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Abstract
Broad-XAI moves away from interpreting individual decisions based on a single datum and aims to provide integrated

explanations from multiple machine learning algorithms into a coherent explanation of an agent’s behaviour that is aligned

to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential

backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that

have had increasing success in solving a range of sequential decision-making problems. However, these algorithms operate

as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and

functions. EXplainable RL (XRL) aims to develop techniques to extract concepts from the agent’s: perception of the

environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce the

Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of

Broad-XAI. CXF is designed to incorporate many standard RL extensions and integrated with external ontologies and

communication facilities so that the agent can answer questions that explain outcomes its decisions. This paper aims to:

establish XRL as a distinct branch of XAI; introduce a conceptual framework for XRL; review existing approaches

explaining agent behaviour; and identify opportunities for future research. Finally, this paper discusses how additional

information can be extracted and ultimately integrated into models of communication, facilitating the development of

Broad-XAI.

Keywords Reinforcement learning (RL) � Explainable Reinforcement learning (XRL) � Explainable artificial intelligence

(XAI) � Broad XAI

1 Introduction

Successes, such as AlphaGo [1], autonomous vehicles [2]

and playing Atari video games [3], saw the MIT Tech-

nology Review list Reinforcement Learning (RL) as one of

the top ten technologies of 2017 [4]. However, while RL

can often solve complex sequential decision-making

problems, the algorithms currently operate as a black-box,

where experts must analyse vast amounts of data and

functions to determine why they make particular decisions.

For example, during AlphaGo’s second challenge against

Lee Sedol (ranked 9-dan) AlphaGo’s 37th turn surprised

both commentators and Lee Sedol, which turned the course

of the game in AlphaGo’s favour [5]. David Silver,

DeepMind researcher, reportedly had no insight into why
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AlphaGo made such a creative move until he had investi-

gated the actual calculations made by the programme [6].

For these systems to go the next step and be used by

everyday non-expert users that are not able to inspect an

agent’s internal representation of its policy, they must be

able to provide explanations for their behaviour [7].

The term eXplainable Reinforcement Learning (XRL)

has begun to emerge recently to cover research into

explaining agent’s decisions during temporally separated

decision-making tasks. There have recently been a number

of surveys [8–12] that have provided in-depth discussions

of issues and abilities that reinforcement learning and

embodied agents can provide. These papers pull together a

number of papers that have explored the potential of

explainable systems in interactive temporal agents.

In this paper, we aim to go beyond exploring the current

work alone and instead put forward a conceptual frame-

work that sets up a structure for providing Broad-XAI. The

objective is to promote the research and development of

systems that can explain behaviour from integrated systems

built on a foundation of RL. Interactive temporal agents

built on this framework would be able to explain decisions

and outcomes that provide for the three key areas of human

explanation [13]: contrastive explanation, attribution the-

ory and explanation selection. This framework should be

viewed in the same way Artificial General Intelligence

(AGI) frameworks are sometimes suggested in the litera-

ture. It is not our intention to provide an implementation of

the framework at this time. Extensive research is required

to develop each of the components and this paper identifies

possible reach targets to inspire researchers to pursue. This

framework is tied to a psychological model of explanation

that allows for user controlled and conversational levels of

explanation [14]. In so doing this paper suggests that, if RL

decisions can be explained using human models of expla-

nation, then they can build more trust and social accep-

tance. In presenting this framework, this paper discusses

plausible approaches to developing each component, as

well as identify current work in each area.

This paper is structured with six further parts. The next

section provides a background to XAI and argues how

XRL presents a distinct domain to be pursued. Section 3

proposes the conceptual framework for XRL and discusses

how this integrates with human models of explainability.

Section 4 reviews the current approaches to the initial stage

of the framework, while Sect. 5 identifies future research

opportunities for the advanced stages of the framework.

Section 6 discusses how the framework can be integrated

into models of communication to better facilitate the

development of Broad-XAI. Finally, Sect. 7 summarises the

paper and its contributions.

2 Explainable artificial intelligence

Harari (2016) [15] suggests that humans have always been

a socially oriented species that has utilised their unique

ability to articulate myths as integral to the social fabric. A

myth is a story that aims to explain historical events or

natural/social phenomena [16], which helps guide future

behaviour. Explanation, therefore, is fundamental to human

social interaction and trust, and therefore, key to the social

acceptance of artificial intelligent agents. However, while

human explanations have been studied by philosophers

since Socrates, and over the last fifty years by psycholo-

gists and cognitive scientists, what it actually is, is still an

open question [17]. As with the development of Artificial

Intelligence, where research is hampered by people’s poor

understanding of intelligence, research into explainability

is similarly restricted by a poor understanding of human

explanation.

EXplainable Artificial Intelligence (XAI) is the general

title given to the field of research aiming to generate

explanations of AI systems that satisfies people’s require-

ments in understanding and accepting the decisions made.

There is a huge body of work providing a range of ways of

interpreting black-box algorithms with mostly limited

success. Various surveys have reviewed some of this work

[14, 18–20]. Miller et al. (2017) [21], however, argue that

the majority of researchers make XAI systems that are

specific to their area of AI and that the primary aim behind

these systems is to debug — rather than also considering

the end-users’ requirements. For instance, there are many

explanation systems developed for image processing con-

volutional neural networks (CNN) that universally focus on

identifying areas of an image or the parts of the network

that contributed the most to a particular result [22].

Dazeley et al. (2021) [14] suggest that these ‘narrow’ XAI

approaches that only focus on the individual task at hand

do not provide the details required by users of the ever-

increasing integrated intelligences currently appearing in

the market. These emerging systems, such as autonomous

cars, require Broad-XAI approaches that merge the deci-

sion-making of several integrated systems into a coherent

explanation [14].

Dazeley et al. (2021) [14] suggest that most XAI

research, often referred to as Interpretable Machine learn-

ing(IML), corresponds to zero-order (Reaction) explana-

tions — where ‘zero’ refers to the absence of any

explanation of the system’s intentionality. Such approaches

focus on explaining how the input just received was

interpreted and how it affected the output. They argue that

this foundational level is crucial to the development of

Broad-XAI, but higher levels need to be developed for

everyday users to accept decisions made by these systems.
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Dazeley et al. (2021) [14] suggest a set of levels, repro-

duced in Fig. 1, that build up an explanation based on the

level of intentionality utilised when making the decision.

For instance, first-order (Disposition) details an agent’s

intention such as its current goal or objective; second-order

(Social) justifies its behaviour based on a prediction of

other actors’ intentions; and Nth-order (Cultural) provides

an explanation of how it has modified its actions based on

what it believes other actors’ expectations are of its beha-

viour. Interestingly, there have been several attempts to

develop approaches for these higher levels. Dazeley et al’s

(2021) [14] meta-survey identifies diverse subfields of XAI

research, such as Explainable Agency [23], Goal-driven

XAI [24, 25], Memory-aware XAI [26–28], Socially aware

XAI [29–32], Cultural-aware XAI [33–36], Meta-expla-

nation [37–39] and Utility-driven XAI [40–42].

These subfields, however, focus on developing approa-

ches for explaining that individual component of an

explanation, whereas, Broad-XAI requires an integrated

approach across all levels that affect an agent’s decision.

RL is a machine learning technique that potentially covers

all these levels and offers a starting point for developing

integrated explanations. However, currently, research in

this space is relatively limited. Hence, the aim in this paper

is to present a conceptual framework of how RL can be

used to provide explanations across all levels of explain-

ability and, thereby, provide a foundation for the devel-

opment of Broad-XAI.

2.1 Explainable reinforcement learning:
temporal explanations

Most introductory texts on machine learning (ML) identify

three subfields: Supervised, Unsupervised and Reinforce-

ment Learning (RL) methods. RL is often identified as

separate and distinct to other ML because it utilises a

fundamentally different approach to learning. In RL an

agent learns by interacting with an environment using trial-

and-error learning. While trialling a sequence of actions, it

will occasionally receive feedback in the form of a positive

or negative reward. This feedback will then be attributed to

those actions taken providing a reinforcement to those

behaviours to either increase or decrease their selection in

the future.

This has similarities to supervised learning, in that an

agent learns a mapping from input (state) to output (ac-

tion), but unlike supervised approaches the reward can be

distributed temporally, as it may not receive the reward

until many actions have been taken. Formally, as defined

by Sutton and Barto (2018) [43] and shown in Fig. 2, in the

RL model, the agent and environment interact through a

series of discrete time steps, t. Each time step the agent

receives a representation of the environment’s current

state, st 2 S, where S is the set of all possible states. In a

fully Markov Decision Process (MDP)1 the agent uses only

this state information to select an action, at 2 AðstÞ, where

AðstÞ represents the set of all possible actions in state, st. In

the subsequent time step, t þ 1, the agent receives a

numerical reward, Rtþ1 2 R � R, along with the new

state, stþ1.

Essentially, an RL agent learns a mapping from each

state to an action, which expresses the agent’s behaviour.

In model-based methods, the agent optimises the trajectory

of its behaviour to minimise cost, while value-based

methods maximise the reward explicitly through a value-

Fig. 1 Levels of Explanation for XAI, as proposed by Dazeley et al.

(2021) [14], indicates four levels of intentionality behind an agents

behaviour should be explained. While Meta-explanations reflect on

the processing process used in generating the explanation

Fig. 2 Standard Reinforcement Learning model, as presented by [43],

where an agent interacts with an environment through a series of

discrete interactions

1 RL is also often applied in environments that are not fully Markov.

For instance, Semi-MDPs require information from previous states to

determine outcomes taken in the future states. There is also significant

work into Hidden, Partially Observable, Continuous-time, Multiob-

jective Markov processes, etc.
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function. This mapping is commonly referred to as a policy

and is denoted p, where pðs; aÞ represents an individual

mapping from state, s, to action, a2.

There are numerous extensions to the basic RL approach

that are frequently used in the literature. These are not the

focus of this paper, but they do frequently present inter-

esting information to the RL approach that allows for

significantly improved explanations, and hence need some

discussion. For instance, one difficulty with RL is as the

state space grows so does the complexity of the agent’s

search for a solution. Hence, function approximation

techniques such as neural networks are frequently utilised,

giving rise to the field of Deep RL (DRL) [3, 44–48].

Secondly, while most RL assigns a single goal to an agent,

such as pick up the rubbish in the room and put it in the bin,

there is substantial work in multi-goal RL. In such systems,

the agent not only must achieve its goal, but must also

select the appropriate sub-goal to pursue [49–54]. Finally, a

goal represents the agent’s ultimate objective, and how-

ever, multiobjective RL (MORL) assumes that there can

often be other conflicting objectives that also need to be

balanced with the primary objective [55–57]. For instance,

an agent may have the goal to tidy the room, and therefore,

its primary objective is to do this efficiently; however, it

may have a secondary objective to not damage any delicate

things while accomplishing the primary objective [58, 59].

RL, from an explanation point of view, is of particular

interest as it is often regarded as differing to that of

supervised learning approaches [60]. Supervised learning

techniques map each input to an output individually and so

on their own the only explanation required is to identify the

input components or the processes or processing stages that

created the resulting classification. Each instance classified

is regarded as a standalone instance and any local expla-

nation is inherently based on this fact. Additionally, clas-

sifiers may provide global explanations that show how

particular hyper-parameters or sets of training examples

caused different outcomes for the classifier as a whole

[61–63]. These causal explanations are important for sys-

tem developers or designers to understanding issues like

training bias [63], etc. However, supervised methods do not

typically provide a mechanism for providing local causal

explanations that explain individual decisions or beha-

viours of a system for non-technical end-users.

RL-based systems, however, have an implicit relation-

ship between each instance. This is because the next state

has only been visited because of the action taken in the

previous state3. This creates a temporal dependency

between states, actions and subsequent states. These tem-

poral dependencies, typically referred to as transitions and

denoted as Tðst; a; stþ1Þ, provide an implied causation for

that individual transition. A sequence of transitions, either

when reflecting on past transitions or a prediction of future

transitions, can potentially provide causal networks that

can be used to explain a number of details such as why

actions were chosen according to some long-term goal

[64]. So, while an individual transition is similar to an

individual classification in supervised methods, the tem-

poral sequence of transitions allows us to provide causal-

based temporally extended explanations.

Additionally, supervised learning uses the learnt map-

ping to provide a classification or regression value with the

aim of getting the ‘right’ answer, whereas RL aims to

maximise a reward signal, which symbolises the goal or

objective of the agent. Many approaches to RL have been

developed to identify sub-goals [65–71], or may have

alternative objectives that it can switch between

[55, 59, 72]. These approaches mean the aim of the agent

that guides its behaviour is not automatically going to be

known to people affected by an agent operating in a

human-agent shared environment. However, these

approaches provide developers the ability to explain an

agent’s intentionality behind its behaviour, and thus,

facilitate the provision of first-order explanations [14].

These fundamental differences between RL and super-

vised approaches to machine learning require us to think

differently about explanation than simple interpretation —

the common approach in machine learning. Of interest is

the ability to provide introspective, causal and contrastive

explanations within a single platform. RL is an approach

that allows us to potentially develop broad-XAI systems.

The aim of the remainder of this paper is to develop and

present a conceptual framework for the development of

Broad-XAI utilising RL as the basic backbone. Within the

context of this framework this paper surveys current

attempts to provide explanations (Sect. 4) and discuss

potential approaches, not yet attempted, that will promote

further research and development in to Broad-XAI (Sect.

5).

3 Conceptual framework for explainable
reinforcement learning (XRL)

People interpret the world through explanations — either

by attributing explanations to others’ behaviour or by

explaining their own behaviour to themselves or others.

2 Methods not used for prediction rather than control may often learn

a value per state rather than state/action pairs.
3 Assuming a purely deterministic MDP. Clearly, in many situations,

the new state only partially results from the previous state/action and

Footnote 3 continued

sometimes other factors could also contribute to the resulting state,

such as wheel slippage and other actors in the environment.
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When moving away from simply interpreting the decision-

making process, as done by IML, developers need to

consider how people tend to assign causes to behaviour

[73–76]. Attribution theory, based on Heider’s (1958) [73]

seminal work, attempts to understand the process to which

people attribute causal explanations for events [77]. Most

events are usually categorised as either being dispositional

or situational. Dispositional attribution assigns the cause to

the internal disposition of the person such as their per-

sonality, motives or beliefs. In contrast, situational attri-

bution assigns cause outside the person’s control such as

accidents or external events. More recently, researchers

have shown that people instead tend to attribute behaviour

towards the person’s intention, goal, motive or disposition

[78–81].

Drawing on knowledge structures such as scripts, plans,

goals, and themes suggested by Schank and Abelson

(2013) [82], Böhm and Pfister (2015) [83] extended ideas

in attribution theory to develop a Casual Explanation

Network (CEN), Fig. 3, based on the actual explanations

provided by people. This model emphasises preconceptions

about a causal relationship when providing explanations of

behaviour. It builds on the idea that people will often want

to explain others’ behaviour not only in terms of why a

particular behaviour occurred, but also what happened

before to cause that behaviour and what is likely to happen

in the future. Böhm and Pfister (2015) [83] propose a

taxonomy that classifies both behaviour and explanations

and is built around the intentionality that lead to the

behaviour.

The CEN, Fig. 3, identifies seven categories that are

relevant when considering the causal thinking about an

actor’s behaviour. This network is represented with a

directed graph consisting of two sources and one sink. The

end point, or sink, is the outcome, which is the final result

of any behaviours. These outcomes are a result of either a

person’s intentional goal-directed actions or as a result of

unintentional and uncontrolled events, such as tripping

over. A person’s goal represents the future states that the

person is striving for, which can be caused by higher-order

goals. The goal can also be caused by the temporary state

or what can be thought of as their momentary disposition

based on emotions, evaluations, mental states, motivational

states, or bodily states (e.g. hunger, pain). This temporary

state (momentary disposition) is in-turn affected by the

person’s personality traits or attitudes, which refers to as

disposition, that are the result of long-term ingrained cul-

turally based behaviours. The temporary state can also be

caused by stimulus attributes, representing the features of

the person or object that their behaviour was directed. For

example, a person explaining the outcome of only passing

an exam may state that it was too difficult (stimulus

attribute) causing them to be upset (temporary state) so

they altered their goal to make sure they at least passed.

Figure 3 shows causal lines between these nodes indi-

cating the causal directions provided in a person’s expla-

nations. These do not necessarily reflect the full and direct

sequence of causes for outcomes, but they do represent the

causal explanations that people typically use [83]. For

instance, if a person trips (event) they may explain that

they are clumsy (disposition) and that fearing injury

(temporary state), attempt to arrest their fall (goal), by

reaching out their hand (action) resulting in scratches on

their hand. When asked what happened to their hand, they

may provide the full causal path or simply explain the

shortened causal path indicating they had tripped. This

allows the explainee to fill in the gaps with their own

general understanding of probable causes. Similar choices

are provided for causal paths between other nodes. In this

way, an explanation does not always require the full causal

path from event, stimulus attribute or disposition through

goal and action. This approach elegantly agrees with

Lombrozo’s (2007) [84] suggestion that an explanation

should rely on as few causes (simple) as possible that

covers the outcomes.

The CEN’s focus on causal behaviour being the basis of

explanations of intentionality aligns with Dazeley et al’s

(2021) [14] suggested levels of explanation for XAI. These

levels were built upon Animal Ethology’s idea of

explaining behaviour through levels of intentionality [85].

Furthermore, the taxonomy of causal behaviour suggested

in the CEN aligns well with the operating paradigm of an

RL agent, and therefore, its application to XRL would be

useful in providing structure to the generation of causal

explanations from an RL agent. This paper proposes to

merge these ideas from Dazeley et al (2021) [14] with the

CEN, suggested by Böhm and Pfister (2015) [83], to form a

framework, referred to as the Causal XRL Framework

(CXF), and taxonomy for how XRL can generate causal

explanations.

Figure 4 is an adaptation of Fig. 3 to facilitate the same

causal pathways for explanation, but with categories

aligned to RL and those indicated by Dazeley et al’s (2021)

[14] suggested levels of explanation. Included in this dia-

gram is a mapping of XAI levels indicating the degree of

intentionality that can be provided at each category of

behaviour. This causal structure is intended to operate in a

similar way to that suggested by Böhm and Pfister (2015)

[83]. An outcome, represented by changes in the environ-

ment or the agent itself, is caused by either an intentional

action by the agent or by an unintended or uncontrolled

sequence of events. These events could be due to stochastic

actions, such as wheel slippage or external actors.

In RL, an action is caused by an agent pursuing a par-

ticular goal or objective. This may be a single goal or a
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hierarchy of goals, each of which can be cycled through to

generate the explanation of its behaviour. A goal may be

aligned to a single objective or to multiple objective that

must be balanced [86]. The agent switches between these

goals/objectives due to internal changes in priorities or

progression in solving a larger goal. These internal changes

are what Böhm and Pfister (2015) [83] describe as tem-

porary states, however, this name could be confused with

the perceived state of the RL agent, and hence, is avoided

in CXF framework. Dazeley et al. (2021) [14], on the other

hand, refer to this same concept as disposition — referring

to an agent’s internal disposition. Therefore, to align with

Dazeley et al. (2021) [14] a disposition in this sense is the

same as a temporary states in the CEN model and repre-

sents temporary internal motivations such as a change in

parameter, simulated emotion or safety threshold being

passed.

Similarly, Böhm and Pfister (2015) [83] CEN model

referred to disposition as an overarching set of long-term

personality traits about how a person responds to situations.

While there is no direct reference to responses to perceived

cultural expectation, it is clear that disposition is the node

where this would be best captured. As the temporal state

node was renamed to be disposition, the disposition node

has also been renamed to align with Dazeley et al. (2021)

[14] notion of cultural expectations. Therefore, in this

model an expectation refers to the ultimate aim of the agent

to achieve what is expected of it. Dazeley et al. (2021) [14]

suggest that expectations refer to a range of cultural con-

ditions placed on an agent’s operation. In essence, expec-

tations in this framework are the same as dispositions in the

CEN. Finally, an agent’s current disposition, and therefore

its goal/objective and ultimately the outcome, are caused

by what is perceived by the agent. Perception is both the

literal state, but also the result of any feature extraction,

inference placed over what is perceived, or belief state in a

Partially Observable MDP (POMDP).

Additionally, this framework is readily applicable to

Multiagent Reinforcement Learning (MARL) domains

[87]. For example, a MARL agent operating globally can

simply use this framework directly with the understanding

that the action space is a vector of actions that are similarly

derived from its goals and higher-order influences. This

aligns and extends current state-of-the-art explainable

MARL [88]. However, a decentralised model presents a

larger problem for the provision of explanations. A

decentralised model requires agents to act independently of

each other, and therefore, provide explanations of their

behaviour independently. However, these agents require a

sophisticated communication model between the agents to

allow them to adjust their behaviour based on the other

agents [87]. The CXF framework directly facilitates this

MARL model. For example, when an agent changes its

behaviour because of another agent’s communication or

action then the CXF model allows us to incorporate this

behaviour as a causal event that potentially alters the

agent’s intrinsic disposition and goals. This approach

allows for sophisticated models of explanation that incor-

porate teamwork directly into the causal framework. This

decentralised model can be further extended to AI-Human

collaborative teams [89, 90] where we require an expla-

nation of an agent’s action in response to events caused by

the human collaborators.

Ultimately, this framework is aimed at promoting future

directions of research into explaining RL behaviour, but it

also provides a lens for examining the current state of the

art. The framework described in Fig. 4 is beyond the

majority of current XRL research. Hence, this paper also

presents a Simplified Conceptual Framework, which cap-

tures the majority of current XRL work. The simplified

Goal

Temporary 
State

Ac�on

Outcome

Disposi�on S�mulus 
A�ribute

Event

Fig. 3 A reproduction of the Causal Explanation Network (CEN)

model for human lay causal explanations as suggested by Böhm and

Pfister (2015) [83]. Each node represents a component used by people

when explaining a person’s behaviour, while the arcs between nodes

indicate the causal links between these concepts when people provide

an explanation

Fig. 4 Conceptual Framework for Explainable Reinforcement Learn-

ing, referred to as the Causal XRL Framework (CXF) is based on the

CEN given in Fig. 3. Each node, coloured and labelled to indicate the

level of explanation (see Fig. 1), represents a process used by an agent

when deciding on its behaviour. Each arc, joining nodes, represent the

causal relationships that should be utilised when generating an

explanation of an agent’s behaviour
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framework, Fig. 5, shows the types of behaviours that can

be explained when using a traditional approach to RL, as

described in Sect. 2.1. As can be seen, this model only

includes behaviours caused by what is perceived and the

actions taken by the agent. It can also be observed that

these behaviours all align with zero-order explanations [14]

and, therefore, do not include any explanation of

intentionality.

In this simplified model, it is assumed that an agent has a

single preset goal and the objective is to maximise the

reward in achieving that goal. This assumption is based on

the standard RL framework [43] and constitutes the

majority of RL research4. In such a situation the goal is

often known to the user or can be observed over-time

through observation of behaviour [91]. When utilising a

predefined goal as its only objective its actions are directed

towards achieving that goal. Its explanation of those

actions is the target of that behaviour. Dazeley et al. (2021)

[14] argue that there is no need to explain that the action is

aimed at accomplish the goal in such a system. In situations

where the goal itself is possible unknown to an end-user

then the developers can incorporate details of the preset

goal directly into any explanation of its behaviour. Equally,

if the agent cannot alter its goal then no change to dispo-

sition or expectation can affect the goal being pursued. The

aim of the Goal node in Fig. 4 is aimed at identifying how

the current goal affected the action selected and why that is

the current goal based on the agents current dispositions or

expectation. Hence, the simplified model has no need to

include causal explanations of these higher-level inten-

tions. Similarly, the general RL model makes no attempt to

model events outside its control making explanations of

these also irrelevant. With the removal of goal/objectives,

dispositions, expectations and events an RL agent cannot

utilise those causal paths, and therefore, the simplified

framework must include a causal path from perception to

action skipping those behaviours included in the full

framework. Because this causal path is not part of the full

framework, this is included only as a dotted line.

4 Simplified framework: reviewing
explainable reinforcement learning

The term eXplainable Reinforcement learning (XRL) only

appeared in research publications recently and is often

published as Interpretable Machine Learning (IML).

However, the aim of this paper is to show that the idea of

explaining the behaviour of an RL agent, while sometimes

related, is often quite distinct and separate to traditional

IML; provides opportunities for deeper explanations to

provide user trust and acceptance; already has a substantial

body of research; and still has significant avenues for future

work. This section represents the second substantive

component of this paper, which reviews current work and

discusses opportunities for future research. Rather than

using a traditional taxonomy of approaches, it will review

the literature in the light of the Simplified-CXF discussed

in Sect. 3.

This review is not a systematic review and does not

attempt to provide any form of meta-analysis of the topic

[92]. The aim is to review and discuss the literature using a

narrative approach [93] in the context of how it aligns with

the CXF. Articles were identified through a combination of

approaches, including: known references from papers from

prior XAI surveys; searches using terms including

‘‘Explainable’’, ‘‘Interpretable’’, ‘‘Broad-XAI’’ combined

with ‘‘Reinforcement Learning’’ or ‘‘Machine Learning’’;

and, the use of forward and backward snowballing from

each previously identified paper.

The following subsections discuss each of the processes

used by an agent to influence its choice of behaviour. This

includes a discussion of the possible types of causal

explanations that each process can contribute. Finally, for

each type of causal explanation pathway, this paper dis-

cusses current approaches to explaining that causal link, as

well as suggesting additional approaches that could be

utilised. In discussing these points it will start with the

nodes represented in the Simplified-CXF and discuss the

opportunities available in the more advanced components

of the full CXF in Sect. 5. The first Sect. 4.1 discusses

explanations of what the agent has perceived and how that

perception has affected the actions and outcomes. Sec-

tion 4.2 discusses explanations based on why actions are

selected and how they caused the resulting outcomes.

Fig. 5 Simplified Conceptual Framework for Explainable Reinforce-

ment Learning, referred to as the Simplified-CXF, representing causal

explanations in traditional RL. This framework includes a causal link

between perception and action that is not included in the full model.

This link replaces several behavioural components representing

deeper causal paths that are assumed to not be modelled or explained

in this Simplified-CXF. Note, this simplified model only includes

zero-order explanations [14], indicated by grey only boxes, and

therefore does not include any explanation of intentionality

4 Subfields of research, such as multi-goal, hierarchical, and multi-

objective, may have multiple goals or the goals may be unknown and

provide possible approaches for use in the full framework discussed in

Sect. 5.
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4.1 Explanation of perceptions

At its fundamental level, an RL algorithm is learning to do

two things: receive information about the environment and

use this to decide on an action to make in response. These

two fundamental operations of an RL system represent the

first two types of XRL discussed in this paper. The fun-

damental nature of these operations is also indicated in

Fig. 5, with them being recognised as providing zero-order

explanations [14]. That is, these operations represent a

purely reactionary level of processing with zero inten-

tionality. The first of these operations is to perceive the

environment, which represents a significant amount of

research in XRL. This section briefly overviews this class

of XRL and discusses some example approaches. As

identified by the simplified conceptual framework, Fig. 5,

the perceptual stage, not only explains what it has per-

ceived, but also how that perception resulted in the action

taken and the outcome observed. Therefore, explanations

of an agent’s perception aim to detail one or more of the

following:

1. Perception: what did the agent perceive as the current

environment?

2. Introspective: how the perceived state contributed to

the action being selected?

3. Contrastive: why didn’t the perceive state cause some

other action to be selected?

4. Counterfactual: what changes in perception would be

required to cause an alternative action to be selected?

5. Influenced: how did the perceived state affect the

outcome?

In the simple discrete RL situation each state or state/action

pair can be represented with a mapping directly to the

preferred action. However, in most realistic problems the

state dimensionality for a direct mapping is too complex or

continuous preventing a direct mapping. Instead, one of

several approaches can be used such as function approxi-

mation [94], hierarchical representations [49, 52, 95], state

aggregation [96, 97], relational methods [98] or options

[99, 100].

To perform these approximations RL researchers gen-

erally utilise a range of traditional supervised learning

approaches. For instance, the utilisation of Deep Neural

Networks (DNN) is so common that a separate branch of

research, known as Deep RL (DRL), has emerged, which

now represent approximately 35% of RL papers published

in 20225. DRL methods utilise a DNN to map large state

spaces to Q-values (regression) or directly to actions

(classification) [101]. In many cases, the supervised

learning model used requires some level of adaptation to

handle the temporal aspects of RL. For instance, DRL

methods frequently utilise various forms of experience

replay to improve convergence [102]. However, regardless

of the learning process, the perception of the environment

at any single moment is essentially the same process used

in the supervised version.

4.1.1 XRL-perception with interpretable machine learning
(IML)

Reliance on traditional supervised learning for function

approximation means that XRL-Perception is essentially

the process of interpreting the function used to model the

state. Therefore, XRL-Perception is closely aligned with

Interpretable Machine Learning (IML) methods

[18, 19, 103–105]. IML is a well-established field with

substantial work already having been done. The aim of this

paper is not to resurvey IML work in detail — except to

discuss how this work can be related to XRL specifically.

According to Molnar (2019) [104], there are several

approaches to interpreting machine learning models, as

shown in Fig. 6. This suggests that IML typically produces

one or more of the following types of interpretation:

– a feature summary, using statistics or visualisations,

showing the features and their relationships that were of

most importance when reaching the outcome.

– a representation of the internal model’s operation, such

as the rules or neurons that fired, or pathways through

the evaluation process that were followed.

– through the identification of similar or related data

points, such as an image from the same class.

– through the construction of a secondary intrinsically

interpretable model, which may then use one of the

above methods to provide an interpretation.

Deep learning methods for IML tend to focus on visuali-

sations of features found in the input (feature summaries)

and neuron/layer activity (internal models); with some

examples of using specifically designed neural networks

for the provision of interpretations — see Gilpin et al

(2018) [105] for a detailed discussion. Regardless of the

approach used to interpret these models they can all be

utilised to provide an interpretation of the perception of

current state of an RL model.

5 At time of writing, using Google Scholar, the number of papers

with a title including the phrase ‘‘Deep Reinforcement Learning’’ was

4,690 and the number of ‘‘Reinforcement Learning’’ titled papers was

13,500. This is a crude estimation and almost certainly lower than the

Footnote 5 continued

true percentage as many researchers assume DRL when discussing

RL.
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4.1.2 Introspective XRL-perception

Due to the alignment of RL perception and traditional

IML, there has been limited research specifically on per-

ception in the context of XRL [8, 106]. However, there are

two primary issues that make perception in XRL distinct

from traditional IML. The first is that spatially similar

states may often still require different control rules making

generalisation difficult. This contrasts with most traditional

supervised approaches that can afford local generalisation.

Secondly, the perceptually similar states may in fact be

significantly temporally separated [107]. This problem is

attributed to why pooling layers are often absent in many

DRL approaches as these are used to identify local gen-

eralisable patterns [3, 108, 109]. Therefore, research into

XRL-perception has largely focused on providing expla-

nations that can help developers to better understand the

learning process, improve interpretation of policy, and for

debugging/parameter tuning [107].

One approach used by both Mnih et al. (2015) [3] and

Zahavy et al. (2016) [107] employed t-Distributed

Stochastic Neighbour Embedding (t-SNE) on recorded

neural activations [3, 107] to identify and visualise the

similarity of states. Zahavy et al. (2016) [107] also dis-

played hand-crafted policy features over the low-dimen-

sional t-SNE to better describe what each sub-manifold

represents. A second approach used by Wang et al. (2015)

[110] and Zahavy et al. (2016) [107] was to use Jacobian

Saliency Maps [111] to better analyse how different fea-

tures affect the network. Shi et al. (2020) [112] use a self-

supervised interpretable network (SSINet) to locate causal

features most used by an agent in its action selection.

These approaches are complex to understand and do not

easily provide a reasonable explanation to a non-expert

user. Saliency maps provide a reasonable level of under-

standability when using image-based state spaces but the

Jacobian approach, borrowed from IML, can provide poor

results as they have no relationship with the physical

meaning of entities in the image. This problem can be

exacerbated in an RL agent due to the spatial similarity of

states. Greydanus et al. (2017) [113] improved this

approach by utilising the unique dual use of networks in the

Asynchronous Advantage Actor-Critic (A3C) algorithm to

separately represent both the critic’s value assignment and

the actor’s actions. Greydanus et al. (2017) [113] then used

these more accurate maps to visualise an agent’s perception

over time during the training process. This approach pro-

vides an important example for detecting features and

identifying which features caused the agent to take a par-

ticular action, and separately, which ones were associated

with particular outcomes, such as the highest rewards.

Verma et al. (2018) [114] presented a unique approach

to performing introspection of an RL agent’s perception by

altering the RL framework itself. This work introduced the

Programmatically Interpretable RL (PIRL) approach,

where policies are initially learnt using DRL. This network

is then used to direct a search over programmatic policies

using Neurally Directed Program Synthesis(NDPS). Dur-

ing this repeated search process, a set of interesting per-

ception patterns are maintained that minimise the distance

between the DRL and NDPS (oracle) models. The com-

pleted oracle can then be inspected to identify causal links

between feature vectors and actions taken and/or outputs.

4.1.3 Results of XRL-perception

Perceiving the state is of particular interest to developers

when validating a system’s operation. Reassuring a non-

expert user that the important features being used are also

of importance, provided this is combined with the resulting

effect of what was perceived. Simply informing the user of

the action and the resulting change in the environment is

implied in the previously discussed approaches as these are

generally easily observed and do not require an explana-

tion. However, the ability of a system to provide either

contrastive or counterfactual explanations can be very

valuable to a non-expert user and not easily observable

from the agent’s behaviour. Such explanation facilities

aim to not only identify the features that led to the selected

action, but also suggest why another action was not

selected (contrastive), or what features needed to be

observed to result in a different action/outcome being

selected (counterfactual).

Conceptually counterfactual thinking and contrastive

explanations are viewed as very different concepts. How-

ever, they are really just different views of the same pre-

dictive mechanism [115]. A counterfactual focuses on a

prediction of what would happen under different initial

circumstances, whereas a contrastive explanation details

what change was needed to get a particular outcome. A

counterfactual can be derived by providing a case study, or

example fictitious state (sometimes referred to as a

Fig. 6 Types of Interpretation that can be generated from an

Interpretable Machine Learning model. This is an original diagram

derived from a taxonomy textually described by Molnar (2019) [104]
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‘distractor’ state or image), and observing the result. The

real outcome, along with the fictitious outcome, can then be

compared to provide the counterfactual explanation

[116–118].

Contrastive explanations, however, are not as simple

because there is no specific start state, but instead have a

specific result that is of interest. The approaches in the last

section cannot readily provide such explanations. For

example, generating a contrastive explanation requires us

to identify the features that are missing from the input

space. One approach is to present multiple distractors and

find the closest to the required conclusion [117]. This,

however, is highly computational, and impossible when

there are infinite possible distractors, such as continuous

state problems. Recent methods for generating missing

features, such as the Contrastive Explanation Method

(CEM) [119, 120], have been proposed. These systems

effectively identify absent pixels using a perturbation

variable [119] or through Contrastive Layer-wise Rele-

vance Propagation (CLRP) [120].

In RL, however, there is a temporal relationship between

states and the outcomes that can be used to map a sequence

of changes over time. This creates additional possibilities

for providing contrastive explanations, and thereby,

through extension counterfactual explanations as well. One

approach is to identify those states that are critical to a

human understanding the result of an agent, such as the

Huang et al. (2017) [121] utilisation of DBSCAN [122] to

identify such states. Alternative approaches [123, 124],

especially in non-image-based inputs, use hand-crafted

state features specifically identified for being semantically

meaningful to humans. For instance, Hayes and Shah

(2017) [123] use a vector of features to generate a list of

predicates that could be searched to identify subsets of

actions commonly associated. These approaches can

explain why an action was selected in terms of features

perceived by the agent. These approaches are not, however,

readily usable in large state spaces or where hand-crafted

features could not be provided. There is potential in using

an agent’s perception to generate contrastive and counter-

factual explanation, for instance, some works [125–128]

have utilised grey box methods like decision trees and

SHAP to identify the perception boundaries used by the

actual decision-making neural network. However, most

XRL focus has been around explaining the choice of

actions and performing causal analysis of those choices,

which are further discussed in Sect. 4.2.

4.2 Explanation of actions

While the provision of explanations of an agent’s percep-

tion is interesting, and in many cases required by the

explainee, such explanations are not particularly unique to

RL. In fact, in reviewing the literature above, very little

referred to RL specifically. As discussed in Sect. 2.1, the

reason XRL is different to IML is due to the temporal

nature of RL. This temporality is evident when considering

how an action taken by an agent affects the outcome. These

explanations are inherently temporal explanations as they

detail a prediction of the expected future efficacy of an

action. Temporal explanations detail relations between

temporal constraints such as delays between causes and

effects and were first investigated in temporal abductive

reasoning [129] and recommendation systems [130, 131].

The CXF, Fig. 4, and simplified CXF, Fig. 5, indicate that

an explanation can include why an agent took particular

actions and how those actions caused particular results.

Therefore, explanations of an agent’s actions aim to detail

either:

1. Introspective: why was an action chosen?

2. Contrastive: why wasn’t another action chosen?

3. Influenced: how the action taken affected the outcome?

4. Counterfactual: what prior behaviour would have

resulted in a particular alternative action being

selected?

The first point addresses an explainee’s requirement to

understand the choice of action and why the agent predicts

it is a better choice than the alternatives. This can be pre-

sented in one of two forms, either: providing a visual

representation of the path; or, by stating how the action

leads to the eventual aim. For example, imagine an agent

takes an action a user wants justified. It could present a

map showing where the agent is currently located and the

path it plans to follow, where the user can see the selected

action follows this path. They could also be shown the best

path should an alternative action be taken. This approach is

of course regularly used in navigation recommendation

systems such as Google Maps. Non-navigation in discrete

tasks can also use this approach by representing the MDP

as a graph using nodes and arcs to represent concepts the

explainee will understand. An alternative approach is to

state that the agent has selected a particular action because

it has a measurably better result of a desirable quality as

defined by the reward function, such as a higher chance of

success, reduced cost, safer, and smoother. In either case

the agent is being asked to make a prediction about both its

future behaviour and how it expects the environment to

respond.

4.2.1 Model-based XRL-behaviour

Early research into explaining why an action is preferred

when accomplishing a particular task can be traced back to

some of the earliest work in explaining the reasoning of

expert systems [132–135]. An expert system generates a
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conclusion through a series of inferences. These inferences

represent a sequence of reasoning steps that can be con-

sidered actions during a problem-solving process.

Explaining these involved providing either a rule trace of

the inferences/actions taken or a trace of key, previously

identified, decision points. These early ideas were later

extended in domains such as Bayesian Networks (BN)

[136], where explanations were generated from the rela-

tions between variables [137, 138] or through visual rep-

resentations of relations between nodes [139]. Decision

Networks or influence diagrams further extended BNs

through the incorporation of utility nodes. These models

help the decision process by selecting the path with the

maximum utility, where explanations have been generated

by reducing the optimal decision table [140].

An MDP, as used in RL, can be considered to be a

dynamic decision network [141, 142]. Similar approaches

have been applied in deterministic or decision theoretic

planning [143] because these have a model of the envi-

ronment that they can use to trace the entire decision path

followed. XAI-Planning (XAIP) approaches are well

placed to provide explanations for planning tasks with

MDPs. Fox (2017) [144] provides a roadmap for the

development of XAIP. These methods have a model of the

environment in which they operate and can use this directly

in their explanations to provide greater transparency. These

approaches allow a more direct utilisation of the historical

BN and DN methods. For instance, Krarup et al. (2019)

[145] use waypoints for explanation, where this use of an

execution-trace is a similar approach to that of rule traces

and tracing nodes through a BN or DN. Similar approaches

of generating explanations from actions using a model can

be seen in other recent research [146–158]. Fox et al.

(2017) [144] identify several questions that XAIP can

answer. Ignoring questions regarding if and when to replan,

which are specific to XAIP, these questions align with the

previously mentioned aims for explaining actions. While

planning approaches are not the focus of this paper,

Chakraborti et al. (2020) [159] provide an extensive and

recent survey of XAIP identifying the recent growth.

4.2.2 Introspective XRL-behaviour

A direct adaptation of the BN and DN approaches is not as

evident in value-based RL. Cruz et al. (2019) [160], Hayes

and Shah (2017) [123], and Lee (2019) [161] could be

considered as attempts to do this by essentially developing

a model of the environment during exploration. The models

built can then be used to generate an explanation, such as a

prediction of the likelihood of reaching a goal, and how

long until it was reached, from each state/action pair.

Hayes and Shah (2017) [123] learn its model entirely

separately from the agent, while Cruz et al. (2019) [160]

build the model internally. The approaches are inherently

still RL as the model is not used for planning purposes and

the agent still learns entirely from experience. However,

these approaches of building a model of the environment

presents allow an RL agent to present a similar level and

range of transparency exhibited by the model-based

approaches.

These learnt-model based approaches can also be used

to provide users with an overview of the model through

Policy Summarization or similar approaches

[91, 162–167]. These global explanation approaches learn

key state/action pairs that globally characterise the agent’s

behaviour. Using Inverse RL techniques, a policy can be

inferred, and a summary formed from multiple examples of

agent behaviour. The intuition is that policy summaries,

like waypoints, can help people generalise and anticipate

agent behaviour [162]. Another approach is to abstract

away from low-level decision and provide explanations

from this higher level. Beyret et al. (2019) [168] used

Hierarchical RL to perform these layered abstractions and

recognised their applicability to providing explanations and

Acharya et al. (2020) [169] used a decision tree classifier to

learn which state features were most likely to predict par-

ticular behaviours.

Ultimately, without a model, value-based approaches

are hampered in their ability to explain an action in terms

of the eventual aim. While people may think their aim is to

achieve a goal, it is in fact only to maximise the long-term

average reward. Schroeter et al (2022) [170] and Cruz et al.

(2021) [64] extended [160] to provide the same explana-

tions without requiring the memory overhead of learning a

model, thereby providing the ability to provide these

explanations in larger environments, including those

requiring deep learning-based function approximation. To

do this Cruz et al. (2021) [64] proposed two approaches:

learning-based and introspection-based. The first approach

was to directly learn a probability value P during training,

while the second approach, referred to as introspection-

based, was to infer the value directly from the agent’s Q-

value using a numerical transformation. These approaches

allow an agent to explain why one action is preferred over

another in terms of outcomes in a similar way as XAIP

approaches.

What is interesting about these approaches is that rather

than learning a model they use introspection of available

information to provide explanations. Introspection is the

utilisation of internal data for explanation as opposed to

external frameworks that explain through observation. This

introspective approach has also been utilised by Sequeira

and Gervasio (2020) [166], which actively builds a data-

base of historical interactions, allowing for simple infor-

mation like, observations, actions and transitions; along

with inferred probabilities such as the prediction error.
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While this work as presented is not built to specifically

answer questions, it does provide details that can provide

additional analytics to the user and could easily utilise

these statistics to provide such answers. This work has

since been extended to provide short video highlights of

key interactions [166].

4.2.3 Results of XRL-behaviour

When providing an explanation using the above techniques

the system can simply state the reason the action selected is

a good choice for achieving its goal. This, however, will

often result in a relatively meaningless explanation that it

chose the best, fastest, cheapest, etc., depending on the

choice of reward. Instead, as discussed in Sect. 4.1.3, an

explanation aiming to improve trust and acceptance would

ideally be presented in contrast to an alternative action.

These contrastive explanations are presented as fact and

foil [171, 172], where the same fact, the action selected,

can have multiple foils, any one of the actions not selected.

Explaining contrastive and counterfactual of XRL-Beha-

viour involves comparing outcomes from alternative tran-

sitions paths through the MDP.

The most common approach to providing these expla-

nations is to develop a model of the agent’s behaviour

using a separate observer that learns the agent’s behaviour.

There have been several generic explanation facilities that

can perform this task, such as Pocius et al. (2019) [173],

which extends Local Interpretable Model-Agnostic Expla-

nations (LIME) [174] and can provide contrastive expla-

nations of any type of agents’ behaviour — not solely an

RL agent. These generic explanation facilities can predict

behaviour, but do not explain the agent’s internal reasoning

for its behaviour.

Extending Hayes and Shah (2017) [123], van der Waa

et al. (2018) [175] provide contrastive explanations based

on the result of transitions. The approach uses a provided

model of the transition network but acknowledges this can

be learnt through the observation of behaviour, by trans-

lating state features and actions to a predefined domain-

specific ontology. The system then compares a user-se-

lected foil to the taken actions to provide explanations on

outcome differences. Cahmore et al. (2019) [176] provide a

generic planning wrapper that builds on Fox et al’s (2017)

[144] roadmap for XAIP, to provide these contrastive

explanations for known MDPs as a service. Rather than an

a priori model Madumal et al. (2019) [177] used a learnt

model to extensively study the generation of both con-

trastive and counterfactual explanations for explaining

recommendations in the game of Starcraft II [178]. Mad-

umal et al. (2019) [177] learn a Structural Causal Model

(SCM) during training and analyse this model to under-

stand how states led to different outcomes.

To investigate the ability to provide a value-based

approach, Cruz et al. (2021) [64] illustrate that contrastive

explanations on the likely success or failure of actions and

the time to a result can be provided by an agent using the

introspection-based approach to transforming the Q-values

directly. Khan et al. (2009) [179] developed an approach to

generate explanations for why a recommendation has been

provided to a user, called a Minimal Sufficient Explanation

(MSE). In this approach, a recommendation equates to an

action and the approach tries to explain why that action is

regarded as optimal. It takes one step beyond simply saying

the action selected has the highest Q-value and thus is the

optimal action, and instead provides reasons according to

templated justifications about frequency of expected future

rewards.

Two possible approaches to providing contrastive

explanations are through the utilisation of either reward

decomposition [180] or multi-objective Reinforcement

Learning (MORL) [55, 58, 181]. Reward Decomposition

separates each of the different rewards into semantically

meaningful reward types allowing actions to be explained

in terms of trade-offs between the separate rewards [180].

One avenue to providing contrastive explanation that

has only recently been attempted is through the utilisation

of multiobjective RL (MORL) [55, 58, 181]. MORL

approaches maintain a vector of Q-values for each reward

and at any given time there may be several Pareto-optimal

policies offering different trade-offs between the objec-

tives. Such approaches, such as reward decomposition,

allow an agent to compare the known results of these

policies that aligned with different actions. Sukkerd et al.

(2018) [182] and its extension Sukkerd et al. (2020) [183]

along with work by Juozapaitis et al. (2019) [180] are the

first papers to directly pursue this approach to contrastive

explanation. This model-based approach generates quality-

attribute-based contrastive explanations to compare actions

against alternative objectives. In value-based RL there is

also one known attempt to use multiple objectives using

reward decomposition6 [184]. This approach is performing

RL in an Adaptive-Based Programming formalism that

allows annotations of decision points with ontological

information for explanation. Currently, there is significant

opportunity to pursue explainable MORL approaches for

contrastive and counterfactual explanations.

The above approaches assume there is only one foil,

alternative action, or that the user knows which foil they

want the agent to compare with the selected action. How-

ever, this can be tedious, difficult or sometimes impossible

6 The authors do not identify their work as MORL, and strictly

speaking decomposed rewards are not necessarily conflicting (a

generally accepted component of an MORL problem), but the

approach uses the same principles that would underpin an explainable

MORL approach.
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for the user to provide. For instance, in an autonomous car,

it is not practical to go through all alternative angles a

steering wheel could have been turned to observe alterna-

tive results. Therefore, deriving the foil from the context is

part of the explanation facility’s task. However, apart from

some attempts in IML [115, 175, 185, 186], this has not

been widely discussed in the context of RL. Erwig et al.

(2020) [187], while not the focus of their work in dynamic

programming, did find that the context for contrastive

explanations could be anticipated by identifying principal

and minor categories and using these to anticipate user

questions through value decomposition. As yet, foil pre-

diction does not appear to have been transferred to value-

based RL.

5 Full framework: opportunities
for explainable reinforcement learning

Explaining perception, action and the causal outcomes of

each, discussed above, represent the majority of current

XRL research. These explanation facilities are important

but focus primarily on providing debugging style expla-

nations for developers [13, 21]. Dazeley et al. (2021) [14]

argued that this represents only a zero-order, or reactionary

level, of explanation and does not provide the broad-XAI

required to develop user trust and acceptance. While there

is still plenty of scope for interesting advances in the above

simplified-CXF, this paper suggests there are significant

possibilities for higher-level explanations built on an RL

foundation. This section discusses each of the remaining

components of the full framework and how existing

extensions to RL can be utilised to provide Broad-XAI

facilities in XRL.

5.1 Explanation of goals

Explaining an agent’s goal and how it caused the selected

action has been recognised as a potential future direction of

research for XRL [14]. Goal-driven explanation, also

referred to as eXplainable Goal-Driven AI (XGDAI), is an

emerging area of importance in the XAI literature with

recent papers surveying the concept [14, 24, 25, 188]. This

recent work shows a growing recognition that the only way

people will accept an agent’s behaviour is if the system

provides details around the context in which its decision

was based [189]. Langley et al. (2017) [23] describe this as

explainable agency, that Dazeley et al. (2021) [14] con-

siders a first-order explanation, where the aim is to

communicate the agent’s Theory of Mind [190]. Goal-

driven explainability is primarily focused on Belief, Desire,

Intention (BDI) agents [191], or potentially in multiob-

jective optimisation [192]. The potential for explainable

agency in RL has only been recognised recently [14, 188].

In particular, Sado et al. (2020) [188] accept approaches to

explaining actions, discussed in Sect. 4.2, as a post hoc and

domain independent approach to explaining behaviour.

The difficulty is that RL does not explicitly project the

effect of their actions and associate them with a goal.

Therefore, when there is no model RL is essentially

learning a habit, rather than a goal [193]. For most appli-

cations, this distinction is trivial as there is only a single

goal and the agent learns a habit for how to solve it.

Beyond informing the user of what the goal is, explaining

the choice of goal (when there is only one to choose from)

is relatively meaningless. Therefore, for XRL to provide

meaningful goal explanation it should have multiple goals

that it could be pursuing at any given time. This utilisation

of multiple goals, while not part of the standard RL

framework, is a well-established approach with extensions

to RL such as hierarchical [49, 52, 69, 95, 194], multi-goal

[65, 66, 70, 71], and multi-objective [55, 58, 181]. This

paper argues that more meaningful goal-based explanations

can be provided if RL utilise these methods more readily.

As shown in Sect. 4.2, the first attempts to utilise MORL

to provide contrastive explanations [182–184, 187] have

been published. The aim for a goal-based explanation

though would be to extend this initial work and answer

questions about the XRL-goal being selected and how that

goal affected the action selection. For instance, Karimpanal

and Wilhelm (2017) [195] identify ‘interesting states’ and

learn how to find them using off-policy learning while

focusing on its primary objective. Attaching a goal-based

explanation to this would allow explanation about how

actions could also lead to/or avoid alternative objectives. A

second example would be when an agent is performing a

primary task, but has an alternative objective to avoid

dangerous situations [196], then an explanation can iden-

tify contrastive explanations for an action on the basis of

the primary or secondary objective, e.g. ‘‘While X was the

fastest action, I chose Y because it was safer’’.

Multi-goal [65, 66, 70, 71] and Hierarchical

[49, 52, 69, 95, 194] RL provide mechanisms for identi-

fying alternative or sub-goals to problems and switching or

progressing through these during a problem-solving pro-

cess. At this stage, there does not appear to be any attempts

to provide explanations based on the currently selected

goal as a means of providing better contextual information

to a user. However, this paper has suggested the provision

of such explanations would be a valuable area of pursuit.

For instance, Beyret et al’s (2019) [168] approach could be

extended to provide an explanation for the currently active

goal through a tree traversal of potential goals using way-

points during the inference process.
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5.2 Explanation of disposition

Agents that are changing their goals and/or objectives do

not generally do so randomly. Some agents may do so

because they have learnt that a sequence of sub-goals is

required to achieve its primary goal [49–52]. Others may

have multiple conflicting objectives [55], such as achieving

a task while maintaining a safe working environment

[58, 59]. This process of changing goals or objectives is a

result of variations made in an agent’s internal disposition

[14]. It is important that an agent is, therefore, able to

include in its explanation how its current internal disposi-

tion has influenced the current choice of goal or objective.

This change can be caused by: an observation that the

prior goal was no longer appropriate for achieving its pri-

mary goal; an observed change in the environment, pos-

sibly by an external actor; or, a change in an internal

simulation of an emotion, belief or desire. In Cognitive

Science the Theory of Motivated control investigates how

behaviour is coordinated to achieve meaningful outcomes

[197]. In particular, Pezzulo et al. (2018) [194] discuss the

multidimensional and hierarchical nature of goals when

decision making. Essentially, people weigh-up conflicting

objectives through a hierarchy of goals [194]. Through

careful introspection it is possible for an RL agent to

identify these changes in its internal disposition and pro-

vide an explanation for these changes. Such an explanation

would represent a first-order explanation [14] and provide a

valuable insight into an agent’s reasoning for a human

observer.

Currently, there have not been any examples of

explaining such dispositional RL systems, but there are

numerous examples of agent-based systems, including RL,

that adapt their goal autonomously during their operation.

Intrinsically motivated RL has been researched for two

decades, where agents construct a hierarchy of reusable

skills dynamically [53, 198, 198]. These agents change

their operating goal due to internal changes such as moti-

vations [199]. While methods such as Beyret et al. (2019)

[168] explain an action relative to a goal, they could be

extended to explain the motivation behind its choice of

goal and skill.

Disposition and motivation are not just hierarchical, but

also multidimensional [194]. For instance, Vamplew et al.

(2017) [72] and Vamplew et al. (2015) [200] used an

algorithm referred to as Q-steering to provide the agent the

ability to switch between objectives autonomously. When

objectives are in conflict the agent can have an internal

desire to focus on one over another and while it pursues

that objective the desire to switch to an alternative objec-

tive often increases until that change is made. This

approach has potential in several domains where

autonomous balancing of objectives is required. An

explanation for identifying the reason behind switching

between policies would provide a user valuable

information.

The recently emerging research in Emotion-aware

Explainable AI (EXAI) methods illustrates an interest in

providing explanations for agent’s internal dispositions

[26]. This work focuses on self-explaining emotions and

can identify important beliefs and desires. While this work

is based in on a BDI framework, Dazeley et al. (2021) [14]

argue that this can be extended to XRL. One example of

this approach in RL is Barros et al. (2020) [201] which uses

Cruz et al’s (2021) [64] introspection-based approach to

identify an explanation, which is used to provide a self-

explanation so that it can self-determine its intrinsic

‘mood’ concerning its performance in competitive games.

This approach uses an explanation that informs the agent’s

behaviour directly. However, Barros et al’s (2020) [201]

approach does not currently provide an explanation for

how this dispositional change has affected its current goal.

Currently providing such an explanation is not evident in

the XRL literature and represents an opportunity for future

research.

5.3 Explanation of events

In many real-world applications, an RL agent will be

required to deal with stochastic and dynamic environments

[202]. In such environments unplanned events will occur

potentially creating unexpected outcomes. An explainable

agent, in such an environment, will be expected to explain

how that event caused an outcome, or provide a full causal

path detailing how the event caused any changes in the

agent’s disposition, goal or action selection. For an agent to

provide such an explanation it must be able to predict the

future states that would arise independent of the presence

and actions of other actors within the environment. The

agent’s response in terms of disposition, goals and actions

of the expected state and the actual state can then be

compared to provide such an explanation. An extension of

this model would also be able to explain what the event

was that changed the environment from that which was

expected. Therefore, it must be able to model the nature of

stochastic events or model external actor’s behaviour to

understand how they may affect the environment. There-

fore, this type of explanation requires the agent to perform

a second-order, or social, level of explanation [14].

There is a range of value-based approaches to optimis-

ing an agent’s behaviour in such environments. For

instance, Robust RL [203], and specially designed training

mechanisms [204] can provide value-based solutions for

learning and adapting in stochastic and dynamic environ-

ments. However, these approaches rarely predict the future
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state or model changes in the environment explicitly.

Therefore, providing an explanation facility with such

approaches is unlikely to provide suitable results. The

nature of requiring an explicit prediction for such an

explanation excludes the direct application of value-based

RL methods without some form of separate predictive

model being developed. For instance, one approach used

for this is the utilisation of generative adversarial networks

(GANs) [205–207] and even recurrent generative adver-

sarial networks (RGANs) [208, 209]. In RL, these methods

are more frequently being referred to as Predictive State

Encoders [210, 211] and are used to generate future states,

also called belief states, and to predict dynamic actor’s

behaviour [212, 213]. Similarly, in model-based methods,

there has been significant work in developing multiple

models of a domain, where prediction errors are used to

select the controller or policy [214–216].

There is evidence of this being a valuable form of

explanation by work in BDI agents [191, 217]. As the name

suggests, BDI agents use knowledge engineering principles

to explicitly model beliefs, desires and intentions for an

agent. Using knowledge-based graph traversals the beliefs

about events and external actors can be a component of an

integrated broad explanation of the system’s behaviour.

Similarly, outside of BDI research, there have been plan-

ning methods developed for providing such an explanation.

Based on knowledge engineering principles, these

approaches utilise abductive reasoning to generate expla-

nations [218, 219]. Molineaux et al. (2011) [220] present a

particularly interesting method that learns an event-model

to explain anomalies through generative abductive rea-

soning over historical observation in partially observable

dynamic environments. Currently explaining events in

stochastic and dynamic environments has not been done in

the RL space. As XRL research moves away from

debugging style explanation towards non-expert focused

explanations, providing event-based explanations is an

important future research direction.

5.4 Explanation of expectations

Traditional RL has a single goal that is generally defined by

the reward engineer implementing the solution. This goal is

an articulation of the expectation being placed on the agent.

Due to the ‘hard coded’ nature of this expectation there is

little need to explain how this expectation has caused its

behaviour. However, this approach only allows for the

development of very narrowly defined agents and is not

applicable as agents become increasingly societal inte-

grated with society. Such a system must adapt to their

dynamic surroundings; changing their disposition and goal

based on the cultural expectations of the external society

with which they are integrated. Any such system must also

be able to explain what expectations it is using to modify

its behaviour. Dazeley et al. (2021) [14] extensively dis-

cussed these Nth-order explanations and the need for an

autonomous agent operating in a human-AI integrated

environment to model the cultural expectations that other

actors may have on how the agent should behave.

Expectations may be easily codifiable rules such as

government-enforced laws, military rules of engagement,

ethical guidelines or business rules or they can be more

abstract, learnt, or niche rules such as staying out of the

doctor’s way when they are rushing through an emergency

ward. To meet these expectations an agent is required to

change their behaviour away from their primary objective,

whatever that might be. These changes in behaviour rep-

resent an area that must be explained as it may not be

obvious to observers why an agent behaved in the way that

it did. In particular, it should be able to articulate what

expectation the agent is pursuing at any given time, why it

selected that expectation, and how that changed its

behaviour.

Only agents that actively maintain a model of the

expectations being placed upon it would require such

explanations and currently this can only be done in RL

through the incorporation of secondary systems. For

instance, behaviour modelling has been studied in several

fields such as BDI-based Normative Agents [221–224];

Game Theory [1, 225–228]; Emotion-Driven or Emotion

Augmentation learning [29, 229–234]; and, most directly

by Social Action research, which models the external

demands placed on an agent that affect its goals or actions

[235–237]. Direct use of expectation in RL is evident

where some systems are designed to incorporate social and

cultural awareness in to their action selection mechanism,

such as pedestrian and crowd avoidance systems

[238–243].

Like explanations of events, there are currently no

known examples of XRL research into providing expla-

nations of such systems. One particularly interesting recent

study by Kampik et al. (2019) [33] uses the idea of

Explicability [244], where an agent can perform actions

and make decisions based on human expectations. Kampik

et al. (2019) [33] developed an approach and taxonomy for

sympathetic actions that incorporate a utility for socially

beneficial behaviour at the detriment of the agent’s own

personal gain. This system then provided explanations for

the agent’s behaviour resulting from these expectations.

Furthermore, Kampik et al. (2019) [33] recognise the rel-

evance and applicability of this approach to RL-based

systems. Identifying papers in this space is, however, dif-

ficult as there is no defined research domain for this

research and papers are often published under more generic

fields such as understandability [34], transparency [35], and

predictability [36].
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6 Using the causal explainable
reinforcement learning framework

The work discussed previously focused on how each of the

individual components of the Causal XRL Framework

(CXF) has, or could be, implemented. This section briefly

looks at how the CXF can be implemented and used. To

some extent this can simply involve implementing all of

the approaches in a single explanation facility for an agent.

For instance, a system could initially use a technique such

as Greydanus et al. (2017) [113] to identify the active

features of a state. These key features could then also be

used to learn causal links between actions and outcomes

creating a model similar to those developed by Madumal

et al. (2019) [177], Khan et al. (2009) [179] or Cruz et al.

(2019) [160]. The combination of these approaches could

provide answers to many of the reactive explanations

required of the Simple-CXF. Extending these approaches

to incorporate multiple objectives [182, 183], or reward

decomposition [184, 187] would allow expressive con-

trastive and counterfactual explanations that would also

facilitate the explanation of the goals and dispositions

behind those choices. Second and Nth-order explanations of

events and expectations would require an agent to construct

models of other actors in dynamic environment using

approaches such as Predictive State Encoders [210, 211],

Emotion Augmentation [29, 229–234], or Social Action

[235–237]. Methods would then need to be developed to

explain how these models affected the agent’s expecta-

tions, disposition or its interpretation of an event. Such an

approach combining all these elements would accomplish

the idea of explaining the full details of the decision.

One important example illustrating the potential of this

combined approach was a study of non-experts carried out

by Anderson (2019) [245]. This study of 124 participants

found that there was a significant improvement in the

explainee’s mental model of the agents behaviour when

both XRL-Perception and XRL-Behavioural explanations

were provided, when compared to only providing one or no

explanation. This suggests that the combined approach was

of value in improving peoples understanding. However,

Anderson (2019) [245] also found that the combined

explanation created disproportionately high cognitive loads

for the explainee. This suggests that providing explanations

across all categories would be unwieldy and difficult for

most people to understand — simply because there is too

much, potentially conflicting, information. This result

aligns with Lombrozo’s (2007) [84] suggestion that an

explanation needs as few causes (simple) that cover as

many events (general) and maintain consistency with

peoples’ prior knowledge (coherent) [246]. Therefore,

simply merging explanation facilities brings us no closer to

presenting explanations that improve understanding, and

hence trust and social acceptance.

Dazeley et al. (2021) present a model for conversational

interaction for explaining an AI agent’s behaviour, repro-

duced in Fig. 7. The proposed model suggests that the

agent presents the explanations incrementally over a

sequence of interaction cycles. It is suggested that such a

model would start at the highest level of intentionality in its

explanation (Nth-order) and progress down the pyramid,

Fig. 1, until the explainee reaches a point of Quiescence

(state of being quiet) representing a measure of stability in

the user’s understanding and acceptance and no longer

requires deeper explanations. This model of conversational

explanation aligns with the CXF proposed in this paper.

Due to each of the CXF categories being aligned to the

levels of explanation [14], this paper proposes that an

implementation of the CXF can use this model to break the

range of explanation types down and only present those

that are required for the user at that time.

In this model, the user would initially pose a query

concerning an agent’s decision, either explicitly or

implicitly, which is first interpreted. The second stage

attempts to identify and clarify any assumptions. This stage

allows the agent to skip higher levels of explanation and go

straight to the lower-level explanations to address any

assumptions if required. For example, if the user asks:

‘why didn’t you catch the ball?’ There is an assumption

that the agent was aware that there was a ball, or that it did

not succeed in catching the ball. Therefore, in resolving

such assumption the agent should first determine if it was

aware of a ball, and secondly, whether the outcome was in

fact that no ball was caught. In the event that the

assumptions are incorrect, e.g. there was no ball in its

perception, then the explanation provided in the last stage

skips the higher levels and provides the relevant lower-

level explanation. If there are no assumptions or if they are

correct then the agent provides the highest level explana-

tion as this is the most general. In the final stage the agent,

Fig. 7 A conversational model for explanation, proposed by Dazeley

et al. (2021) [14], where an agent iterates through three stages until

the explainee is satisfied. The agent starts at the highest level of

explanation and progresses down the pyramid, Fig. 1 to more specific

explanations

16908 Neural Computing and Applications (2023) 35:16893–16916

123



using ontological models or visualisations, etc., provides a

causal explanation at the determined level.

This approach ensures that the explanation is coherent,

focused on the explainee’s context, while otherwise being

as general as possible. In the event that the explanation

does not satisfy the user they will either ask a follow-up

question, or through body language, indicate they are not

satisfied. In such situations, the agent simply progresses to

the next lower-level explanation. The process ends once:

the user expresses satisfaction; they change their questions

to a new topic; or, all available explanations have been

provided. This interactive approach to communicating

explanations to a user represents a process where the agent

aims to facilitate the development of a shared mental

model with a human. This shared mental model is key in

many situations, particularly in team-based and socially

integrated domains. Development of these shared mental

models has been previously explored by Tabrez and Hayes

(2019) [247] where an agent uses a process referred to as

Reward Augmentation and Repair through Explanation

(RARE), based on inverse RL, to infer the most likely

‘reward’ function used by a human collaborator and

explain how that differs from the optimal function. In other

words, this project is similar to this paper’s approach in

that it is providing an explanation in the context of the

explainee’s current understanding.

Currently, there is no attempt to build a facility like the

CXF in the XRL literature, apart from some attempts to

combine perception with behaviour [177, 245] and sug-

gested extensions to combine actions with goals

[64, 177, 182, 183]. The approach has been extended more

thoroughly outside of XRL, using generic explanation

facilities. These systems observed interactions by the agent

and use the learnt model to provide explanations, such as

Local Interpretable Model-Agnostic Explanations (LIME)

[174] and Black Box Explanations through Transparent

Approximations (BETA) [248]. Both of these approaches

provide explanations across a subset of the components in

the CXF.

One particularly notable example is Neerincx et al.

(2018) [217], which extended LIME and separated per-

ceptual explanations from the cognitive processing to

provide holistic explanations. The cognitive processing

component incorporated goal and dispositional explanation

based on emotion-based explanations. Finally, the

approach incorporated ontological and interaction design

patterns to communicate explanations. This approach rep-

resents the most advanced implementation utilising [14]

levels of explanation based on intentionality and could be

interpreted using multiple sections of the CXF.

7 Conclusion

Reinforcement Learning (RL) is widely acknowledged as

one of three subfields of Machine Learning, where an agent

learns through interaction with the environment using trial-

and-error. However, research in eXplainable RL (XRL) are

often published under the area of Interpretable Machine

Learning (IML), along with supervised learning approa-

ches to explanation. This categorisation, however, mis-

represents the possibilities that XRL presents. This paper’s

aim was to articulate how XRL is distinct when compared

to IML, and that it offers the potential to go well beyond

simply interpreting decisions. More importantly, that XRL

could be the foundation to the development of truly Broad-

XAI [14] systems that are capable of providing trusted and

socially acceptable AI systems to the wider public. In order

to illustrate this point, this paper provides a conceptual

framework, referred to as the Causal XRL Framework

(CXF), that highlights the range of explanations that can be

provided. This framework was used to review the current

extent of research that has been carried out and to identify

opportunities for future research.

The Causal XRL Framework (CXF), presented in Fig. 4,

is based on the Casual Explanation Network (CEN) sug-

gested by Böhm and Pfister (2015) [83]. The CEN presents

a cognitive science view of how people explain behaviour

and extends prior work in attribution theory [82]. Like the

CEN, the CXF identifies seven components to causal

thinking about an actor’s behaviour. This directed graph of

causal relationships includes a single sink node represent-

ing the outcome. This outcome is caused by either an

intentional action by an agent, or from an unintended or

uncontrolled sequence of events. These events could be a

result of stochastic actions or external actors. The agent’s

actions are caused by a goal which in turn may be altered

by its internal and temporary disposition, such as a change

in parameter, simulated emotion or safety threshold being

passed. Finally, the disposition can be affected by external

cultural expectations placed upon the agent or by its per-

ception of the world. A simplified framework, referred to

as the Simplified-CXF, containing only perception and

action causes for an outcome, was also provided, which

represents the majority of current research in XRL.

In surveying the current state-of-the-art research into

XRL this paper discussed how most of the XRL-Perception

was derived directly from IML research. This connection

with IML is due to RL’s utilisation of standard supervised

learning approaches for function approximation and state

feature extraction. However, there were also several

examples moving beyond straight IML; providing both

model and value-based extensions that were specific to

XRL. These methods use introspection of the RL
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framework to identify causal relationships between the

perceived features and either the action selected or the

outcome that resulted. Of particular interest was the

emergence of methods used for generating counterfactual

and contrastive explanations based on these causal links

between state-features and outcomes. XRL-behaviour, as a

sub-branch of XRL where the explanation aims to clarify

the agent’s choice of action and the effect it has on the

outcome, was explored in detail.

Finally, in discussing the full framework, this paper

identified several opportunities for further research in XRL,

such as using hierarchical, multi-goal, multi-objective and

intrinsically motivated RL techniques in Goal-driven

explanation and emotion-aware explainable AI (EXAI).

This paper also discussed hypothetical approaches to the

development of event-based and expectation-based expla-

nations, such as utilising predictive state encoders and

explicability in RL. Currently, these areas have been

studied by other fields of explanation, such as BDI agents

and Social Action, but represent the fringe of XRL

research. This paper suggests these are exciting areas of

future study that this field should pursue so that RL can be

more widely used in real-world human-agent mixed

application domains.
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