Skip to main content
Log in

Confinement induced catalytic activity in a Diels-Alder reaction: comparison among various CB[n], n = 6–8, cavitands

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The impact of the size of the confining regime on the thermodynamic and kinetic outcome of a representative Diels-Alder reaction between ethylene and 1,3 butadiene has been investigated in silico. To this end, two organic hosts namely cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) have been considered in order to impose confinement on the reactants/transition state/product of the concerned reaction. The obtained results have been compared with the recently reported (Chakraborty et al. ChemPhysChem 18:2162–2170, 2017) corresponding case of the same reaction happening inside cucurbit[7]uril (CB[7]). Results indicate that as compared to the reaction of ethylene and 1,3 butadiene inside CB[7], both CB[6] and CB[8] cavitands slow down the same reaction at 298.15 K and 1 atm. It appears that the size of the cavitand plays a crucial role in affecting the kinetic outcome of the considered reaction. While CB[7] can enforce productive alignment of the reactants inside its cavity thereby facilitating the reaction, neither CB[6] nor CB[8] can perform the same task as effectively. This situation bears qualitative resemblance with the cases of enzyme catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sabin JR, Brandas EJ, Cruz SA (2009) Advances in quantum chemistry: theory of confined quantum systems, vol 57–58. Academic, Waltham

  2. Grochala W, Hoffmann R, Feng J, Ashcroft NW (2007) The chemical imagination at work in very tight places. Angew Chem Int Ed 46:3620–3642

    Article  CAS  Google Scholar 

  3. Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty D, Chattaraj PK (2015) Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube. Chem Phys Lett 621:29–34

    Article  CAS  Google Scholar 

  5. Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty D, Pan S, Chattaraj PK (2016) Encapsulation of small gas molecules and rare gas atoms inside the octa acid cavitand. Theor Chem Accounts 135:119

    Article  CAS  Google Scholar 

  7. Chakraborty D, Das R, Chattaraj PK (2017) Change in optoelectronic properties of ExBox+4 on functionalization and guest encapsulation. Phys Chem Chem Phys 19:23373–23385

    Article  CAS  PubMed  Google Scholar 

  8. Gubbins KE, Liu Y-C, Moore JD, Palmer JC (2011) The role of molecular modeling in confined systems: impact and prospects. Phys Chem Chem Phys 13:58–85

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty D, Chattaraj PK (2018) Host-guest interactions between octa acid and cations/nucleobases. J Comput Chem 39:161–175

    Article  CAS  PubMed  Google Scholar 

  10. Nitschke JR (2014) Supramolecular and dynamic covalent reactivity. Chem Soc Rev 43:1798–1799

    Article  CAS  PubMed  Google Scholar 

  11. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW (2014) Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 43:1660–1733

    Article  CAS  PubMed  Google Scholar 

  12. Ballester P, Fujita M, Rebek J (2015) Molecular containers. Chem Soc Rev 44:392–393

    Article  CAS  PubMed  Google Scholar 

  13. Dong Z, Luo Q, Liu J (2012) Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 41:7890–7908

    Article  CAS  PubMed  Google Scholar 

  14. Mock WL, Irra TA, Wepsiec JP, Adhya M (1989) Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation. J Org Chem 54:5302–5308

    Article  CAS  Google Scholar 

  15. Mock WL, Irra TA, Wepsiec JP, Manimaran TL (1983) Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J Org Chem 48:3619–3620

    Article  CAS  Google Scholar 

  16. Tuncel D, Steinke JHG (1999) Catalytically self-threading polyrotaxanes. Chem Commun 16:1509–1510

  17. Hou X, Ke C, Stoddart JF (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780

    Article  CAS  PubMed  Google Scholar 

  18. Vallavoju N, Sivaguru J (2014) Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem Soc Rev 43:4084–4501

    Article  CAS  PubMed  Google Scholar 

  19. Carlqvist P, Maseras F (2007) A theoretical analysis of a classic example of supramolecular catalysis. Chem Commun 7:748–750

  20. Xu L, Hua W, Hua S, Li J, Li S (2013) Mechanistic insight on the Diels-Alder reaction catalyzed by a self-assembled molecular capsule. J Org Chem 78:3577–3582

    Article  CAS  PubMed  Google Scholar 

  21. Goehry C, Besora M, Maseras F (2015) Computational study on the mechanism of the acceleration of 1,3-dipolar cycloaddition inside cucurbit[6]uril. ACS Catal 5:2445–2451

    Article  CAS  Google Scholar 

  22. Chakraborty D, Das R, Chattaraj PK (2017) Does confinement always lead to thermodynamically and/or kinetically favorable reactions ?: a case study using Diels-Alder reactions within ExBox+4 and CB[7]. ChemPhysChem 18:2162–2170

  23. Chakraborty D, Chattaraj PK (2018) Confinement induced thermodynamic and kinetic facilitation of some Diels-Alder reactions inside a CB[7] cavitand. J Comput Chem 39:151–160

    Article  CAS  PubMed  Google Scholar 

  24. Goehry C, Besora M, Maseras F (2018) Computational description of a Huisgen cycloaddition inside a self-assembled nanocapsule. Eur J Org Chem 18:2103–2109

  25. Daver H, Harvey JN, Rebek JJ, Himo F (2017) Quantum chemical modeling of cycloaddition reaction in a self-assembled capsule. J Am Chem Soc 139:15494–15503

    Article  CAS  PubMed  Google Scholar 

  26. Behrend R, Meyer E, Rusche F (1905) Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Justus Liebigs Ann Chem 339:1–37

  27. Jon SY, Ko YH, Park SH, Kim H-J, Kim K (2001) A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit[8]uril. Chem Commun 19:1938–1939

  28. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed 8:781–853

    Article  CAS  Google Scholar 

  29. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

  30. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

  33. Bader RWF (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

  34. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  35. Contreras-Garca J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting non-covalent interaction regions. J Chem Theory Comput 7:625–632

    Article  CAS  Google Scholar 

  36. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  37. Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal−metal and metal−ligand bonds. J Am Chem Soc 120:13429–13435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.K.C. would like to thank DST, New Delhi for a J. C. Bose National Fellowship. MG thanks CSIR, New Delhi for his senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdutta Chakraborty.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghara, M., Chakraborty, D. & Chattaraj, P.K. Confinement induced catalytic activity in a Diels-Alder reaction: comparison among various CB[n], n = 6–8, cavitands. J Mol Model 24, 228 (2018). https://doi.org/10.1007/s00894-018-3765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3765-x

Keywords

Navigation