Skip to main content
Log in

Preparation of the carboxylic acid-functionalized graphene oxide/gold nanoparticles/5-amino-2-hydroxybenzoic acid as a novel electrochemical sensing platform

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The carboxylic acid-functionalized graphene oxide/gold nanoparticles modified glassy carbon electrode has been utilized as a platform to immobilize 5-amino-2-hydroxybenzoic acid (mesalazine). The su rface structure and composition of the sensor were characterized by scanning electron microscopy. Electrocatalytic oxidation of urea on the surface of modified electrode was investigated with cyclic voltammetry, electrochemical impedance spectroscopy, and hydrodynamic voltammetry methods. The cyclic voltammetric results indicated the ability of carboxylic acid-functionalized graphene oxide gold nanoparticles modified glassy carbon electrode to catalyze the oxidation of urea. In addition, the modified electrode has short response time, low detection limit, high sensitivity, and low operation potential. Some kinetic parameters, such as the electron transfer coefficient, diffusion coefficient, and catalytic rate constant of the catalytic reaction were calculated. A sensitive amperometric method was proposed for determination of urea with advantages of fast response and good reproducibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) ACS Nano 3:301

    Article  CAS  Google Scholar 

  3. Xie X, Zhao K, Xu X, Zhao W, Liu S, Zhu Z, Li M, Shi Z, Shao Y (2010) J Phys Chem C 114:14243

    Article  CAS  Google Scholar 

  4. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 7:22

    CAS  Google Scholar 

  5. Pei SF, Cheng HM (2012) Carbon 50:3210

    Article  CAS  Google Scholar 

  6. Xu Y, Bai H, Lu G, Li C, Shi G (2008) J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  7. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) ACS Nano 4:1963

    Article  CAS  Google Scholar 

  8. Sun Y, Hu X, Luo W, Huang Y (2011) ACS Nano 5:7100

    Article  CAS  Google Scholar 

  9. Zhu G, Pan LK, Lu T, Xu T, Sun Z (2011) J Mater Chem 21:14869

    Article  CAS  Google Scholar 

  10. Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Oh JH, Jang J (2012) ACS Nano 6:1486

    Article  CAS  Google Scholar 

  11. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) ACS Nano 7:4042

    Article  CAS  Google Scholar 

  12. Sumboja A, Foo CY, Wang X, Lee PS (2013) Adv Mater 25:2809

    Article  CAS  Google Scholar 

  13. Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) J Electroanal Chem 634:68

    Article  CAS  Google Scholar 

  14. Paek SM, Yoo EJ, Honma I (2009) Nano Lett 9:72

    Article  CAS  Google Scholar 

  15. Chen D, Tang LH, Li JH (2010) Chem Soc Rev 39:3157

    Article  CAS  Google Scholar 

  16. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  17. Zhou J, Ralston J, Sedev R, Beattie DA (2009) J Colloid Interf Sci 331:251

    Article  CAS  Google Scholar 

  18. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Chem Rev 112:2739

    Article  CAS  Google Scholar 

  19. Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) J Phys Chem C 111(14):664

    Google Scholar 

  20. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Anal Chem 77:2381

    Article  CAS  Google Scholar 

  21. Guo S, Wang E (2007) Anal Chim Acta 598:181

    Article  CAS  Google Scholar 

  22. Kumar SS, Kwak K, Lee D (2011) Anal Chem 83:3244

    Article  CAS  Google Scholar 

  23. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortés A (2008) Electrochim Acta 53:5848

    Article  CAS  Google Scholar 

  24. Gutierrez M, Alegret S, Valle M (2007) Biosens Bioelectron 222:171

    Google Scholar 

  25. Abdel LMS, Guibault GG (1990) J Biotechnol 14:53

    Article  Google Scholar 

  26. King RL, Botte GG (2011) J Power Sources 196:2773

    Article  CAS  Google Scholar 

  27. Jara CC, Di Giulio S, Fino D, Spinelli P (2008) J Appl Electrochem 38:915

    Article  Google Scholar 

  28. Simka W, Piotrowski J, Robak A, Nawrat G (2009) J Appl Electrochem 39:1137

    Article  CAS  Google Scholar 

  29. Patzer JF, Wolfson SK, Yao SJ (1991) J Mol Catal 70:231

    Article  CAS  Google Scholar 

  30. Shi A, Wang J, Han X, Fang X, Zhang Y (2014) Sens Actuators B 200:206

    Article  CAS  Google Scholar 

  31. Wang XY, Gao A, Lu CC, He XW, Yin XB (2013) Biosens Bioelectron 48:120

    Article  CAS  Google Scholar 

  32. Ciszewski A, Milczarek G, Lewandowska B, Krutowski K (2003) Electroanalysis 15:518

    Article  CAS  Google Scholar 

  33. Azadbakht A, Gholivand MB (2014) Electrochim Acta 125:9

    Article  CAS  Google Scholar 

  34. Trevin S, Bedioui F, Guadalupe Gomez M, Bied-Charreton C (1997) J Mater Chem 7:923

  35. Roslonek G, Taraszewska J (1992) J Electroanal Chem 325:285

    Article  CAS  Google Scholar 

  36. Ciszewski A, Milczarek G (1999) Anal Chem 71:1055

    Article  CAS  Google Scholar 

  37. Ciszewski A (1995) Electroanalysis 7:1132

    Article  CAS  Google Scholar 

  38. Goyal RN, Sangal A (2005) Electrochim Acta 50:2135

    Article  CAS  Google Scholar 

  39. He JB, Lin XQ, Pan J (2005) Electroanalysis 17:1681

    Article  CAS  Google Scholar 

  40. Becerik I, Kadirgan F (2001) Turk J Chem 25:373

    CAS  Google Scholar 

  41. Yousef Elahi M, Mousavi MF, Ghasemi S (2008) Electrochim Acta 54:490

  42. Larew LA, Johnson DC (1989) J Electroanal Chem 262:167

    Article  CAS  Google Scholar 

  43. Vedharathinam V, Botte GG (2012) Electrochim Acta 81:292

    Article  CAS  Google Scholar 

  44. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Int J Hydrogen Energy 33:4367

    Article  CAS  Google Scholar 

  45. Motheo AJ, Machado SAS, Rabelo FJB, Santos JR Jr (1994) J Brazil Chem Soc 3:161

    Article  Google Scholar 

  46. Majdi S, Jabbari A, Heli H (2007) J Solid State Electrochem 11:601

    Article  CAS  Google Scholar 

  47. Yi QF, Huang W, Yu WQ, Li L, Liu XP (2008) Electroanalysis 20:2016

    Article  CAS  Google Scholar 

  48. Yi QF, Zhang JJ, Huang W, Liu XP (2007) Catal Commun 8:1017

    Article  CAS  Google Scholar 

  49. Fleischmann M, Pletcher D, Korinek K (1972) J Chem Soc Perkin Trans 2:1396

    Article  Google Scholar 

  50. Vertes G, Horanyi G (1974) J Electroanal Chem 52:47

    Article  CAS  Google Scholar 

  51. Robertson PM (1980) J Electroanal Chem 111:97

    Article  CAS  Google Scholar 

  52. Taraszewska J, Roslonek G (1994) J Electroanal Chem 364:209

    Article  CAS  Google Scholar 

  53. El-Shafei AA (1999) J Electroanal Chem 471:89

    Article  CAS  Google Scholar 

  54. Gholivand MB, Azadbakht A (2012) Mater Sci Eng C 32:1955

    Article  CAS  Google Scholar 

  55. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrochim Acta 53:6602

    Article  CAS  Google Scholar 

  56. Zhang J, Tse YH, Pietro WJ, Lever ABP (1996) J Electroanal Chem 406:203

    Article  Google Scholar 

  57. Pariente F, Lorenzo E, Tobalina F, Abruna HD (1995) Anal Chem 67:3936

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  59. Galus Z (1976) Fundamentals of electrochemical analysis. Horwood, New York

    Google Scholar 

  60. Cho WJ, Huang HJ (1998) Anal Chem 70:3946

    Article  CAS  Google Scholar 

  61. Tiwari A, Aryal S, Pilla S, Gong S (2009) Talanta 78:1401

    Article  CAS  Google Scholar 

  62. Adeloju SB, Shaw SJ, Wallace GG (1996) Anal Chim Acta 323:107

    Article  CAS  Google Scholar 

  63. Shalini J, Sankaran KJ, Lee CY, Tai NH, Lin IN (2014) Biosens Bioelectron 56:64

    Article  CAS  Google Scholar 

  64. Pizzriello A, Stredansky M, Stredanska S, Miertus S (2001) Talanta 54:763

    Article  Google Scholar 

  65. Vostiar I, Tkac J, Sturdik E, Gemeiner P (2002) Bioelectrochemistry 56:113

    Article  CAS  Google Scholar 

  66. Khadro B, Sanglar C, Bonhomme A, Errachid A, Jaffrezic-Renault N (2010) Proc Eng 5:371

    Article  CAS  Google Scholar 

  67. Rajesh BV, Takashima W, Kaneto K (2005) Biomaterials 26:3683

    Article  CAS  Google Scholar 

  68. Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  69. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S (2008) J Nano Res 3:203

    Article  Google Scholar 

  70. Jiang B, Wang M, Chen Y, Xie J, Xiang Y (2012) Biosens Bioelectron 32:305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Khorramabad Branch, Islamic Azad University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Azadbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadbakht, A., Abbasi, A.R., Derikvand, Z. et al. Preparation of the carboxylic acid-functionalized graphene oxide/gold nanoparticles/5-amino-2-hydroxybenzoic acid as a novel electrochemical sensing platform. Monatsh Chem 147, 705–717 (2016). https://doi.org/10.1007/s00706-015-1527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1527-3

Keywords

Navigation