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Abstract
In order to deploy robots that could be adapted by non-expert users, interactive imitation learning (IIL) methods must be

flexible regarding the interaction preferences of the teacher and avoid assumptions of perfect teachers (oracles), while

considering they make mistakes influenced by diverse human factors. In this work, we propose an IIL method that

improves the human–robot interaction for non-expert and imperfect teachers in two directions. First, uncertainty estimation

is included to endow the agents with a lack of knowledge awareness (epistemic uncertainty) and demonstration ambiguity

awareness (aleatoric uncertainty), such that the robot can request human input when it is deemed more necessary. Second,

the proposed method enables the teachers to train with the flexibility of using corrective demonstrations, evaluative

reinforcements, and implicit positive feedback. The experimental results show an improvement in learning convergence

with respect to other learning methods when the agent learns from highly ambiguous teachers. Additionally, in a user study,

it was found that the components of the proposed method improve the teaching experience and the data efficiency of the

learning process.

Keywords Interactive imitation learning � Human reinforcement � Corrective demonstrations � Active learning �
Uncertainty

1 Introduction

Learning the solutions for sequential decision-making

problems in robotics has become a deeply studied alter-

native to traditional control engineering approaches. Lev-

eraging the powerful capabilities of machine learning (ML)

methods, it is possible to bypass most of the analytical and

empirical work a skilled engineer should perform. Most of

the research and big successes in this regard have been

obtained through autonomous learning schemes such as

reinforcement learning (RL) [1–5].

However, despite the impressive achievements, RL

suffers from limitations regarding data inefficiency, the

safety of the system, and the difficulties of reward engi-

neering. The former limitation is especially a problem for

learning with robots since more computational power does

not fully solve the problem, while the latter is not so fre-

quently discussed, and is an underrated problem in the

literature because most of the recent developments have

been evaluated in well-standardized benchmarks that

already include a defined reward function.

Imitation learning (IL) [6] is a more direct learning

approach that benefits from the knowledge of a teacher

who demonstrates how to perform a task (i.e., provides a

dataset of samples), instead of hand coding the required

behaviors. After recording the demonstrations, a policy

model is trained in order to imitate that dataset either with

behavioral cloning (BC) [7, 8] or with inverse reinforce-

ment learning (IRL) [9].
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Interactive imitation learning (IIL) [10] expands the

possibilities of IL approaches. With IIL, policies are

learned incrementally while the teacher is in the learning

loop providing feedback that improves the knowledge of

the agent in every new situation, which leads to obtaining

higher-quality data compared with only demonstrating the

execution of the task. The feedback provided on top of the

executions of the learning policy reduces the issues related

to the distribution shift [11, 12].

Additionally, these interactive methods enable users to

transfer their knowledge with other modalities of interac-

tion, not only explicitly showing what the agent should do,

but also guiding with evaluative feedback from the teacher,

i.e., reinforcements (rewards or punishments), or also by

comparing the performance of different agents/policies

with learning from preferences or rankings. The use of

evaluative feedback bridges the worlds of RL and IL

[13–16].

Depending on the kind of task to be solved, and the

expertise of the teacher in solving or understanding it,

some of those modalities can be more convenient. Showing

the agent what to do when it makes a mistake is the most

efficient way to correct a policy; however, this requires that

the teacher understands the dynamics of the environment

well and knows a good strategy to achieve the goal of the

task. Providing evaluations of the policy or comparing

different policy executions enables less expert users to

teach a robot, since they do not need to know what should

be done, rather just to have enough insights about what is

good/bad or what is better/worse. However, human rein-

forcements and preferences are kinds of feedback that

contain less information than demonstrative feedback;

therefore, methods based on them tend to be less data

efficient.

Nevertheless, the choice of the preferred feedback

modality is something that could change within the same

learning process of a task. There could be situations

wherein users are less skilled to demonstrate the right

action than in some others. Also, it could happen that after

some training time, users experience tiredness that leads to

loss of concentration and engagement, consequently, hav-

ing less insights about the right demonstrations, which

could open the possibility of providing less demanding

feedback, and leveraging human reinforcements.

This work introduces ICREATe (Interactive Corrections

and Reinforcements for an Epistemic and Aleatoric

uncertainty-aware Teaching), a method that enables users

to train agents with corrective demonstrations and evalua-

tive feedback interactively in a Data Aggregation (DAgger)

scheme, while employing the two kinds of uncertainty for

active learning (Fig. 1).

The proposed method ICREATe improves the human–

robot interaction experience via active learning (active

queries from the robot to the user). The method endows

robots with the capabilities of predicting the uncertainty of

the policy in order to notify the teacher when the robot is

not confident about the action to be executed. However,

unlike previous works, two uncertainties are considered for

the active queries: i) epistemic uncertainty, which indicates

the lack of knowledge/data, and ii) aleatoric uncertainty,

which considers the noise in the observations, produced by

inconsistent or ambiguous feedback signals. Moreover, the

system improves the data efficiency, aggregating implicit

rewarded feedback in situations wherein teachers’ silence

could be considered as positive rewards, for instance, when

teachers do not correct actions and let the robot execute

them despite it signaling uncertainty.

During training time, the teachers could decide anytime

either to reward/punish the agent or to correct the policy

with an action demonstration, both intermittently. Both

kinds of feedback are smoothly combined to modify the

same policy model, affecting the probability of choosing

the actions to be taken.

Fig. 1 Interactive imitation learning with corrective and evaluative

feedback, and active queries based on epistemic and aleatoric

uncertainty
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Unlike previous works based on data aggregation, the

use of aleatoric uncertainty-based queries allows avoiding

the assumption of perfect teachers. Extensive evaluations

with noisy simulated and real teachers show that this

method can be widely applied in many scenarios with non-

expert teachers, while still being able to learn high-per-

formance policies in both simulated and real robot systems,

and improving the user experience.

2 Background

2.1 Markov decision processes

Most of the RL and IL methods are based on the Markov

decision processes (MDP) framework [1]. In this frame-

work, the agent executes actions a in order to control the

situation of the environment described by the state s. Those

actions are executed in order to make the transitions of the

state follow the objective of the task, represented by the

reward r. The policy p is the model that maps from states to

actions, and the optimal policy is the one obtaining the

maximum accumulated discounted reward. The dynamics

of the environment are described by the transition function

T, mapping from the current state st and the action at
executed in that state to the next state stþ1. The transition

functions in MDPs feature the Markovian property, which

means the transition to state stþ1 depends only on the

current state st and action at. With the Markov property,

the decisions are only a function of the current state in

every time step, computed with the policy pðstÞ.

2.2 Learning from human input

There are many methods for learning policies from expe-

rience and human teachers in the learning loop. The main

two modes of user interaction with a policy learning agent

are with the teacher providing corrective demonstrations,

or with human reinforcements [10].

2.2.1 Learning from human reinforcements

The difficulties for reward engineering in RL have moti-

vated to explore the possibility of replacing or comple-

menting the MDP encoded reward function with human

teacher reinforcements or evaluations. Seminal works in

this direction evaluated to replace the reward function with

the rewards a human teacher would provide in an interac-

tive learning fashion, within standard RL methods [17–19].

However, human rewards have different considerations

regarding past, present, and future, as regarded by the

Bellman optimality [1] within MDPs. Some works have

studied the intentions behind human reinforcements

[20, 21], which have been useful for adapting the learning

methods to human teachers.

Some works have proposed to learn from these human

evaluations while using them directly to influence the

decisions exclusively in the situation in which they were

given, i.e., in the state that is rewarded. In Policy Shaping

[22], the human evaluation is used for updating the prob-

ability of choosing the action at the agent executed in the

state st.

Training an Agent Manually via Evaluative Reinforce-

ment (TAMER) [14, 23] is a framework that also considers

the feedback for directly influencing only the action that is

being executed in the corresponding state (if the human

response delay is disregarded), without using it for com-

puting a return. It assumes the feedback is directly con-

veying the desirability of the action and could be taken

directly as a value rather than a reward. Therefore, the

human reinforcement h is used for learning a Human model

H(s, a) that tries to predict that human signal. This model is

used for computing the policy with argmaxa Hðst; aÞ,
choosing the most desirable action according to the feed-

back h given by the teacher, as shown in Alg. 1

2.2.2 Learning from corrective demonstrations

In these methods, the human teacher is observing the agent

performing the task, and whenever a correction is required

the teacher can intervene for demonstrating the right action

that the agent records and uses for updating the policy.

Confidence-based autonomy [24] was one of the seminal

works in this direction, which models the policy with a

Gaussian mixture model (GMM) used also for estimating

the confidence of the policy. Whenever the policy is not

confident about the action to take in the visited state, it can
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actively request a demonstration from the teacher that is

incorporated in the data for learning the policy.

A very well-known IL method in which the teacher

demonstrates the correct actions while the agent keeps

following the current policy is Data Aggregation (DAgger)

[25], which has shown to be powerful for reducing com-

pound errors, given the distribution of the collected data is

controlled by the learning policy. It has motivated the

development of a family of methods SafeDAgger [26],

EnsembleDAgger [27], LazyDAgger [28], or Thrifty-

DAgger [29], which deal in a different way the teacher

interventions in order to improve feedback efficiency or

safety.

One of those variations is Human Gated DAgger (HG-

DAgger) [30], which was proposed for considering human

teachers whose feedback quality could be degraded when

not directly observing the effect of the actions they

demonstrate. With this method, the teachers do not need to

demonstrate every time step, but only when they deem a

correction necessary. In such a case, the teachers’ actions

are executed by the agent instead of the learning policy,

improving the safety of the system because when visiting

risky states, the expert can take over and return the agent to

safe states. Ensembles of neural networks (NNs) are used

to model the policy, having the additional capability of

estimating the uncertainty of the policy, which can be used

for risk warnings. In Alg. 2, a summarized pseudocode of

HG-DAgger is presented, wherein the policy is updated

every b time steps or even every episode.

Research has found that there are clear trends in the

preferences teachers have when training agents, regarding

the kind of feedback to use [20, 31, 32]. However, no kind

of feedback has shown to be better than all the others in all

possible contexts, and each of them has a potential benefit

in different situations. Hence, the possibility of using dif-

ferent interaction modes within one learning framework is

an open challenge with good prospects for both the learn-

ing performance and the user experience, which has not

been widely studied. Cycle of learning [33] is proposed to

combine different modalities in a sequential manner, with

different phases for each modality, and not in a simulta-

neous scheme wherein the teacher can choose what feed-

back to give at any moment. A combination of corrections

and evaluations can be used simultaneously as proposed in

[16]; however, the method works on top of a tabular RL

method that can face scalability limitations.

Corrective and Evaluative Interactive Learning (CEIL-

ing) [34] proposes a smooth combination of corrective

demonstrations and evaluations for problems of high

dimensionality. Nonetheless, it does not make use of the

entire spectrum of the evaluative feedback, since it pro-

cesses only positive evaluations, but not negative ones.

Therefore users cannot punish wrong behaviors, and they

can only change them with corrective demonstrations,

requiring the teachers to always be experts at the task

execution.

This work proposes a framework that similarly aims to

combine both types of feedback, but lets the user shape the

policy with any feedback without restriction, i.e., being

able to train policies even when using exclusively one of

them, or both combined. Additionally, the learning agent is

endowed with awareness of unknown states or ambiguous

situations given the past feedback based on uncertainty

estimation, which can improve the teacher’s performance.

2.3 Types of uncertainty

In ML, it is very important to know how reliable is a model

being trained. The loss function evaluated with the training,

test, or validation sets is a global measure that can be taken

as an index of the general reliability of the model, but it is

not useful for explaining how reliable each prediction is.

Uncertainty estimation can provide more specific mea-

sures that can be used for understanding how trustworthy

the prediction of the model is given an observation. The

reliability of a model can be described as a composition of

two different uncertainties: the epistemic and aleatoric

uncertainties [35, 36].

Epistemic uncertainty explains whether the model has

knowledge about the observed situation (input), i.e., this

uncertainty is high when the model makes a prediction with

an observation not seen in the training data. This uncer-

tainty can be reduced by gathering more data that repre-

sents all possible situations. Aleatoric uncertainty explains

how inconsistent the observations for training the model

have been. It accounts for the noise in the data that makes it

contradictory or ambiguous, for instance, when there is

16824 Neural Computing and Applications (2023) 35:16821–16839

123



noise in the measurements, or specifically in the context of

IL, when the teacher demonstrates contradictory actions for

the same state. Aleatoric uncertainty cannot be reduced

with the collection of more data.

Although each uncertainty models different issues, their

use is not mutually exclusive [37]. A model can be con-

sidered reliable in predicting the underlying phenomena

that generated the training data if it obtains a low estima-

tion of both of these uncertainties. It means that very

similar situations were observed during training (epistemic

certainty) and that those similar situations did not introduce

any inconsistency or ambiguity (aleatoric certainty).

Uncertainty estimation is important for knowing the

reliability, and in some cases, the safety of the model when

it is deployed. Nonetheless, it is also useful to estimate

uncertainty while still learning, as it can support the pro-

cess of finding the best learning samples by means of active

queries. In IIL, various learning approaches have used

uncertainty estimation for generating active queries

[24, 30, 38, 39]; however, no method so far has focused on

combining both uncertainties within an IIL method, such

that the agent communicates to the teacher its awareness of

unseen states and previous ambiguous interactions.

We propose to combine the prediction of both uncer-

tainties within a data aggregation IIL scheme, helping to

increase the users’ engagement with the learning process in

critical situations. The proposed method is able to learn

from the two kinds of feedback, but additionally, aleatoric

uncertainty modeling is able to detect ambiguities in the

feedback. This occurs not only when there are contradic-

tory demonstrations or when there are contradictory eval-

uations, but also when there is feedback of a kind that

contradicts feedback of the other kind, for instance, when

in two different moments, for a specific state, an action is

rewarded and another action is demonstrated or when an

action is demonstrated and later the same action is

punished.

3 Interactive corrections
and reinforcements for an epistemic
and aleatoric uncertainty-aware teaching
(ICREATe)

The IIL method ICREATe proposed in this paper enables a

teacher to occasionally intervene in the learning loop by

providing a feedback signal, whenever she/he considers the

action being executed wrong, or in order to reinforce a

correct behavior.

It is important that the learning agent helps to keep the

teacher aware when it is required to correct the policy, at

least when the policy is not confident. If there would not be

an active query, the teacher could notice too late that

feedback was required and might need to wait until the

same situation happens again. Additionally, the agent could

end up in a dangerous/undesirable state. Therefore,

implementing active queries can help with improving the

data efficiency of the learning process and the safety of the

system.

In this method, the epistemic and aleatoric uncertainties

of the policy are modeled such that the agent can convey to

the teacher when it is not confident as: i) it is facing an

unseen situation, i.e., visiting states wherein the teacher has

not provided any feedback signal; ii) it is visiting states in

which the teacher has given ambiguous/contradictory

feedback signals. With these queries, the teacher can

decide whether to provide evaluative or corrective feed-

back to the agent for either accepting, rejecting, or

explicitly correcting the performed behavior.

ICREATe is composed of two main parts: (i) the inte-

gration of two different interaction modalities for the

teachers to train the agents: corrective and evaluative

feedback (Sect. 3.1) and (ii) the estimation of epistemic

and aleatoric uncertainty to generate active queries when

the policy is uncertain, to improve the teacher’s engage-

ment with the learning process (Sect. 3.2). The combina-

tion of these two modules leads to an additional third

component which is based on a passive positive feedback

assumption that labels some of the state–action pairs that

are not corrected or punished by the teacher with positive

rewards, which is elaborated in Sect. 3.3.

3.1 Learning from corrective and evaluative
feedback

Teachers can share their insights about the policy execution

through two different modes of interaction: corrective

demonstrations or evaluative reinforcements. Either of the

two interaction modes can be preferred at any moment

depending on the complexity of the problem or the current

transitions, the expertise of the teachers, their engagement,

the performance of the learning agent, or some other

factors.

The policy pðajsÞ predicts the probability of choosing

the action a given the state s. Both kinds of feedback

signals are directly used to modify the probability of

choosing an action in the update of the policy model p.
When there is a teacher intervention for providing a
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feedback signal, a triple (s, a, h) is aggregated to the

training dataset D, where ht is the evaluative signal. The

way the feedback is parsed and used to generate the labels

for training the policy with supervised learning depends on

the kind of feedback the teacher provides as explained

below:

3.1.1 Corrective feedback

The teacher can intervene to provide corrective demon-

strations whenever considered necessary as the agent is

performing wrong actions. Like in HG-Dagger, actions

demonstrated by the teacher are not only recorded but also

executed by the agent, in order to improve the safety in the

environment, i.e., the intervention of the teacher is directly

the gating function that selects to execute the action of the

teacher instead of the one of the learner.

In this case, the teacher uses an interface that allows to

take over and control the robot at any time. During the

corrective demonstration at the time step t, the demon-

strated action ah is assumed to implicitly receive a positive

reward ht ¼ 1 since it is considered the right action; thus,

the triple ðst; ah; 1Þ is added to D.

3.1.2 Evaluative feedback

The teacher can also intermittently provide an evaluation of

the executed action. Unlike the corrective feedback that is

executed during the current time step in which it is pro-

vided, the human reinforcements are an evaluation of the

executed action at�1 after observing its effect in the tran-

sition from st�1 to st. Therefore, the evaluation is associ-

ated with the previous time step t � 1, and the triple

aggregated to D is ðst�1; at�1; htÞ, where ht is 1 or �1

depending on whether the teacher reinforcement is a

reward or a punishment, respectively.

3.1.3 From feedback to output labels generation

In order to train the policy in a supervised learning fashion,

the triples stored in D are used for training the policy p
which maps from the states to the actions desired by the

teacher. Since pðajsÞ computes the probability of choosing

any action a given the state s, the method computes the

target probability label based on the action a and the

human evaluation h recorded in each triple.

If an action is either rewarded or explicitly demon-

strated, the method will increase the probability of

choosing that action, but if the action is punished by the

teacher, the probability of choosing it will be decreased.

Positive evaluations If h ¼ 1, the vector of labels used

for training the policy is a one-hot encoding, wherein the

action with the high value is the one that was either

demonstrated explicitly by the teacher, or the one that the

robot executed, and the teacher rewarded positively. This

label increases the predicted probability of that action in

the policy.

Negative evaluations If h ¼ �1, the label for all the

actions could be set to zeros, which would mean that all

actions are equally not desirable, including the ones not

punished. However, doing that is a loss of information

conveyed by the teacher, who implicitly means that ‘‘the

action punished is less desirable than some others’’;

therefore, the probability of choosing this action should

decrease more with respect to the others. Hence, it is

proposed to set the target vector as a one-cold encoding

that has the low value for the action that the teacher has

punished. This decreases the probability of the punished

action, while slightly increasing it for all the others.

Label generation From every triple (s, a, h) in D, an

input–output tuple ðs; liÞ is created for the supervised

learning process, wherein ½l0; l1; . . .; li; . . .; lC� is the vector

of labels for the C possible actions, which are the com-

ponents of the output of the policy.

li ¼ Lðai; a; hÞ ¼
1fai ¼ ag; if h ¼ 1

1fai 6¼ ag; if h ¼ �1

�
ð1Þ

This approach for label generation is convenient, especially

for some kinds of teachers who tend to only punish wrong

behaviors, while passively observing the good transitions,

forgetting to reinforce behaviors with positive feedback. In

this case, the actions that receive the least amount of

punishments are the ones which the policy would assign

the highest probability, i.e., this even allows to train a

policy only using negative rewards that force the agent to

try other actions, until the right one is found.

Loss function Non-one-hot encoding is used for multi-

label classification problems minimizing the sum of mul-

tiple binary cross-entropy (BCE) loss functions. However,

multi-label classification can consider and make decisions

that are not compatible with the MDP framework, for

instance, deciding on more than one action or none. In

sequential decision-making problems, the policy is expec-

ted to decide on only one preferred action for every state.

Accordingly, despite some of the L vectors not being a one-

hot encoding, we propose to approach this problem as a
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multi-class classification using a categorical cross-entropy

(CCE) loss, which additionally has the advantage of nor-

malizing the output of the policy that can be interpreted as

probabilities

CCE ¼ �
XC
i

Lðai; a; hÞ logðpðaijsÞÞ: ð2Þ

The softmax activation function is used to compute pðaijsÞ.
Nevertheless, in preliminary experiments, we found that

training in a multi-label scheme with BCE loss, or even

using mean square error (MSE) obtains very similar results,

although that is not the focus of the paper.

3.2 Epistemic and aleatoric uncertainty
estimation

In order to improve the engagement of the teacher with the

learning process, ICREATe is endowed with the capability

of actively letting the teacher know when it needs more

data to improve its knowledge base. Due to different fac-

tors, teachers’ concentration and attention to the agent can

decrease over time.

During the learning process, it is not always necessary

that the teacher is completely focused on the task execu-

tion, especially when the policy has improved its initial

performance. Indeed, when the agent starts to perform well

most of the time, teachers tend to get distracted because

mistakes are not expected anymore. Therefore, query

generation based on policy uncertainty is a convenient

strategy for increasing the teacher’s attention when it is

more necessary. Both types of uncertainty are modeled

independently as introduced in the following.

3.2.1 Modeling epistemic uncertainty

As implemented in previous works, we propose to use

ensembles of NNs for capturing the uncertainty of the

policy model [27, 30]. These models are composed of

multiple NNs or heads of a NN, that are trained to predict

the same output in each of them, given a specific input.

After training those models, ideally, all the outputs

should agree with a similar prediction for the data used

during training and the surrounding neighborhood, while

the predictions of unseen states tend to have a high dis-

agreement (variance). Additionally, the disagreement of

the individual predictors of an ensemble has a positive

impact on the ensemble generalization error [40].

The disagreement of the components of an ensemble is

the lower bound of the weighted average of the errors of

the components [41]. This means that if an ensemble pre-

dicts high disagreement for a specific state, it would obtain

a high average error. This would only happen when that

state is not similar to any sample of demonstrations used

for training, and therefore, the disagreement can be inter-

preted as a measure of lack of confidence or uncertainty in

the prediction of the policy, because more demonstrations

are required for that situation.

In order to make an ensemble work well for predicting

high variance for unseen states, there are some strategies

that ensure that each of the heads of the NN is not trained

exactly as a copy of the others, but rather generalizing in

different ways while fitting the training data. Each of the

components of the ensemble has a different structure that

can be obtained with simple strategies like:

• Setting different depths for each component.

• Setting different widths for each component.

• Allocating different random batches for computing the

updates of each component.

• Training under-regularized models.

• We also found it useful to randomly initialize the

weights, forcing each output to start in different ranges,

such that the initial predictions have a uniform

distribution.

Although the action prediction of the policy and the epis-

temic uncertainty are both computed with the outputs of the

ensemble, we simply name pðsÞ the function that computes

the argmax of the average of the ensemble pE,

pðsÞ ¼ argmax
ai

XK
k

wkpE;kðaijsÞ ð3Þ

where K is the number of individual predictors or heads of

the ensemble and wk are optional parameters that are pro-

portional to the performance of each head that are used for

a weighted average of the outputs. The epistemic uncer-

tainty is obtained with the function G(s) that computes the

variance of the ensemble ue ¼ GðsÞ. Each of the heads of

the ensemble pE;k is trained optimizing the cost function (2)

3.2.2 Modeling aleatoric uncertainty

In order to detect the noisy samples in the gathered data,

which creates conflicts or ambiguities during training, we

propose to train a predictive model A(s) that computes the

probability of the policy predicting a mistake. This mea-

sure is inspired by the training of models for residuals

prediction, which predict the error of the actual model

(policy), with respect to the state. However, our interest is

not to be able to predict the error of the policy, but rather to

detect the states in which the policy has a prediction error.

The assumption is that the policy model is expressive

enough to be able to imitate all the demonstrated actions

after enough training, and only when there are conflicting/

ambiguous demonstrations, the policy will have issues
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predicting the demonstrated action for the inputs of the

demonstrations involved in the conflict.

For instance, if the teacher demonstrated two or N dif-

ferent actions for the same state s, the policy will be able to

predict the action that is correct at most for one of those

demonstrations, while not imitating correctly at least one or

N � 1 cases, respectively. In other words, we propose that

the aleatoric uncertainty ðua ¼ AðsÞÞ is indirectly measured

based on the probability of predictive mistakes of the

policy that are produced due to the ambiguous demon-

strations and that cannot be solved with more training, but

with more feedback that reinforces one of the possible

actions, reducing the average error for that state.

The ideal prediction assumption is not always realistic,

especially at the beginning of the learning process, when

the model is not fitting all the training data. Nevertheless,

the prediction of mistakes in non-ambiguous states is not a

negative feature, but rather a good side effect that helps to

request feedback in states that need to be emphasized

because the demonstrated data is not being imitated yet.

For training this model A(s), the update procedure is per-

formed subsequently after the update of pðsÞ.
Predicting mistakes when only learning from corrective

demonstrations: For each demonstrated tuple (s, a) in the

update batch, the target m (for the model A(s)) for the input

s is computed as

m ¼ Mðs; aÞ ¼ 1fdða; pðsÞÞ[ �g; ð4Þ

where dð�Þ is a measure of distance/similarity and � is the

threshold defining whether two actions are similar or not,

depending on the domain of the actions. For the case of

discrete actions, the target of the tuple (s, m) can be

computed as

m ¼ Mðs; aÞ ¼ 1fa 6¼ pðsÞg: ð5Þ

Predicting mistakes when learning from corrective and

evaluative feedback: For this more general case approa-

ched in this paper with the proposed method, the genera-

tion of the output label of A(s) is slightly more complex

since there are samples of undesirable state–action pairs,

i.e., when h ¼ �1. The variation ofM in (6) takes the triple

(s, a, h) to compute the output m ¼ Mðs; a; hÞ associated

with the input s, conditioning it with the evaluative feed-

back h.

m ¼
1fa 6¼ pðsÞg; if h ¼ 1

1fa ¼ pðsÞg; if h ¼ �1

�
ð6Þ

Loss function: This supervised learning problem is trained

optimizing the BCE loss computed with:

BCE ¼ �Mðs; a; hÞ logðAðsÞÞ
�ð1�Mðs; a; hÞÞ logð1� AðsÞÞ

ð7Þ

3.2.3 Network architecture

We propose to implement one big network as presented in

Fig. 2, that includes the ensemble for computing the policy

pðsÞ and the epistemic uncertainty with G(s), along with

the mistake prediction model A(s). It has a hidden layer (in

gray) after the input layer, which is common and connected

to all the heads of the network, including the branch for

computing A(s) (in green). This is with the purpose of

sharing the first set of feature extraction such that not

everything is learned completely independently and the

process is more data efficient.

The layers of the policy ensemble are in blue, and each

of the heads has a softmax activation in the layer connected

to the output layer, such that for each head the cost (2) can

be minimized independently. The last blue output layer is

for computing the variance of the ensemble G(s) and the

average of (3) for pðsÞ.
The green head contains the layers for computing A(s),

and its output layer has a sigmoid activation function

required for computing the binary cross-entropy loss (7).

3.3 Passive rewarding under uncertainty

Teachers do not tend to perform corrective demonstrations

or provide positive rewards all the time when the agent is

executing the right actions. There are situations in which

there were ambiguous demonstrations but the action pre-

dicted by the policy is considered satisfying by the teacher,

or unseen situations with high epistemic uncertainty in

which the actual prediction is also the desired action.

For those cases, some teachers would decide to not

always provide a feedback signal, especially after a rea-

sonable training time, even though there is a query/alert

triggered by high uncertainty estimations. The results of

[42] support the hypothesis of considering silence as pos-

itive feedback.

head 1                             head 2          …                          head k

Hidden layer

Output

  Action          Epistemic Uncertainty

Output

       Aleatoric Uncertainty

State 

Fig. 2 Network architecture for predicting actions, along with the

epistemic and aleatoric uncertainties
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We propose to generate more training data even without

the active intervention of the teacher, leveraging the

aforementioned assumption. Since the teacher is aware of

the low confidence of the policy due to the active queries,

we assume that the lack of teacher interventions with either

corrective demonstrations or punishments could be taken

as an implicit acceptance or approval of the current exe-

cuted behavior, unless the teacher lets the agent know that

she/he will not provide feedback. Therefore, the state–ac-

tion pairs of these situations are considered for this passive

rewarding and aggregated to the dataset with a reinforce-

ment h ¼ 1.

Nevertheless, it is proposed not to passively reward

every time step there is a query and the teacher does not

intervene. Rather, it is taken into account that teachers

could have a slow reaction to new events, and hence, a

grace period should be considered before the passive

rewarding. In [43], this response time has been modeled

with probability distributions P(t) that explain how long it

takes for a person to react to different tasks, or the prob-

ability of having a reaction after t seconds of the event.

In order to make sure the algorithm does not passively

reward state–action pairs before the probabilities of

response are reduced significantly, the grace period is

calculated from those models finding the time in which

there is only 5% left of probabilities of response, i.e., using

(8) to find tg.Z tg

0

PðxÞ dx ¼ 0:95 ð8Þ

In [14], an example of this response time is shown, wherein

PðtÞ�Gammað2; 0:28Þ, and finding tg from (8) is

approximately 1.3s, which matches the experimental

results presented in [43]. Thus, the passive rewarding is

performed only when there are continuous queries from the

agent for more than tg seconds without teacher interven-

tion, unless the teacher disables it with:

• A signal that sets the teacher interaction on hold. This is

useful for allowing the teacher to perform another task,

as long as the system does not have any safety-related

risk.

• A signal that states the teacher does not know whether

the robot execution is right in the current time steps.

The passive rewarding continues every time step after tg as

long as the conditions do not change; otherwise, it is

interrupted and the time counter would be restarted when

those conditions are fulfilled again.

3.4 Complete ICREATe algorithm

The integration of these components considering the two

interaction modes, the use of both uncertainty estimations

for active learning, and the passive rewarding component is

presented in Alg. 3. The parameters h and / comprise the

networks of the policy ensemble and the aleatoric uncer-

tainty model, respectively; therefore, the implementation of

the parameterized functions is named ph, Gh, and A/.
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For every episode, in every time step, the policy and

uncertainty models are evaluated in ðstÞ (lines 6–8). In

order to generate active queries, the uncertainties ue and ua
are compared to the thresholds the and tha, respectively,

and if True, the function env.queryFeedbackAlert() is used

to communicate the query to the teacher through the user

interface (lines 9–14).

If the teacher decides to intervene with a corrective

demonstration (line 15), the action ah demonstrated by the

teacher with the user interface replaces the current action

of the policy at (line 16), and it is used with the default

reinforcement (line 17) to be aggregated to D (line 18). If

the user decides to intervene with evaluative feedback, the

function humanEvaluation() obtains the reward or pun-

ishment from the user interface (line 21); it is aggregated to

D (line 22). Then, the action at is executed by the agent

(line 24).

The passive rewarding is computed (lines 25–28), if all

the requirements discussed in Sect. 3.3 are fulfilled. In line

25,‘‘not feedback’’ means that neither a corrective nor

evaluative feedback has been provided by the teacher.

Finally, the policy is updated every b time steps. At the

end of every episode, both ph (implicitly Gh) and A/ are

updated with loss functions (2) and (7), respectively. This

algorithm can be seen as a generalization of some other

methods that can be derived from ablations of Alg. 3. For

instance, HG-DAgger is obtained if only running the lines

1–7, 12–19, 24, and 33. Deep TAMER would be only with

lines 1, 3–6, 20–24, and 29–33 along with removing the

softmax activation function layer. The source code of this

method will be published along with this paper.

4 Experiments and results

In order to evaluate ICREATe, in the experiments, it was

considered both simulation and real robot setups, along

with evaluations including real and simulated teachers.

4.1 Experimental setup

The evaluation of ICREATE was planned sequentially, first

taking the most exhaustive comparison using simulated

teachers or oracles to replace the human in the loop, then

running a user study with a simulated environment, and

finally a validation with tasks with a real KUKA iiwa robot

arm.

4.1.1 Simulated environments with simulated teachers

For simplicity, the most exhaustive experiments are carried

out with simulated environments since they do not have

physical constraints, like the duration of the experiment

(that cannot be accelerated with computational power), or

the safety of the system itself and the users around.

Environments: Four different OpenAi Gym [44] envi-

ronments were chosen for these evaluations, considering

different complexities with low-, intermediate-, and high-

dimensional state spaces. For a low-dimensional problem,

the CartPole environment is used, which has a very simple

state space of four dimensions. With an intermediate

dimensionality, the Atari games Skiing and Pong are used,

specifically the environments using the RAM memory as

observation vector with a length of 128, which is not a so

high-dimensional observation, but still, a complex repre-

sentation from which it is difficult to obtain good features

extraction, i.e., it is a representation that requires smaller

NNs and less computational resources with respect to using

images as observations, but in some cases, it is less effi-

cient to decode the relevant information than when learning

with pixels in the observations. For high-dimensional

observations, the Enduro environment with screen images

as observation is used, and the last four frames are con-

sidered within the current observation. Figure 3 shows

screenshots of the chosen Gym environments.

Simulated teachers: In order to evaluate and compare

different methods without biasing the experiments with

human factors like tiredness or loss of concentration after

many repetitions of many different tested methods, or the

influence of the order of the used teaching methods, a

simulated teacher based on an expert policy is imple-

mented. It is able to perform many learning processes

consistently without external human factors allowing to

purely evaluate the algorithmic potential—measuring how

each algorithm is able to make the learner imitate the

teacher, based on the velocity of convergence and final

performance.

Depending on the task, the oracle is set to provide

feedback to the learner on a fixed percentage of time steps,

based on preliminary experiments. For each task, it was

measured what percentage of time steps an expert teacher

Simulated environments
     CartPole            Pong          Skiing          Enduro

Fig. 3 Simulated environments used for experiments
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gives feedback, and additionally how many episodes of

feedback are required for the oracle to provide feedback to

the agent, such that the learning agent reaches a good

performance. The rate of feedback and the number of

episodes with feedback are fixed for each environment, for

running all the experiments under similar conditions.

In the case of passive learners, the simulated teacher

provides feedback randomly with the predefined rate of

feedback, whereas for the active learners the random

feedback is controlled in order to compensate for the

number of time steps wherein the learner requested feed-

back. In the cases of using both corrections and evalua-

tions, the probabilities of providing either are set arbitrarily

to 50%. For the corrections, the expert policy is evaluated

in the visited state st and using it as ah. But for evaluative

feedback, the reinforcement is obtained as in (9), com-

paring at computed with the current policy phðstÞ to the

action ah computed by the oracle.

h ¼
1; if ah ¼ phðstÞ
�1; if ah 6¼ phðstÞ

�
ð9Þ

Since the interest of this work is in interactive imitation

learning approaches that can deal with ambiguous or noisy

human feedback, all the experiments with simulated

teachers incorporate simulated mistakes in the feedback.

Actually, the mistakes are a variable that cannot be con-

trolled or observed in experiments with real users; there-

fore, the robustness of the methods to that factor is only

studied in this set of experiments with oracles.

For all the experiments, the percentage of mistakes is set

to 40%, which means that 40% of the time steps the oracle

intervenes, it provides wrong feedback. In the case of a

correction, it selects a random action out of the set of

actions excluding the right one, whereas in the case of

evaluations it provides a reinforcement contrary to (9). This

rate of mistakes is very high since almost half of the

interventions of the teacher are wrong. This high rate of

mistakes is intended to assess how the use of aleatoric

uncertainty-based queries improves the robustness of the

learning process.

Ablations For comparison purposes, ICREATe and

many ablations of it which match other state-of-the-art

interactive methods such as HG-DAgger [30] and deep

TAMER [23] were evaluated, along with variations/ex-

tensions of them, considering additional features such as

the active learning components and updates during/after

episodes. Also, the CEILing method [34], which combines

corrective and evaluative feedback, was included in the

experiments.

The generated algorithms and ablations employ (or not)

the following different algorithmic features:

• AQ: Active queries based on aleatoric uncertainty.

• EQ: Active queries based on epistemic uncertainty.

• Episodic update: The policy only updates every

episode, otherwise every b time steps (b ¼ 1 in the

implementation).

• Passive reward: Use of the passive rewarding under

uncertainty assumption.

• Corrections: Use of corrective feedback.

• Evaluations: Use of evaluative reinforcements.

The last two could be considered algorithmic or oracle

variables. Additionally, there is another considered feature

that is not based on an algorithmic variable, but on the

implementation of the oracle, i.e., this feature does not

generate more variations of algorithms. This feature con-

siders to reduce the rate of mistakes of the oracle to zero in

time steps where the agent queries feedback. It is based on

the assumption that a human teacher might do fewer mis-

takes whenever the agent requests feedback, because it

improves the engagement of the user.

At the beginning of the learning process, most of the

queries are due to epistemic uncertainty since most of the

state space is unseen, i.e., there are not many collected

labels yet. And since there are not many labels, it is unli-

kely there are many ambiguous/conflicting labels that

generate aleatoric uncertainty-based queries. Therefore, we

consider this variation only for the algorithms using queries

based on aleatoric uncertainty, because those are the

queries that keep being triggered in the long term during

late episodes, that is, when the user might be tired and

could get more distracted, and therefore, queries can have

more influence (queries may not have a considerable

impact at the beginning when the teachers are still

focused).

The assumption of teachers not making mistakes

because there is a query is not very strong, because users

could still get confused or change their minds after a query.

Nevertheless, couples of ablations that share the same

features and differ only in the mistakes-related feature can

provide a rough estimate of upper and lower bounds for the

range wherein a real user could perform.

With all the seven features that can be considered (or

not), 128 different variations could be generated, although

a few of them do not make sense to be implemented. There

still are an unfeasibly high number of possible experiments

that could be carried out. Therefore, for simplifying the

experiments to a doable and reportable scale, only the

variations that are closer to the original algorithms are

selected, as reported in Sect. 4.2.1.

4.1.2 User study

Unlike other non-interactive machine learning methods, the

evaluation of human-in-the-loop approaches requires not
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only to assess the capability to converge to successful

results, but also the impact they have on the user experi-

ence. To complement the objective measures that can be

obtained with the simulated teachers’ experiments, a user

study that collects subjective measures is carried out in

order to observe how variations of the proposed method

improve the experience of the users.

In previous studies, it has been shown that users tend to

prefer teaching by showing what to do rather than evalu-

ating what the learner is doing. Hence, user studies for

comparisons of learning with different kinds of feedback

are not going to obtain very new conclusions. The focus is

rather on evaluating the use of both uncertainties for active

learning. Five different variations of the proposed learning

approach are used in this study; in all cases, users can teach

with both evaluative and corrective feedback. The evalu-

ated systems feature:

• PL: Passive learning, no use of queries.

• EQ: Queries based on epistemic uncertainty.

• AQ: Queries based on aleatoric uncertainty.

• EAQ: Queries based on epistemic and aleatoric

uncertainty.

• EAQPR: Queries based on epistemic and aleatoric

uncertainty, along with the passive rewarding strategy.

The participants of the experiments were requested to

answer simple and short questions from well-known

questionnaires for assessing user experience. They com-

pleted the System Usability Scale (SUS) questionnaire

[45], which obtains a score of usability for each of the

systems, along with the NASA-TLX [46] that measures the

perceived workload of the systems (in this case the raw

TLX [47] is used), and the system acceptance scale [48],

which measures scores for usefulness and satisfaction of

the system.

Additionally to these subjective measures, the final

average performance of the obtained policies and the

amount of feedback the teachers provide to the learning

agent is also collected from the learning processes. This

count of human corrections and reinforcements is pre-

sented raw instead of as a percentage of time steps. The

reason is that policies with a lower performance result in a

longer episode duration in the Skiing environment; there-

fore, a low percentage could hide a high amount of inter-

actions in long episodes.

For the experiment, the previously introduced Skiing

game from Atari is used, since, in our observations, it is a

difficult learning challenge that can get a lot of progress

within a short period of time, something that is important

for not losing the motivation of the participants. Addi-

tionally, this environment is a good motivation for IIL as

the literature shows that it is very difficult for RL algo-

rithms, which obtain poor results in general, given the

sparsity of its environmental reward, whereas it is more

direct to learn from the insights shared by a human teacher.

In the experiments, the participants listen to the guide-

lines and the instructions to follow; then, they are given

five minutes to play with the environment. The order of the

system they interact with is chosen randomly for each

participant. They train the agent for ten minutes with every

system and then immediately proceed to answer the ques-

tionnaires after interacting with each of them.

The participants sit in front of a computer wherein they

observe the game on the screen while providing feedback

through a keyboard as depicted in Fig. 4. Beside the screen

of the game, there is a dark empty window that displays a

smiley any time the system is querying feedback.

In these experiments, the participants did not have any

technical background in robotics and/or machine learning,

featuring 8 men and 6 women, whose ages ranged between

24 and 55 years. The protocols of these experiments were

evaluated and approved by the Human Research Ethics

Committee of TU Delft. The participants signed an

informed consent for joining this experiment.

4.1.3 Real robot environments

A validation of ICREATe in a physical robotic system is

carried out with a KUKA iiwa 7 robot arm, with four

different manipulation tasks introduced in the following

and whose setups are shown in Fig. 5.

Box pushing: The robot has to push a box to be placed

beside the box on the left side of the table, with the same

orientation. The box is initially located with a random pose

on the right side of the table. The episode finishes suc-

cessfully if the box reaches the desired pose; otherwise, it

is terminated unsuccessfully after 2 min. The objective

function is the success rate.

Goalkeeper: The robot moves on a straight line (from

the left to the right side of the table in Fig. 5) in order to

intercept an object that moves toward this line (from bot-

tom to top). The object starts the episode (at the bottom)

with a random position and orientation, if it crosses the line

Symbol of 
the queries

Screen of 
the game

Interface

Fig. 4 Interface for the user study
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of movement of the robot, it is considered a failed episode

(goal) and otherwise a successful one when the robot

intercepts the object. The objective function is the success

rate.

Pendulum stopping 1D: A ball is attached to the robot

end-effector with a rope, and the objective is to move the

robot such that it compensates for the swing of the ball,

reducing its velocity to almost completely stop the swing.

At the beginning of the episode, the ball is placed higher

than the end-effector and let fall free to start swinging. The

ball swings through the same straight line in which the

robot moves (from left to right). The objective function is

the negative of the time the robot takes to stop the pen-

dulum (a threshold of minimum velocity is assumed for

considering the pendulum to be stopped).

Pendulum stopping 2D: The task is similar to the pre-

vious one, but in this case, the robot moves in a horizontal

plane, and the ball is pushed to swing in circles.

For all the tasks, the actions are the change of position of

the robot end-effector, whereas the states are composed of

the positions and velocities of both the end-effector and the

manipulated object. For the box pushing task also, the

orientation of the box is considered.

In these setups, the states are obtained from the internal

sensors of the robot and an OptiTrack motion capture

system. The interface for providing feedback to the agent is

a gamepad, and the participant of the experiment is an

expert teacher.

4.2 Results

4.2.1 Experiments with simulated teachers

As mentioned in Sect. 4.1.1, it is not possible to experi-

ment with all the possible ablations and methods; therefore,

the most meaningful ones were implemented, and from

those, only the most interesting results are reported. The

results of the learning convergence are summarized with

the final performance of the policies, and the approximate

number of episodes required for that convergence. Some

ablations are considered a variation of an original algo-

rithm if there is a change in the algorithmic variables, and

not in the implementation of the oracle.

All the evaluated cases of ICREATe were tested in

couples considering both mistakes and no mistakes during

AQ. Additionally, almost all its variations were tested with

the oracle: (i) providing 50% of corrections and 50% of

evaluations and (ii) providing 100% of corrections and no

evaluations. The latter is to observe the performance when

using the most efficient feedback mode, in terms of data

efficiency, the best case scenario.

In the case of the CartPole results in Table 1, first, it is

observed that none of the passive learners could get a

relative progress in the learning process. The full ICREATe

method was tested (results in rows 15–18 of Table 1), and

two variations of it were also evaluated. The first variation

(ICREATe V.1 in rows 9–12) did not include the passive

rewarding assumption, obtaining a performance reduction

between approximately 3–30% with respect to the full

method. The second variation (ICREATe V.2 in rows 13–

14) did not include passive rewarding and additionally

updated the policy every time step. This variation

decreased the learning policy performance even more,

reducing it between 4 and 10% with respect to ICREAte

V.1 (the corresponding cases in rows 9–10) and 13 and

39% with respect to the full method (the corresponding

cases in rows 15–16). Because of these results, the second

variation was not evaluated for the cases with 100% cor-

rective feedback. It is interesting to notice that with the full

ICREATe and only using corrective demonstrations, the

performance was slightly decreased with respect to also

using evaluative feedback, being in both cases close to the

optimal performance. In general, ICREATe outperformed

D-TAMER, HG-DAgger, Ceiling, their variations, and the

ablations of ICREATe itself, confirming that all the com-

ponents of the method have a contribution in the

improvement.

Five variations of D-TAMER were tested along the

original, observing that unlike data aggregation schemes,

D-TAMER performs better when the update is more often

during the episode and not only at the end. As expected,

having both uncertainties for active learning in this method

obtained the highest performance. The original HG-DAg-

ger along a variation that updates the policy every time step

were tested (rows 7–8), showing that data aggregation

methods collect better data and converge better when using

episodic updates (as seen with ICREATe V.1 vs V.2).

Finally, CEILing was tested twice, with ‘‘CEILing 3x’’

  Box pushing                         Goalkeeper           

 Pendulum stopping 1D          Pendulum stopping 2D                    

Fig. 5 Setups for the validation with a physical robot
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receiving oracle feedback three times more often than in

the rest of the tested algorithms. However, increasing the

amount of feedback had a slight effect. In general CEILing

showed to be very sensitive to the simulated mistaken

feedback.

For the environments of Skiing, Pong, and Enduro, only

the most relevant cases from the experiments of CartPole

are presented in Tables 2, 3, and 4, respectively. The same

trends in these experiments can be observed, noticing that

in these cases unlike in CartPole, there is always a positive

and higher improvement when using only corrective

demonstrations than when combining both feedback types.

This is more noticeable because in these problems the

action space dimensionality is higher; therefore, the dif-

ference in the amount of information contained in a cor-

rective demonstration compared with an evaluative

reinforcement is also higher.

Uncertainty evolution: As mentioned in Sect. 4.1.1, the

epistemic uncertainty is high at the beginning of the

learning process because there are not enough data to

describe all the possible situations, but it decreases over

time, with more data collection, whereas the aleatoric

uncertainty is null at the beginning and starts to increase

when more and more noisy data are collected, as in this

case—because we know the collected data have a high rate

of mistakes.

Although it was mentioned that aleatoric uncertainty is

not eliminated with more data (Sect. 2.3), with the pro-

posed strategy of predicting mistakes (Sect. 3.2.2), the

queries based on this uncertainty could actively obtain

more data that unbalances the prediction toward the most

demonstrated action out of the set of contradictory feed-

back related to a specific state. Therefore, the average

prediction error of that state is reduced, and then it could be

considered more certain.

Figure 6 shows how the uncertain states ratio evolves

through the episodes while learning in the CartPole envi-

ronment. Both cases with mistakes and no mistakes during

aleatoric uncertainty-based queries are depicted. The

epistemic uncertainty is reduced in both cases as expected,

while the aleatoric uncertainty increases after some feed-

back is collected, but is reduced later on with the data

collected via active queries, especially if the response to

the queries is less noisy (or not noisy in the case of ‘‘no

mistakes in AQ’’).

However, even though the teacher does not reduce the

rate of mistakes during any query, the active queries can

help to improve the balance of the contradictory data. For

Table 1 Results of the simulated teacher experiments with the CartPole environment

Algorithmic variable Algorithmic or Oracle

variable

Oracle variable Convergence

# Method AQ EQ Episodic update Passive reward Corrections Evaluations No mistakes in AQ Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a 24.4 175

2 D-TAMER V.1 x n/a n/a x n/a 19.25 85

3 D-TAMER V.2 x n/a n/a x n/a 82.7 170

4 D-TAMER V.3 x x n/a n/a x x 169.45 145

5 D-TAMER V.4 x x n/a n/a x 98.15 175

6 D-TAMER V.5 x x x n/a n/a x x 111.05 135

7 HG-DAgger n/a x x n/a x n/a n/a 107.6 175

8 HG-DAgger V.1 n/a x n/a x n/a n/a 83 135

9 ICREATe V.1 x x x x x x 193.85 75

10 ICREATe V.1 x x x x x 122.9 135

11 ICREATe V.1 x x x x x 198.15 40

12 ICREATe V.1 x x x x 129.3 165

13 ICREATe V.2 x x x x x 173.6 125

14 ICREATe V.2 x x x x 114.75 165

15 ICREATe x x x x x x x 199.5 30

16 ICREATe x x x x x x 193 105

17 ICREATe x x x x x x 196.5 40

18 ICREATe x x x x x 188.65 175

19 CEILing n/a n/a n/a n/a x x n/a 17.85 25

20 CEILing 3x n/a n/a n/a n/a x x n/a 19.7 15

The values in bold are shown in the best cases
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instance, as in the case of these simulated teacher experi-

ments, if the teacher gives noisy feedback 40% of the time,

40% of the state space can have obtained contradictory

feedback, while the remaining 60% has correct demon-

strations. Then, there will be aleatoric uncertainty-based

queries in 40% of the states, wherein the teacher again will

provide 60% of correct feedback, i.e., 24% (60% of the

40%) would have contradictory samples that are biased

toward the right demonstration, while only 16% of the

states (40% of the 40%) would remain receiving incorrect

feedback, reducing the balance toward incorrect demon-

strations that otherwise would be 40% without active

learning.

4.2.2 User study

After running the user study, the average of all the sub-

jective scores along with the objective measures is intro-

duced in Table 5. The SUS score ranges from 0 to 100,

while the Usefulness and Satisfaction scores of the

Acceptance scale range between - 2 and 2. In both cases, a

higher score means a better experience for the user, at least

in the domain the score intends to measure. In the case of

the TLX questions, the scores also range from 0 to 100;

however, high values are related to high workloads of the

evaluated systems, and it is desirable to have them as low

as possible.

Table 2 Results of the simulated teacher experiments with the Skiing environment

Algorithmic variable Algorithmic or Oracle

variable

Oracle variable Convergence

# Method AQ EQ Episodic update Passive reward Corrections Evaluations No mistakes in AQ Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a - 11364.25 60

2 HG-DAgger n/a x x n/a x n/a - 9539.7 35

3 ICREATe V.1 x x x x x x - 10200 45

4 ICREATe V.1 x x x x x - 10354.5 55

5 ICREATe V.1 x x x x x - 8324.7 70

6 ICREATe V.1 x x x x - 8609.3 70

7 ICREATe x x x x x x x 2 6178.8 45

8 ICREATe x x x x x x 2 9307.75 55

9 ICREATe x x x x x x 2 5417.4 40

10 ICREATe x x x x x 2 6622.6 70

11 CEILing n/a n/a n/a n/a x x n/a - 28179.85 3

12 CEILing 3x n/a n/a n/a n/a x x n/a - 27172.5 40

The values in bold are shown in the best cases

Table 3 Results of the simulated teacher experiments with the Pong environment

Algorithmic variable Algorithmic or Oracle

variable

Oracle variable Convergence

# Method AQ EQ Episodic update Passive reward Corrections Evaluations No mistakes in AQ Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a - 16.6 120

2 HG-DAgger n/a x x n/a x n/a 4.8 130

3 ICREATe V.1 x x x x x x 8.15 120

4 ICREATe V.1 x x x x x 5.5 135

5 ICREATe V.1 x x x x x 13.85 105

6 ICREATe V.1 x x x x 12.45 115

7 ICREATe x x x x x x x 7.6 135

8 ICREATe x x x x x x 4.9 110

9 ICREATe x x x x x x 15.2 65

10 ICREATe x x x x x 16.4 90

11 CEILing n/a n/a n/a n/a x x n/a - 17.65 100

12 CEILing 3x n/a n/a n/a n/a x x n/a - 13.25 115

The values in bold are shown in the best cases
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The SUS score is in a similar range for all the evaluated

cases, where the variations AQ, EAQ, and EAQPR got the

highest score, i.e., all the cases using aleatoric uncertainty-

based queries scored slightly more usable than only using

epistemic uncertainty or no queries at all. In the results of

the acceptance scale, the Usefulness scale shows a similar

trend, having the systems using aleatoric uncertainty

queries rating as the most useful (matching the two use-

fulness measures), however, in this case, the passive

learners rated way lower, while the systems using only

epistemic queries seem to be more useful than the passive

learners, but not as much as the ones using the aleatoric

uncertainty. The satisfaction scale shows again that active

learners get better results, especially if they use the alea-

toric uncertainty, although participants found that

combining both uncertainties is slightly more irritating than

only using queries in situations of ambiguity (as with AQ).

The results of the raw TLX questionnaire (without

merging each question rate into one unified score) show a

similar trend, having the passive learner with the highest

workload, followed by the active learner EQ (only epis-

temic), and the ablations incorporating the aleatoric

uncertainties being the least demanding. Only the physical

demand was a point not providing any information because

each of the participants rated all the ablations with a very

similar rate, having variance only between participants.

This result is expected since the physical activity is limited

to moving a few fingers, and it is the same for all the cases.

In general, the use of positive rewarding did not show a

major impact on the subjective measures of usefulness and

workload; however, it did have an impact on the conver-

gence of the learning process, with improvement of the

policy performance and reduction of the number of inter-

actions the participants had to do. Since the participants

were not observing the score the agent obtains at the end of

the episode (it is not printed by the environment on the

screen as in other games), they could perceive only large

policy improvements. Therefore, the lack of perception of

improvement the passive rewarding obtains in the final

performance, as it could be seen comparing EAQPR with

EAQ, has its influence on the subjective scores.

However, in the satisfaction scale, it can be seen that the

passive rewarding in EAQPR obtained an increment of

16% with respect to not using it (EAQ). Although, these

two ablations did not get the highest satisfaction, as it was

mentioned before.

Table 4 Results of the simulated teacher experiments with the Enduro environment

Algorithmic variable Algorithmic or Oracle variable Oracle variable Convergence

# Method AQ EQ Episodic update Passive reward Corrections Evaluations No mistakes in AQ Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a 25.4 75

2 HG-DAgger n/a x x n/a x n/a 79.3 45

3 ICREATe V.1 x x x x x x 52.2 120

4 ICREATe V.1 x x x x x 46.8 85

5 ICREATe V.1 x x x x x 93.3 115

6 ICREATe V.1 x x x x 84.9 55

7 ICREATe x x x x x x x 69.1 100

8 ICREATe x x x x x x 57.7 80

9 ICREATe x x x x x x 114.2 105

10 ICREATe x x x x x 99.5 120

11 CEILing n/a n/a n/a n/a x x n/a 11.4 55

12 CEILing 3x n/a n/a n/a n/a x x n/a 36.9 80

The values in bold are shown in the best cases

Fig. 6 Evolution of the uncertain states ratio through the learning

process
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4.2.3 Results in real robot environments

The tasks used for validating ICREATe with the real robot,

feature low-dimensional state spaces, but not so simple

dynamics, which are even fast for human teachers as in the

case of the pendulum stopping tasks. In Fig. 7, the learning

curve for these tasks is plotted with normalized objective

functions, depicting that it is possible to train complex

dynamic tasks, with robots in the physical world within a

few minutes using ICREATe. The simplest task was the

goalkeeper since the interaction of the robot and the object

does not need to be precise, requiring around 20 min to

achieve a good performance. The most demanding task was

the PendulumStopping 2D, given the required fast reaction

of the teacher, in order to compensate for the fast

movements of the pendulum. The video1 of the paper

shows the performance of these systems during and after

learning.

5 Conclusion

The proposed ICREATe is an IIL method that is epistemic

and aleatoric uncertainty aware, features that are conve-

nient for improving the data that composes the agents’

knowledge base, when the system is either lacking data, or

having contradictory data. Additionally, ICREATe lets the

user teach with evaluative or corrective feedback according

to the user’s preference at any moment of the learning

process. The algorithm smoothly combines both kinds of

feedback to update the policy, and it can even model

contradictions across the two kinds of feedback signals.

The experimental results showed how the active queries

of ICREATe can help to considerably improve the learning

performance under regimes of highly ambiguous teachers,

while at the same time, the user study showed that they

improve the overall teaching experience.

Given that most people take a teacher’s silence as pos-

itive feedback, the proposed method includes the positive

rewarding assumption, which considers the teacher agree-

ing with a behavior when not ‘‘complaining.’’ This is only

applied in situations of active queries because the teacher is

more alert. This strategy allows to gather more relevant

data without further effort.

Since it is known that corrective demonstrations are

more informative than evaluations, the second objective of

this paper was not to improve learning convergence

through the combination of both kinds of feedback, but

Table 5 Results of user study

Ablation PL EQ AQ EAQ EAQPR

Subjective measures SUS 83.21 84.82 88.75 88.93 89.82

Acceptance scale Usefulness 0.64 1.19 1.47 1.50 1.51

Satisfaction 0.43 0.66 1.05 0.77 0.89

NASA-TLX Mental demand 68.21 58.93 44.64 42.50 41.43

Physical demand 10.36 10.71 10.71 10.36 10.36

Temporal demand 50.36 35.71 33.21 24.29 26.79

I-Performance 42.50 32.50 27.14 25.00 26.79

Effort 56.79 41.43 36.07 33.93 32.14

Frustration level 42.86 35.00 29.29 25.71 25.36

Objective measures Performance - 15387.21 - 10872.00 - 8553.64 - 7752.35 2 7034.42

Feedback instances 14472.71 13196.07 12049.29 10431.64 9239.57

The cases with the highest performances according to each index are shown in bold

Fig. 7 Evolution of the uncertain states ratio through the learning

process

1 https://youtu.be/_eS75eusTFQ.
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rather to improve the interaction flexibility of the teachers.

However, the experiments showed that combining correc-

tive feedback with implicit positive evaluative feedback

has a positive impact in the data efficiency and the policy

performance.

In general, when applying deep learning strategies for

learning from massive amounts of data, aleatoric uncer-

tainty can have a higher impact on the learning process

[37]; however, IIL requires to collect the samples simul-

taneously during the learning process, sometimes starting

from empty datasets, which makes epistemic uncertainty

also relevant. Hence, making use of both uncertainties is a

necessary consideration for learning with humans in the

loop, especially when considering that we are not perfect

oracles and we often do mistakes.

Nevertheless, further research should be carried out for

having a method that allows users to combine smoothly

any kind of human feedback. Moreover, ICREATe does

not work for continuous action problems, but few feasible

considerations are enough for adapting it to those kind of

environments.
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