Skip to main content
Log in

Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bacterial iron uptake machinery can be hijacked for the targeted delivery of antibiotics into pathogens by attaching antibiotics to siderophores, iron chelators that are employed by bacteria to obtain this essential nutrient. We synthesized and evaluated Ent–SS–Cipro, a siderophore–antibiotic conjugate comprised of the triscatecholate siderophore enterobactin and the fluoroquinolone antibiotic ciprofloxacin that contains a self-immolative disulfide linker. This linker is designed to be cleaved after uptake into the reducing environment of the bacterial cytoplasm. We show that the disulfide bond of Ent–SS–Cipro is cleaved by reducing agents, including the cellular reductant glutathione, which results in release of the unmodified fluoroquinolone antibiotic. Antibacterial activity assays against a panel of Escherichia coli show that Ent–SS–Cipro exhibits activity against some, but not all, E. coli. This work informs the design of siderophore–antibiotic conjugates, particularly those carrying antibiotics with cytoplasmic targets that require release after uptake into bacterial cells, and indicates that disulfide linkers may not be generally applicable for conjugation strategies of antibiotics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DHBS:

2,3-Dihydroxybenzoyl serine

DTT:

1,4-Dithiothreitol

Ent:

Enterobactin

GSH:

Glutathione

GSSG:

Glutathione disulfide

TCEP:

Tris(2-carboxyethyl)phosphine

References

  1. Clatworthy AE, Pierson E, Hung DT (2007) Nat Chem Biol 3:541–548

    Article  CAS  Google Scholar 

  2. Lewis K (2013) Nat Rev Drug Discovery 12:371–387

    Article  CAS  Google Scholar 

  3. Hood MI, Skaar EP (2012) Nat Rev Microbiol 10:525–537

    Article  CAS  Google Scholar 

  4. Weinberg ED (1975) JAMA 231:39–41

    Article  CAS  Google Scholar 

  5. Palmer LD, Skaar EP (2016) Annu Rev Genet 50:67–91

    Article  CAS  Google Scholar 

  6. Miethke M, Marahiel MA (2007) Microbiol Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  7. Hider RC, Kong X (2010) Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  8. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Biometals 23:601–611

    Article  CAS  Google Scholar 

  9. Wencewicz TA, Miller MJ (2017) Top Med Chem. Springer, Berlin, Heidelberg, pp 1–33

    Google Scholar 

  10. Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E (2009) Biometals 22:3–13

    Article  CAS  Google Scholar 

  11. Zahner H, Diddens H, Keller-Schierlein W, Nägeli HU (1977) Jpn J Antibiot 30:S201–S206

    Google Scholar 

  12. Diarra MS, Lavoie MC, Jacques M, Darwish I, Dolence EK, Dolence JA, Ghosh A, Ghosh M, Miller MJ, Malouin F (1996) Antimicrob Agents Chemother 40:2610–2617

    Article  CAS  Google Scholar 

  13. Ji C, Juárez-Hernández RE, Miller MJ (2012) Future Med Chem 4:297–313

    Article  CAS  Google Scholar 

  14. Page MGP (2013) Ann NY Acad Sci 1277:115–126

    Article  CAS  Google Scholar 

  15. Tillotson GS (2016) Infect Dis (Auckl) 9:45–52

    Article  Google Scholar 

  16. Watanabe N-A, Nagasu T, Katsu K, Kitoh K (1987) Antimicrob Agents Chemother 31:497–504

    Article  CAS  Google Scholar 

  17. Curtis NAC, Eisenstadt RL, East SJ, Cornford RJ, Walker LA, White AJ (1988) Antimicrob Agents Chemother 32:1879–1886

    Article  CAS  Google Scholar 

  18. Silley P, Griffiths JW, Monsey D, Harris AM (1990) Antimicrob Agents Chemother 34:1806–1808

    Article  CAS  Google Scholar 

  19. Hashizume T, Sanada M, Nakagawa S, Tanaka N (1990) J Antibiot 43:1617–1620

    Article  CAS  Google Scholar 

  20. Nikaido H, Rosenberg EY (1990) J Bacteriol 172:1361–1367

    Article  CAS  Google Scholar 

  21. McKee JA, Sharma SK, Miller MJ (1991) Bioconjugate Chem 2:281–291

    Article  CAS  Google Scholar 

  22. Dolence EK, Minnick AA, Lin C-E, Miller MJ, Payne SM (1991) J Med Chem 34:968–978

    Article  CAS  Google Scholar 

  23. Ji C, Miller PA, Miller MJ (2012) J Am Chem Soc 134:9898–9901

    Article  CAS  Google Scholar 

  24. Zheng T, Nolan EM (2014) J Am Chem Soc 136:9677–9691

    Article  CAS  Google Scholar 

  25. Kohira N, West J, Ito A, Ito-Horiyama T, Nakamura R, Sato T, Rittenhouse S, Tsuji M, Yamano Y (2016) Antimicrob Agents Chemother 60:729–734

    Article  CAS  Google Scholar 

  26. Chairatana P, Zheng T, Nolan EM (2015) Chem Sci 6:4458–4471

    Article  CAS  Google Scholar 

  27. Ruiz N, Kahne D, Silhavy TJ (2006) Nat Rev Microbiol 4:57–66

    Article  Google Scholar 

  28. Silhavy TJ, Kahne D, Walker S (2010) Cold Spring Harb Perspect Biol 2:a000414

    Article  Google Scholar 

  29. Hennard C, Truong QC, Desnottes J-F, Paris J-M, Moreau NJ, Abdallah MA (2001) J Med Chem 44:2139–2151

    Article  CAS  Google Scholar 

  30. Rivault F, Liébert C, Burger A, Hoegy F, Abdallah MA, Schalk IJ, Mislin GLA (2007) Bioorg Med Chem Lett 17:640–644

    Article  CAS  Google Scholar 

  31. Wencewicz TA, Möllmann U, Long TE, Miller MJ (2009) Biometals 22:633–648

    Article  CAS  Google Scholar 

  32. Md-Saleh SR, Chilvers EC, Kerr KG, Milner SJ, Snelling AM, Weber JP, Thomas GH, Duhme-Klair A-K, Routledge A (2009) Bioorg Med Chem Lett 19:1496–1498

    Article  CAS  Google Scholar 

  33. Noël S, Gasser V, Pesset B, Hoegy F, Rognan D, Schalk IJ, Mislin GLA (2011) Org Biomol Chem 9:8288–8300

    Article  Google Scholar 

  34. Juárez-Hernández RE, Miller PA, Miller MJ (2012) ACS Med Chem Lett 3:799–803

    Article  Google Scholar 

  35. Ji C, Miller MJ (2012) Bioorg Med Chem 20:3828–3836

    Article  CAS  Google Scholar 

  36. Wencewicz TA, Miller MJ (2013) J Med Chem 56:4044–4052

    Article  CAS  Google Scholar 

  37. Wencewicz TA, Long TE, Möllmann U, Miller MJ (2013) Bioconjugate Chem 24:473–486

    Article  CAS  Google Scholar 

  38. Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, Duhme-Klair A-K (2013) Org Biomol Chem 11:3461–3468

    Article  CAS  Google Scholar 

  39. Souto A, Montaos MA, Balado M, Osorio CR, Rodríguez J, Lemos ML, Jiménez C (2013) Bioorg Med Chem 21:295–302

    Article  CAS  Google Scholar 

  40. Milner SJ, Snelling AM, Kerr KG, Abd-El-Aziz A, Thomas GH, Hubbard RE, Routledge A, Duhme-Klair A-K (2014) Bioorg Med Chem 22:4499–4505

    Article  CAS  Google Scholar 

  41. Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, Mullié C, Sonnet P (2014) Bioorg Med Chem 22:4049–4060

    Article  CAS  Google Scholar 

  42. Ji C, Miller MJ (2015) Biometals 28:541–551

    Article  CAS  Google Scholar 

  43. Braun V, Günthner K, Hantke K, Zimmermann L (1983) J Bacteriol 156:308–315

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM (2018) J Am Chem Soc 140:5193–5201

    Article  CAS  Google Scholar 

  45. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) J Am Chem Soc 127:11075–11084

    Article  CAS  Google Scholar 

  46. Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Microbiology 151:2363–2372

    Article  CAS  Google Scholar 

  47. Zheng T, Nolan EM (2015) Bioorg Med Chem Lett 25:4987–4991

    Article  CAS  Google Scholar 

  48. Paulen A, Gasser V, Hoegy F, Perraud Q, Pesset B, Schalk IJ, Mislin GLA (2015) Org Biomol Chem 13:11567–11579

    Article  CAS  Google Scholar 

  49. Paulen A, Hoegy F, Roche B, Schalk IJ, Mislin GLA (2017) Bioorg Med Chem Lett 27:4867–4870

    Article  CAS  Google Scholar 

  50. Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ (2018) J Med Chem 61:3845–3854

    Article  CAS  Google Scholar 

  51. Zheng T, Bullock JL, Nolan EM (2012) J Am Chem Soc 134:18388–18400

    Article  CAS  Google Scholar 

  52. Vrudhula VM, MacMaster JF, Li Z, Kerr DE, Senter PD (2002) Bioorg Med Chem Lett 12:3591–3594

    Article  CAS  Google Scholar 

  53. Vlahov IR, Leamon CP (2012) Bioconjugate Chem 23:1357–1369

    Article  CAS  Google Scholar 

  54. Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, Chmielewski J (2016) J Am Chem Soc 138:10945–10949

    Article  CAS  Google Scholar 

  55. Kim HS, Song WY, Kim HJ (2015) Org Biomol Chem 13:73–76

    Article  CAS  Google Scholar 

  56. Ritz D, Beckwith J (2001) Annu Rev Microbiol 55:21–48

    Article  CAS  Google Scholar 

  57. Masip L, Veeravalli K, Georgiou G (2006) Antioxid Redox Signaling 8:753–762

    Article  CAS  Google Scholar 

  58. Van Loi V, Rossius M, Antelmann H (2015) Front Microbiol 6:187

    Article  Google Scholar 

  59. Serjeant EP, Dempsey B, International Union of Pure and Applied Chemistry (IUPAC) (1979) IUPAC Chemical Data Series, No 23. Pergamon Press, Oxford, New York

    Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (NIH Grants 1R21AI126465 and 1R01AI114625) for financial support; Lynette Cegelski for providing E. coli UTI89; Manuela Raffatellu for providing E. coli JB2; Ardeypharm GmbH for providing E. coli Nissle 1917. W.N. acknowledges the German National Academy of Sciences Leopoldina for a postdoctoral fellowship (LPDS 2015-08). MS instrumentation maintained by the MIT Center for Environmental Health Sciences (CEHS) is supported by a core center grant from the National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS grant P30-ES002109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Nolan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, W., Nolan, E.M. Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem 23, 1025–1036 (2018). https://doi.org/10.1007/s00775-018-1588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1588-y

Keywords

Navigation