Skip to main content
Log in

Theoretical investigations of the chemical bonding in MM′O2 clusters (M, M′ = Be, Mg, Ca)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Motivated by the known stability of the somewhat unusual Be2O2 rhombus, which features a short Be–Be distance but no direct metal–metal bonding, we investigate the nature of the bonding interactions in the analogous clusters MM′O2 (M, M′ = Be, Mg, Ca). CCSD/cc-pVTZ and CCSD(T)/cc-pVQZ calculations, amongst others, are used to determine optimized geometries and the dissociation energies for splitting the MM′O2 clusters into metal oxide monomers. The primary tools used to investigate the chemical bonding are the analysis of domain-averaged Fermi holes, including the generation of localized natural orbitals, and the calculation of appropriate two- and three-center bond indices. Insights emerging from these various analyses concur with earlier studies of M2O2 rhombic clusters in that direct metal–metal bonding was not observed in the MM′O2 rings whereas weak three-center (3c) bonding was detected in the MOM′ moieties. In general terms, these mixed MM′O2 clusters exhibit features that are intermediate between those of M2O2 and M′2O2, and the differences between the M and M′ atoms appear to have little impact on the overall degree of 3c MOM′ bonding.

Bonding situation in MMʹO2 clusters (M, M′ = Be, Mg, Ca)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bertrand JA, Cotton FA, Dollase WA (1963) The crystal structure of cesium dodecachlorotrirhenate(III), a compound with a new type of metal atom cluster. Inorg Chem 2(6):1166–1171. https://doi.org/10.1021/ic50010a019

  2. Cotton FA (2000) A millennial overview of transition metal chemistry. J Chem Soc Dalton Trans 13:1961–1968. https://doi.org/10.1039/B001668N

    Article  Google Scholar 

  3. Chisholm MH (1986) The σ2π4 triple bond between molybdenum and tungsten atoms: developing the chemistry of an inorganic functional group. Angew Chem Int Ed Engl 25(1):21–30. https://doi.org/10.1002/anie.198600211

    Article  Google Scholar 

  4. Chisholm MH, Cotton FA (1978) Chemistry of compounds containing metal-to-metal triple bonds between molybdenum and tungsten. Acc Chem Res 11(9):356–362. https://doi.org/10.1021/ar50129a006

    Article  CAS  Google Scholar 

  5. Noor A, Wagner FR, Kempe R (2008) Metal–metal distances at the limit: a coordination compound with an ultrashort chromium–chromium bond. Angew Chem Int Ed 47(38):7246–7249. https://doi.org/10.1002/anie.200801160

    Article  CAS  Google Scholar 

  6. Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310(5749):844–847. https://doi.org/10.1126/science.1116789

    Article  CAS  PubMed  Google Scholar 

  7. Frenking G (2005) Building a quintuple bond. Science 310(5749):796–797. https://doi.org/10.1126/science.1120281

    Article  CAS  PubMed  Google Scholar 

  8. Weinhold F, Landis CR (2007) High bond orders in metal-metal bonding. Science 316(5821):61–63. https://doi.org/10.1126/science.1140756

    Article  CAS  PubMed  Google Scholar 

  9. Ponec R, Feixas F (2009) Peculiarities of multiple Cr−Cr bonding. Insights from the analysis of domain-averaged Fermi holes. J Phys Chem A 113(29):8394–8400. https://doi.org/10.1021/jp903144q

    Article  CAS  PubMed  Google Scholar 

  10. Gagliardi L, Roos BO (2005) Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433:848. https://doi.org/10.1038/nature03249

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Li W-L, Zhao L, Chen M, Zhou M, Li J, Frenking G (2017) A very short Be–Be distance but no bond: synthesis and bonding analysis of Ng–Be2O2–Ng′ (Ng, Ng′ = Ne, Ar, Kr, Xe). Chem Eur J 23(9):2035–2039. https://doi.org/10.1002/chem.201605994

  12. Li W-L, Lu J-B, Zhao L, Ponec R, Cooper DL, Li J, Frenking G (2018) Electronic structure and bonding situation in M2O2 (M = Be, Mg, Ca) rhombic clusters. J Phys Chem A 122(10):2816–2822. https://doi.org/10.1021/acs.jpca.8b01335

  13. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Györffy W, Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2015) MOLPRO, version 2015.1, a package of ab initio programs. Universität Stuttgart/Cardiff University, Stuttgart/Cardiff. http://www.molpro.net

  14. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev: Comput Molec Sci 2(2):242–253. https://doi.org/10.1002/wcms.82

    Article  CAS  Google Scholar 

  15. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  16. Ponec R (1997) Electron pairing and chemical bonds. Chemical structure, valences and structural similarities from the analysis of the Fermi holes. J Math Chem 21(3):323–333. https://doi.org/10.1023/a:1019186806180

    Article  CAS  Google Scholar 

  17. Ponec R, Roithová J (2001) Domain-averaged Fermi holes—a new means of visualization of chemical bonds. Bonding in hypervalent molecules. Theor Chem Accounts 105(4):383–392. https://doi.org/10.1007/s002140000235

  18. Ponec R, Duben AJ (1999) Electron pairing and chemical bonds: bonding in hypervalent molecules from analysis of Fermi holes. J Comput Chem 20(8):760–771. https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<760::AID-JCC2>3.0.CO;2-3

    Article  CAS  Google Scholar 

  19. Ponec R, Cooper DL (2007) Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes. Faraday Discuss. 135(0):31–42. https://doi.org/10.1039/B605313K

    Article  CAS  PubMed  Google Scholar 

  20. Ponec R, Cooper DL, Savin A (2008) Analytic models of domain-averaged Fermi holes: a new tool for the study of the nature of chemical bonds. Chem Eur J 14(11):3338–3345. https://doi.org/10.1002/chem.200701727

    Article  CAS  PubMed  Google Scholar 

  21. Cooper DL, Ponec R (2008) A one-electron approximation to domain-averaged Fermi hole analysis. Phys Chem Chem Phys 10(9):1319–1329. https://doi.org/10.1039/B715904H

    Article  CAS  PubMed  Google Scholar 

  22. Cooper DL, Ponec R, Kohout M (2016) New insights from domain-averaged Fermi holes and bond order analysis into the bonding conundrum in C2. Mol Phys 114(7–8):1270–1284. https://doi.org/10.1080/00268976.2015.1112925

    Article  CAS  Google Scholar 

  23. Ponec R, Cooper DL (2017) Insights from domain-averaged Fermi hole (DAFH) analysis and multicenter bond indices into the nature of Be(0) bonding. Struct Chem 28(4):1033–1043. https://doi.org/10.1007/s11224-017-0914-2

  24. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  25. Müller AMK (1984) Explicit approximate relation between reduced two- and one-particle density matrices. Phys Lett A 105(9):446–452. https://doi.org/10.1016/0375-9601(84)91034-X

    Article  Google Scholar 

  26. Cioslowski J (1990) Isopycnic orbital transformations and localization of natural orbitals. Int J Quantum Chem 38(S24):15–28. https://doi.org/10.1002/qua.560382406

  27. Mayer I (2012) Improved definition of bond orders for correlated wave functions. Chem Phys Lett 544:83–86. https://doi.org/10.1016/j.cplett.2012.07.003

    Article  CAS  Google Scholar 

  28. Ángyán JG, Loos M, Mayer I (1994) Covalent bond orders and atomic valence indices in the topological theory of atoms in molecules. J Phys Chem 98(20):5244–5248. https://doi.org/10.1021/j100071a013

    Article  Google Scholar 

  29. Cooper DL, Penotti FE, Ponec R (2017) Reassessing spin-coupled (full generalized valence bond) descriptions of ozone using three-center bond indices. Comput Theoret Chem 1116:40–49. https://doi.org/10.1016/j.comptc.2016.12.010

    Article  CAS  Google Scholar 

  30. Keith TA (2017) AIMAll (version 17.01.25). TK Gristmill Software, Overland Park. http://aim.tkgristmill.com

  31. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14(2):123–134. https://doi.org/10.1023/a:1008193805436

    Article  CAS  PubMed  Google Scholar 

  32. Moffitt W (1950) Term values in hybrid states. Proc R Soc London Ser A 202(1071):534–547. https://doi.org/10.1098/rspa.1950.0118

  33. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109(17):3957–3959. https://doi.org/10.1021/jp0404596

    Article  CAS  PubMed  Google Scholar 

  34. Ponec R, Uhlik F (1997) Electron pairing and chemical bonds. On the accuracy of the electron pair model of chemical bond. J Mol Struct Theochem 391(1):159–168. https://doi.org/10.1016/S0166-1280(96)04728-8

    Article  CAS  Google Scholar 

  35. Sannigrahi AB, Nandi PK, Behera L, Kar T (1992) Theoretical study of multi-centre bonding using a delocalised MO approach. J Mol Struct Theochem 276:259–278. https://doi.org/10.1016/0166-1280(92)80036-L

  36. Sannigrahi AB, Kar T (1990) Three-center bond index. Chem Phys Lett 173(5):569–572. https://doi.org/10.1016/0009-2614(90)87254-O

    Article  CAS  Google Scholar 

  37. Ponec R, Mayer I (1997) Investigation of some properties of multicenter bond indices. J Phys Chem A 101(9):1738–1741. https://doi.org/10.1021/jp962510e

    Article  CAS  Google Scholar 

  38. Giambiagi M, de Giambiagi MS, Mundim KC (1990) Definition of a multicenter bond index. Struct Chem 1(5):423–427. https://doi.org/10.1007/bf00671228

    Article  CAS  Google Scholar 

  39. Mundim KC, Giambiagi M, de Giambiagi MS (1994) Multicenter bond index: Grassmann algebra and N-order density functional. J Phys Chem 98(24):6118–6119. https://doi.org/10.1021/j100075a013

    Article  CAS  Google Scholar 

  40. Bochicchio R, Ponec R, Torre A, Lain L (2001) Multicenter bonding within the AIM theory. Theor Chem Accounts 105(4):292–298. https://doi.org/10.1007/s002140000236

    Article  CAS  Google Scholar 

  41. Longuet-Higgins HC (1949) Substances hydrogénées avec défaut d'électrons. J Chim Phys 46:268–275. https://doi.org/10.1051/jcp/1949460268

    Article  CAS  Google Scholar 

  42. Lipscomb WN (1973) Three-center bonds in electron-deficient compounds. Localized molecular orbital approach. Acc Chem Res 6(8):257–262. https://doi.org/10.1021/ar50068a001

    Article  CAS  Google Scholar 

  43. Lipscomb WN (1977) The boranes and their relatives. Science 196(4294):1047–1055. https://doi.org/10.1126/science.196.4294.1047

    Article  CAS  PubMed  Google Scholar 

  44. Ponec R, Yuzhakov G, Tantillo DJ (2004) Multicenter bonding in organic chemistry. Geometry-sensitive 3c-2e bonding in (C···H···C) fragments of organic cations. J Org Chem 69(9):2992–2996. https://doi.org/10.1021/jo035506p

    Article  CAS  PubMed  Google Scholar 

  45. Ponec R, Roithová J, Sannigrahi AB, Lain L, Torre A, Bochicchio RC (2000) On the nature of multicenter bonding in simple atomic clusters. J Mol Struct Theochem 505(1):283–288. https://doi.org/10.1016/S0166-1280(99)00382-6

    Article  CAS  Google Scholar 

  46. Ponec R, Yuzhakov G, Cooper DL (2004) Multicenter bonding and the structure of electron-rich molecules. Model of three-center four-electron bonding reconsidered. Theor Chem Accounts 112(5):419–430. https://doi.org/10.1007/s00214-004-0597-9

    Article  CAS  Google Scholar 

  47. Kar T, Sánchez Marcos E (1992) Three-center four-electron bonds and their indices. Chem Phys Lett 192(1):14–20. https://doi.org/10.1016/0009-2614(92)85420-F

    Article  CAS  Google Scholar 

  48. Cioslowski J, Mixon ST (1991) Covalent bond orders in the topological theory of atoms in molecules. J Am Chem Soc 113(11):4142–4145. https://doi.org/10.1021/ja00011a014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ponec.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

Correlation of rMM′ with θMOM′; Dissociation energies from frozen core CCSD(T)/cc-pVQZ; Results using B3LYP calculations; Traditional two-center Wiberg–Mayer indices; Symmetry-unique valence LNOs for each of the clusters; Broken valences resulting from DAFH analysis for the MM′ domain and for one of the O domains in each cluster; Results from a heuristic 3c generalization of Cioslowski’s covalent bond order.

ESM 1

(PDF 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponec, R., Cooper, D.L. Theoretical investigations of the chemical bonding in MM′O2 clusters (M, M′ = Be, Mg, Ca). J Mol Model 24, 226 (2018). https://doi.org/10.1007/s00894-018-3764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3764-y

Keywords

Navigation