAS  Google Scholar 

  8. Lopez A, Heller T, Bitzer T, Richardson NV (2002) Chem Phys 277:1–8

    Article  CAS  Google Scholar 

  9. Ardalan P, Davani N, Musgrave CB (2007) J Phys Chem C 111:3692–3699

    Article  CAS  Google Scholar 

  10. Hamers RJ, Hovis JS, Lee S, Liu H, Shan J (1997) J Phys Chem B 101:1489–1492

    Article  CAS  Google Scholar 

  11. Kasemo B (2002) Surf Sci 500:656–677

    Article  CAS  Google Scholar 

  12. Buriak JM (2002) Chem Rev 102:1271–1308

    Article  CAS  Google Scholar 

  13. Ulman A (1996) Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  14. Maboudian R (1998) Surf Sci Rep 30:207–269

    Article  CAS  Google Scholar 

  15. Linford MR, Chidsey CED (1993) J Am Chem Soc 115:12631–12632

    Article  CAS  Google Scholar 

  16. Faber EJ, de Smet LCPM, Olthuis W, Zuilhof H, Sudhölter EJR, Bergveld P, van den Berg A (2005) ChemPhysChem 6:2153–2166

    Article  CAS  Google Scholar 

  17. Liu YJ, Yu HZ (2003) ChemPhysChem 4:335–342

    Article  CAS  Google Scholar 

  18. Scheibal ZR, Xu W, Audiffred JF, Henry JE, Flake JC (2008) Electrochem Solid-State Lett 11:K81–K84

    Article  CAS  Google Scholar 

  19. Kilian KA, Böcking T, Gaus K, Gal M, Gooding JJ (2007) Biomaterials 28:3055–3062

    Article  CAS  Google Scholar 

  20. Zhu XY, Houston JE (1999) Tribol Lett 7:87–90

    Article  CAS  Google Scholar 

  21. Liu Q, Hoffmann R (1995) J Am Chem Soc 117:4082–4092

    Article  CAS  Google Scholar 

  22. Konečný R, Doren DJ (1997) J Chem Phys 106:2426–2435

    Article  Google Scholar 

  23. Collin M, Joseph HH, Wang GT, Musgrave CB, Bent SF (2002) J Am Chem Soc 124:4027–4038

    Article  Google Scholar 

  24. Addamiano A, Klein PH (1984) J Cryst Growth 70:291–294

    Article  CAS  Google Scholar 

  25. Shibahara K, Nishino S, Matsunami H (1986) J Cryst Growth 78:538–544

    Article  CAS  Google Scholar 

  26. de Smet LCPM, Zuilhof H, Sudhölter EJR, Lie LH, Houlton A, Horrocks BR (2005) J Phys Chem B 109:12020–12031

    Article  Google Scholar 

  27. Sieval AB, Opitz R, Maas HPA, Schoeman MG, Meijer G, Vergeldt FJ, Zuilhof H, Sudhölter EJR (2000) Langmuir 16:10359–10368

    Article  CAS  Google Scholar 

  28. Qu YQ, Li J, Han KL (2004) J Phys Chem B 108:15103–15109

    Article  CAS  Google Scholar 

  29. Lee JY, Kim S (2001) Surf Sci 482–485:196–200

    Article  Google Scholar 

  30. Romero AH, Sbraccia C, Silvestrelli PL, Ancilotto F (2003) J Chem Phys 119:1085–1092

    Article  CAS  Google Scholar 

  31. Debnath T, Sen K, Ghosh D, Banu T, Das AK (2015) J Phys Chem A 119:4939–4952

    Article  CAS  Google Scholar 

  32. Cho J, Choi CH (2008) J Phys Chem C 112:6907–6913

    Article  CAS  Google Scholar 

  33. Zhang L, Carman AJ, Casey SM (2003) J Phys Chem B 107:8424–8432

    Article  CAS  Google Scholar 

  34. Zhou JG, Hagelberg F, Xiao C (2006) Phys Rev B 73:155307

    Article  Google Scholar 

  35. Lee JH, Cho JH (2007) Phys Rev B 76:125302

    Article  Google Scholar 

  36. Bae SS, Kim KJ, Lee HK, Lee H, Kang TH, Kim B, Kim S (2010) Langmuir 26:1019–1023

    Article  CAS  Google Scholar 

  37. Hahn JR, Jang SH, Jeong S (2010) J Phys Chem C 114:17761–17767

    Article  CAS  Google Scholar 

  38. Kato T, Kang SY, Xu X, Yamabe T (2001) J Phys Chem B 105:10340–10347

    Article  CAS  Google Scholar 

  39. Naitabdi A, Bournel F, Gallet JJ, Markovits A, Rochet F, Borensztein Y, Silly MG, Sirotti F (2012) J Phys Chem C 116:16473–16486

    Article  CAS  Google Scholar 

  40. Carman AJ, Zhang L, Liswood JL, Casey SM (2003) J Phys Chem B 107:5491–5502

    Article  CAS  Google Scholar 

  41. Cho J, Choi CH (2011) J Chem Phys 134:194701

    Article  Google Scholar 

  42. Davies BM, Craig JH (2003) Surf Interface Anal 35:1060–1064

    Article  CAS  Google Scholar 

  43. Wang Y, Hwang GS (2004) Chem Phys Lett 385:144–148

    Article  CAS  Google Scholar 

  44. Wang GT, Mui C, Tannaci JF, Filler MA, Musgrave CB, Bent SF (2003) J Phys Chem B 107:4982–4996

    Article  CAS  Google Scholar 

  45. Ferguson GA, Das U, Raghavachari K (2009) J Phys Chem C 113:10146–10150

    Article  CAS  Google Scholar 

  46. Ardalan P, Dupont G, Musgrave CB (2011) J Phys Chem C 115:7477–7486

    Article  CAS  Google Scholar 

  47. Konecny R, Doren DJ (1997) J Phys Chem B 101:10983–10985

    Article  CAS  Google Scholar 

  48. Sniatynsky R, Janesko BG, El-Mellouhi F, Brothers EN (2012) J Phys Chem C 116:26396–26404

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  50. Zhao Y, Truhlar D (2006) J Chem Phys 125:194101–194118

    Article  Google Scholar 

  51. Zhao Y, Truhlar D (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  52. Ferguson GA, Ramabhadran RO, Than CTL, Paradise RK, Raghavachari K (2014) J Phys Chem C 118:8379–8386

    Article  CAS  Google Scholar 

  53. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  54. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.D. and T.A. are thankful to Council of Scientific and Industrial Research (CSIR) and S.S. is thankful to the University Grants Commission (UGC) for providing them with research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Kr. Das.

Additional information

Dedicated to Prof. Pratim K. Chattaraj on the happy occasion of his 60th birthday.

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, T., Ash, T., Sarkar, S. et al. Towards a comprehensive understanding of the Si(100)-2×1 surface termination through hydrogen passivation using methylamine and methanol: a theoretical approach. J Mol Model 24, 286 (2018). https://doi.org/10.1007/s00894-018-3809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3809-2

Keywords

Navigation