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Abstract
This paper investigates human–robot collaboration in a novel setup: a human helps a mobile robot that can move and

navigate freely in an environment. Specifically, the human helps by remotely taking over control during the learning of a

task. The task is to find and collect several items in a walled arena, and Reinforcement Learning is used to seek a

suitable controller. If the human observes undesired robot behavior, they can directly issue commands for the wheels

through a game joystick. Experiments in a simulator showed that human assistance improved robot behavior efficacy by

30% and efficiency by 12%. The best policies were also tested in real life, using physical robots. Hardware experiments

showed no significant difference concerning the simulations, providing empirical validation of our approach in practice.

Keywords Automation � Mobile robots � Reinforcement learning � Safety � Human–robot cooperation � Human-in-the-loop

1 Introduction

Automation can be a sign of societal progress for multiple

reasons. For instance, it can lower production costs of

goods [1] and this way reduce their prices, making them

available to a more broad niche. Furthermore, it might

tackle the classical Ds of labor-saving [2], so that humans

can avoid tasks that are ‘‘dangerous, dirty, demanding,

dull...’’. Beyond the Ds, there are other types of tasks that

people would prefer to be done by robots, for instance,

tasks that require memorization, keen perceptual skills, and

service-orientation [3].

Automation has been increasingly growing in different

domains [4]. Considering robotic automation, a great deal

of it is nevertheless model-based, and systems often lack

the ability to adapt. Critically, although modeling a con-

trolled environment is possible, this is only feasible for

well-structured environments. If an environment is

unstructured or semi-structured—if it is a changing envi-

ronment—a model and a procedural system relying on it

would have to be constantly updated to remain valid.

Furthermore, a system capable of coping with a lack of

structure could promote leeway for stakeholders of an

application. For instance, imagine a warehouse in which

complete standardization (boxes sizes, physical organiza-

tion, etc) had been imposed to allow automation: an

adaptable automation system could reduce the constraints

imposed on the value chain involved with this warehouse.

This scenario motivates a need for adaptable robot

capacities: learning. Encouragingly, there is a multitude of

artificial learning techniques that can be applied for robot

learning in a warehousing scenario, e.g., reinforcement

learning, evolutionary algorithms, Bayesian optimization,

etc. Notwithstanding, these techniques are not free from

mistakes and uncertainty, thus raising serious concerns

about safety. Though these mistakes are often less dramatic

when robots work in isolation, they could have severe

safety implications if happening in an environment where

there can be people inserted in, i.e., a warehouse.
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Faced with such a problem, one possible solution is the

cooperation between humans and robots. While some tasks

are better performed by humans, others are better per-

formed by robots, and a proper allocation of such tasks

must be done [5] so that robots and humans can cooperate

optimally. One way of concretize this cooperation is using

human help for supervising and fine-tuning the behavior of

these robots, intervening when undesired behavior is

observed. This is specially important when the undesired

behavior means unsafe behavior. The use of humans to

influence the learning process of artificial agents has been

done in different ways in the literature [6], e.g., demon-

strations [7–11], imitation [12–14], supervision [15],

intervention for safety [16, 17], instructions [18], correc-

tive feedback [19], and evaluative feedback [20]. More-

over, it is frequently not necessary that the human involved

be an expert on the task they are helping with [21]. How-

ever, this is more commonly done with agents that act in

simulation 2D worlds [7, 12, 17, 21, 22]. Even when real

robots are utilized, they are usually constrained so that the

robots can not transit freely within an environment, like for

example robotic arms [15, 18, 20].

This paper investigates human–robot collaboration in a

novel setup: a human helps a mobile robot that can move

and navigate freely in an environment. Specifically, the

human helps by remotely taking over control during the

process of learning a task. Importantly, we test our final

results with physical mobile robots in the real world.

The main objective of the paper is to show how an

automatically learnt non-optimal policy can be improved

by interaction with a non-specialist human. The specific

research questions are:

a. Can human help prevent undesired robot behavior?

b. What are the challenges involved in (a)?

2 Related work

As mentioned in the introduction, diverse methods for

teaching artificial agents have been applied in the literature.

While different nomenclatures have been used to refer to

these methods, and despite their specificities, the main idea

behind them is often very similar: humans interfere directly

or indirectly, providing inputs about how a given behavior

should be carried out.

One term commonly used within the teaching of artifi-

cial agents is demonstration. For example, learning by

demonstration was applied to teach a simulated robot

arm [11] through storing human demonstration data in a

replay buffer, while accounting for cases in which

demonstrations were suboptimal in comparison to the

performance of the agent itself.

An actor-critic architecture was used [15] to apply

human supervision to robot learning in different ways.

First, the supervisor could supply additional sources of

evaluative feedback to be used as rewards. Second, the

supervisor could interfere by sending actions directly to the

system, overwriting robot actions. Finally, the supervisor

could bias the exploration of the actor by providing hints

regarding promising actions. The second aspect (interfer-

ence) is similar to what we have in our system. However,

their supervisor is involved from the beginning and with-

draws at some point, while ours interferes solely in a later

stage and only if necessary. Additionally, most cases

within their work use a hand-coded controller simulating a

human supervisor instead of an actual human. Addition-

ally, in all cases but one, the agents were simulated, and the

only real robot case was a non-mobile robot (robot arm). In

another work, feedback was provided to correct actions of

agents [19], but in this case, the human teacher informed

the magnitude of possible errors of continuous actions.

Regarding the acting/withdrawing of the human, other

possibilities have been explored in the literature: having the

human not necessarily present from the beginning nor from

a specific point on, but taking control when deeming

necessary [14].

Supervision was also applied [17] through having a

human that intervenes in the actions of agents: the human

watched the episodes fully (in slow motion) and blocked

actions that seemed likely to be catastrophic. The main

difference between this and our method is that the human

actions were used to change the agent behavior in the

current timestep but were not used for training, and the

(incorrect) state-action pairs intended by the robot were

penalized with negative rewards.

A similar learning concept has been applied in another

study [12] but is referred to as imitation learning. The

authors used a simple 2D matrix as an environment where

agent A tried to imitate agent B. To imitate, agent A

observed and stored the transitions performed by agent B in

its own replay buffer. Agent B was not a human though,

but a hand-coded agent.

In another example, instead of demonstrating how and

when to perform an action, unlabeled guided signals were

given by a human teacher to instruct a real robot arm about

correct behavior [20]. Additionally, the teacher provided a

reward when the action executed corresponded to the

instructed action. This way, the teacher did not have to

execute the task themselves but only guided agents and

provided them with evaluative feedback.
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3 Background

Reinforcement Learning (RL) is a machine learning para-

digm in which agents learn from their interactions with an

environment, and it originated in the psychology of animal

learning [23]. In RL, an agent senses states of an envi-

ronment and takes actions reacting to these states. The

decision of which actions to take is done with the use of

what is called a policy: the distribution of due actions over

possible states. Differently from supervised learning, in RL

there are no labeled examples, but criteria of success called

rewards. The objective is to maximize the expected return.

In practice, rewards are used to adjust the policy so that in

each given state, the best actions can be taken so to max-

imize the rewards that can be received by the agent.

In the current work, we utilize RL to carry out imitation

learning [13]. The environment is modeled as a (Partial

Observable) Markov Decision Process (MDP), where S is

the state space and A is the action space. An experience is

registered as a tuple ðs; a; r; s0Þ, where s 2 S is the current

state, a 2 A is the action taken at state s, r is the reward

received for performing action a, and s0 2 S is the new

state resulting from that action. Among multiple steps

described in Sect. 4, a human performs a demonstration to

be learned by an agent generating such a tuple. These

tuples generated by human control are used during the

learning of the agent, together with tuples generated by the

agent itself. More details follow in the next section.

Comparing RL with semi-supervised methods, e.g.,

Evolutionary Algorithms, there is one fundamental differ-

ence: the latter does not allow credit assignment per state-

action pair but only for a group of state-action pairs as a

whole. Furthermore, for complex problems in which there

is a large number of states involved, neural networks are

often utilized, and this is called deep RL. Some examples

of deep RL algorithms are DDPG, DQN, PPO [24],

SAC [25], and TD3 [26]. TD3 is one of the most suc-

cessful among the latest and suitable to our needs.

4 Methodology

4.1 Robot description

The robot utilized is called Robobo,1 and it is depicted and

described in Fig. 1. The interaction between the robot body

and the robot control is explained in Fig. 2. The robot is

actuated by controlling the acceleration of its wheels, and

thus two parameters are needed every time that actuation

commands are sent to it: speed of left and right wheels,

both ranging from �3 to 3 in simulation and from �100 to

100 in hardware.

When these commands are sent, actions start to be

executed simultaneously and are executed for 400 ms. A

positive value makes the wheel move forward, a negative

value makes the wheel move backward, and zero means the

wheel does not move. Furthermore, there is a parameter to

tilt the smartphone in its holder, and it was set to a fixed

value of 55 degrees because this way the camera could see

both the floor and the walls.

The robot uses its proximity sensors and pictures from

its camera for perceiving the environment. The values of

the sensors in simulation represent the distances between

the sensors and something being sensed and are zero if

nothing is close enough to activate them. These values

were used without transformation. Conversely, in hard-

ware, these values grow exponentially larger the closer the

sensors get to something that activates them. Thus, each of

these values v when not zero was transformed into

v ¼ 1= log 2ðvÞ, so as to be closer to the simulation values.

Moreover, the raw pictures were not provided directly to

the robot controller, but were transformed into the fol-

lowing 6 features: proportion of green pixels, proportion of

gray pixels, average of green pixels coordinates in the

x axis, average of green pixels coordinates in the y axis,

average of gray pixels coordinates in the x axis, and

average of gray pixels coordinates in the y axis—the

averages were normalized to be between 0 and 1.

4.2 Environment and task

The environment for the task is a square arena with a flat

floor surrounded by walls, and it contains 7 green boxes of

different sizes. The arena can be seen in both simulation

and hardware in Fig. 2. The task the robot needs to perform

is finding and approaching all the boxes in the environ-

ment. It is not necessary to touch the box, but only to get a

few millimeters close enough to it. Each time a package is

approached, it is removed from the environment. This toy-

task could be compared to a warehousing scenario, in

which a robot had to approach the stored items, e.g., for

counting them, for placing something on them, etc.

Moreover, the robot can start an episode in one of 7 dif-

ferent pre-determined positions, and it should learn how to

cope with any of these.

There are small differences between the simulated and

hardware environments: (1) The arena has 2 x 2 meters in

simulation, and 2 m 24 cm x 2 m 24 cm in hardware; (2)

The walls are gray in simulation, but red in hardware2: this

is necessary because there is too much noise that appears

1 https://theroboboproject.com.

2 Robots trained in simulation can be transferred to hardware by

using color filters.
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gray in the hardware environment, e.g., windows and other

objects or people in the room, while the simulation envi-

ronment is static; (3) In simulation, the packages are placed

at the very same spots in each episode start because this is

done via a script, and this script is also responsible for

removing approached packages. Nevertheless, these posi-

tions present small variations in hardware because the

placing and removal are carried out manually by a human;

(4) The shapes of the boxes are not the same but approx-

imated; and (5) There are differences in the physics of the

simulated environment and the hardware environment,

which is the classical reality gap problem.

4.3 Experimental setup

Our experiments are divided into three parts: setup I, setup

II-a, and setup II-b. Setup I was conducted first, and both

setups II were built upon the results from setup I. In setup I,

the robot learns fully autonomously. In both setups II, the

learning is continued using parameters different from setup

I. In setup II-a, a human contributing to the learning is

present in the loop. In setup II-b, there is no human in the

loop. The purpose of setup II-b is to make sure that results

obtained in setup II-a are not simply due to the parameters

changes—these changes were applied to suit the human-in-

the-loop dynamics.

We utilize RL as our learning method because dealing

with credit assignment is fundamental, since there will be a

human-helper interfering only on sub-parts of the episode.

In particular, we use TD3 [26] to learn a control policy.

Both setups were used to solve the same task (Sec. 4.2),

and they share the identical parameters and procedures

unless otherwise mentioned. The metrics of success uti-

lized in all experiments are: total_success measuring the

efficacy and ranging from 0 to 7—it is the average number

of packages collected during validation3; and steps mea-

suring the efficiency and ranging from 1 to 200 episode-

steps.4

In setup I, 21 independent learning runs were performed,

using a total number of 35.000 time-steps each. In each

episode, the robot was placed randomly in one of the 7

possible initial positions. After every 1.000 steps, the

learning process was frozen and the current policy was

validated by playing one episode from each of the possible

Fig. 1 The Robobo robot has a body that is like a two-wheeled vehicle, with 5 infrared proximity sensors at the front and 3 infrared proximity

sensors at the back. Additionally, a smartphone with a frontal camera is attached to a holder at the top of the robot body

Fig. 2 In both simulation and hardware, a computer program controls

the robot by sending actuation commands to it, and when the actions

are completed the robot sends its sensing information back to the

program, including pictures from the camera and infrared values.

Simulation: the Robobo and the environment are simulated using

CoppeliaSim (https://www.coppeliarobotics.com). Hardware: a com-

puter running ROS communicates with the smartphone via Wi-Fi, and

the smartphone communicates with the robot using Bluetooth

3 Note that there are 7 packages in the environment, and that the

robot is tested starting from 7 different positions.
4 If the robot uses fewer steps to finish the episode, then it is more

efficient.
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initial positions and averaging the success metrics. This

resulted in 35 stages of validation.5

Thereafter, the human inspected the results of each run

both quantitatively (using the success metrics) and quali-

tatively (by observing robot behavior). The stage consid-

ered for inspection was only the very best stage of each

run.6 For the qualitative inspection, the human-helper

watched one episode played by the policy from each of the

possible initial positions. Subsequently, the human asses-

sed if the behavior presented any problems, and if so, what

kind of problems these were. The types of problems found

through the experiments are described in Table 1 from

Sect. 5. Given the simplified nature of our experimental

setup, these behavioral problems are not necessarily haz-

ardous, but they illustrate how robots could be hazardous

by carrying out undesired behavior.

Later on, for setups II, only the runs considered to

present problems were utilized: each problematic run was

copied twice (once for II-a and once for II-b) and all stages

after its best stage were removed (this means the remaining

policy was the one present in the best stage). Sub

sequentially, in setup II-a, these learning runs were con-

tinued while having the human-helper in the loop, using a

maximum budget of 5.000 steps (5 stages). It was not

mandatory for the human-helper to use all the budget of

steps. The following sequence was repeated: (a) monitor

episodes being played and interfere when judged neces-

sary; (b) when a stage is finished, watch the validation and

decide if the run should end or if another stage should be

carried out (unless budged was used up). As for setup II-b,

the runs were continued without the human in the loop,

using the same budget utilized by the human-helper in

setup II-a.

Note: the episodes are not fully deterministic—there can

be small variations in robot behavior when playing with the

same policy—because of technical issues regarding com-

peting processes in the computer. Therefore, a final test

was carried out for setups II, in which the policy of the best

stage of each run was played 3 times in each of the 7

possible initial positions. The metrics from these repeti-

tions were averaged and used in the final comparison

between setup II-a and setup II-b.

4.3.1 Setup I: Fully autonomous reinforcement learning

In this setup, the robot learns the control policy only by

itself. Each episode of the task has a maximum budget of

k ¼ 200 steps. Each step starts when an action is initialized

and ends when the action is finished. Because the duration

of the actions was set to have always the same length, the

steps have always the same size. An episode is considered

to be over when all packages are successfully approached

by the robot, or when all the k steps are used.

The states provided for the control policy are the values

of the 8 proximity sensors and the 6 features extracted from

the picture. The actions of the policy are two continuous

actions ranging from 0 to 1, and each one represents the

speed of each wheel.7

The rewarding scheme utilized when the robot was

learning by itself was: (1) when the robot succeeds in

approaching a package a reward of 100 is applied; (2) when

there is any green pixel in the visual field of the robot, a

reward relative to the proportion of green pixels is applied;

(3) when there is no green pixel in the visual field of the

robot, a negative reward of �0:1 is applied. While reward 1

is a direct measure of success, reward 2 helps to attribute

credit by pointing out if the robot is getting closer to the

targets. Finally, reward 3 disincentivizes actions that waste

time and do not lead the robot closer to the targets. The

TD3 parameters were: batch_size = 128, learning_starts =

100, learning_rate = 3e-4, target_policy_noise = 0.2, tar-

get_noise_clip = 0.5, gamma = 0.99, tau = 0.005,

expl_noise = 0.1. The replay buffer was sampled uniformly

randomly.

4.3.2 Setup II: Human help in the reinforcement learning

In this setup, the robot also learns the control policy by

itself, but additionally, a human can help the learning

process (only for setup II-a). This human is referred here as

the human-helper,8 and may interfere in the robot behavior

using a joystick (Fig. 3). Moving the left directional button

maximally to the front will set the left wheel speed to the

maximum, and moving it maximally to the back will set

this wheel speed to the minimum (the same happens with

the right button for the right wheel).9 Human actions are

only sent to the robot when at least one of the directional

buttons is being moved by the human. Whenever the

human moves any directional button, the human actions

have precedence over the actions decided by the policy so

that the latter are ignored, but as soon as the human

releases the button(s), the policy returns to control the

robot. If one directional button is moved and the other is

5 What we here call a ‘validation stage’ is formed by multiple

episodes played to assess the quality of the policy learned so far.
6 The best stages were chosen, thus continuing from the point where

the autonomous RL stagnated.

7 Before being sent to the robot, the values of the actions had to be

converted to the ranges of speed defined in the robot parameters.
8 The human-helper in these experiments was the first author of this

paper.
9 The action values from the joystick were also converted to the

ranges of speed defined in the robot parameters.
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not, the wheel of the unmoved button receives a speed of

zero.

It is important to mention that the human-helper does

not need to be experienced with joystick robot control, and

so the human-helper was allowed to practice for an

unlimited number of episodes.

Beyond using human actions to interfere in the robot

behavior, the human help has to be considered in the

learning process in four other ways. First, the parameter

expl_noise is set to 0, because policy exploration can make

the helping process very confusing and tiresome for the

human-helper, since it may be difficult to clearly see if the

robot is learning what is being taught and since the robot

may too often act in a ‘‘stubborn’’ way. Second, in every

step in which there is human interference, it is the human

state-action pair that is added to the replay buffer,10 while

the state-action pair of the policy is ignored.

Third, the rewarding scheme needs the following alter-

ations: (1) a human help reward is defined as h ¼ 0:1; (2)

the negative rewards are replaced by h only when there is

human interference; (3) when rewards are positive, they are

summed up with h, regardless the presence of human

interference. Alteration 2 is necessary because when the

human-helper is making a demonstration of what to do,

there may be intermediate actions that do not lead to a

positive reward immediately (sparse rewards), but that will

Table 1 Validation results of

setup I (before human help) and

II-a (after human help)

Run Behavioral problem before help Behavioral problem after help Help

1 (��) always straight (?) useless rotations 5

2 (?) stuck at wall/slow rotations (??) no apparent problem 1

3 (?) useless rotations (?) slow rotations 5

4 (??) no apparent problem – 0

5 (??) no apparent problem – 0

6 (?) useless rotations (?) quick and slight wall bumps 2

7 (?) useless rotations (??) no apparent problem 2

8 (-) useless rotations/slow rotations (??) no apparent problem 1

9 (��) always rotating (?) useless rotations 5

10 (��) always rotating (-) stuck at wall 5

11 (?) slow rotations (??) no apparent problem 1

12 (??) no apparent problem – 0

13 (?) useless rotations (?) no apparent problem 2

14 (?) useless rotations/stuck at wall (??) no apparent problem 2

15 (??) no apparent problem – 0

16 (??) no apparent problem – 0

17 (??) no apparent problem – 0

18 (??) no apparent problem – 0

19 (??) no apparent problem – 0

20 (??) no apparent problem – 0

21 (??) no apparent problem – 0

(??)=very good, (?)=good, (-)=bad, and (��)=very bad, help=number of stages utilized by human

Fig. 3 Human–robot

interaction: the human can

interfere in the robot behavior

using a joystick. Each of two

directional buttons can be used

to move the left and right wheel

of the robot forward or

backwards

10 Values returned by the joystick were normalized to correspond to

the policy action ranges.
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do so after a sequence of steps. For example, when

demonstrating how to escape a corner, the human-helper

may drive backward for a few steps, and then rotate for a

few other steps, to only then have green pixels in the visual

field. In this case, by using the standard rewarding scheme,

it would be very difficult for the agent to learn that those

actions are valuable, because rewards associated with them

are too many steps away. Therefore, it is necessary to

impose a reward that assumes these actions are good

because they are decided by the human-helper. When there

is no human interference, the negative reward for mistakes

made by the policy continues to apply, so that the policy

can still autonomously learn what it should not do. Addi-

tionally, 3 is applied to make sure that state-action pairs of

alteration 2 do not seem more profitable than the actual

successful ones since the proportion of green can often be

lower than h (in case a visualized package is very far).

Additionally, alteration 3 is applicable during the whole

episode, even in the steps when the human-helper does not

interfere, because otherwise, the states when human-help

was necessary may seem more profitable than other states,

but this is not necessarily true.

Finally, the batch size is changed to have the size of

k (same as maximum size of an episode), and each item in

the buffer can stay in it for only (also) k steps. Note that

this way the buffer is never larger than the maximum size

of an episode. The reason for these changes is related to the

idea that the human-helper is not necessarily an expert on

the task, and can make mistakes. While this is not a

problem for the cases when an actual reward from the

environment is obtained, it could become a problem for the

cases when the human reward is applied. Therefore,

assuming that the human-helper will make mistakes, we do

not maintain their actions in the buffer for too long. As the

stages progress, the human-helper is also learning and

getting better, and the latest state-action pairs will influence

the learning, while the old ones will have no direct effect in

the learning anymore. The increase in the batch and buffer

size is applied to make sure every pair has a fair chance to

participate in the learning, since the pairs do not stay for

too long anymore, and since the human help lasts much

fewer stages.

Let us now describe the human-helper guidelines uti-

lized during the human-help experiments. The human-

helper could interfere in the robot behavior anytime

throughout the episodes of setup II, however, the following

principles were taken into consideration: the focus of help

in the first stage should be on the problems observed on the

qualitative inspection of the run; after watching the vali-

dation of each human-helped stage, a new qualitative

assessment should be made, and the next stage should

focus on the current problems; if no problems are pre-

sented, the learning run can end before the budget is used

up; during the episodes, interference should be carried out

as minimally as possible, that is, for fixing actions that are

clearly problematic; if slight imperfect behavior is

observed, but the human-helper has the impression they

can not help much with it, help should not be carried out;

observe not only the third-person view of the simulation

but also the first-person view window, so that the decision

making of the human-helper is based on aspects perceiv-

able by the robot.

5 Results

5.1 Setup I: Fully autonomous RL

The results of the experiments11 in the setup before human

help show that RL performed overall very well on the task

(Fig. 4), with an average of 6.7 for total_success (efficacy)

and 180 for steps (efficiency). This means that almost

always all the packages were approached most of the time,

while using 90% of the time budget for completing the

task. This good result was reached around stage 20,

remaining mostly stagnated for the remaining 15 stages.

Table 1 shows the results of the validations separated per

run before and after human help. More than half the runs

achieved their best result before stage 27.

Analyzing the independent runs, we can see in more

detail the imperfections of each run. After the human

inspections of setup I, each run was classified into the

levels of behavioral quality very good, good, bad, and very

bad, according to their quantitative and qualitative success.

All runs with efficacy 7 and with non-apparent behavioral

problems were classified as very good. Runs with efficacy

between 6 and 7 that had apparent problems were classified

as good.12 Runs with efficacy below 6 were classified as

bad. Runs with efficacy below 3 were classified as very

bad. Furthermore, every run not considered very good was

classified into one or more categories of behavioral prob-

lems described in the caption of Table 1.

A run can be judged to present behavioral quality

problems if an inadequate behavior happens in multiple or

even only one from the starting positions. Naturally, runs

with imperfect effectiveness presented some sort of prob-

lematic behavior. Nevertheless, some runs that were max-

imally effective presented problematic behavior that was

reflected only on the efficiency. This means that the robot

11 The markers above the boxplots in the Results section represent

significance levels from Wilcoxon tests. ns: 0:05\p\ ¼ 1, *0.01

\p\ ¼ 0:05, **0.001 \p\ ¼ 0:01, ***0.0001 \p\ ¼ 0:001,

****p\ ¼ 0:0001.
12 There was one exception (run 13) that presented no apparent

problem but had efficacy 6.9 instead of 7, so to be strict, it was

considered only good.
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was doing something that, from the point of view of the

human-helper, clearly could be done better.

Among the 21 runs, 10 (48%) presented no apparent

problem.13 By ‘‘no apparent’’ we mean that the human-

helper could not identify any problems, or was not sure if

there was a significant problem with which they could help.

For instance, the human-helper may have the impression

that a route is not optimum, but they are aware that

sometimes there is too much subjectivity involved, and it

may not be worth it risking to worsen the policy. As for the

11 imperfect runs, 3 of them were very bad, approaching

less than two packages. Additionally, 1 of them was bad,

approaching 5.7 packages. Finally, 7 of them were good,

with 3 of these approaching almost all packages, and the

other 4 approaching all packages but with inefficient

behavior. Note that because the metrics are averages of

results in each starting position, a total_success of almost 7

often means that all packages were approached most times

but sometimes some were missed.

5.2 Setup II: Effects of human help on RL

The human help was applied to the 11 imperfect runs and it

brought improvements to 7 (64%) of them (Fig. 5). In 5

(71%) of the improved runs, there was an increase in

efficacy, and in 2 (29%) of them there was increase only in

efficiency. Note that efficiency and efficacy are correlated,

because when not all packages all approached, the whole

budget of steps is used. All runs that improved in efficacy

improved also in efficiency.

Considering the runs from the perspective of behavioral

quality, in most cases the human helped in shifting from a

less desired behavior to a more desired behavior: among

the very bad runs, 2 of them became good runs, and one of

them became a bad run; the bad run became a very good

run; and among the good runs, 4 became very good runs,

and 3 remained good runs. This is illustrated in Table 1 in

the columns ‘behavioral problem before human help’ and

‘behavioral problem after human help’.

The plots of the runs that did not improve with human

help are available in Fig. 3 of Appendix 1. In summary, the

improvement obtained through human help was an increase

of 30% in efficacy and 12% in efficiency (Fig. 6).

To finalize our study, we tested our best policies in

hardware, with the purpose of demonstrating that these

robots can also function in the real-world, beyond simply in

simulation. For this test, we utilized two different policies:

(a) the best policy among the ones that did not need human

help, and (b) the best policy among the ones improved by

human help. These final hardware tests were carried out

just like the final simulation tests described in Sect. 4.3: the

policy was played 3 times repeatedly in each of the pos-

sible initial positions. In Fig. 7 we see that the efficacy14 in

hardware is only slightly lower than in simulation: 3%

worse in run 7 and 1% worse in run 12, while the differ-

ence is significant only for the former. In practice, the robot

could approach all packages in almost every episode,

having in rare cases picked up only 6 packages. A video

demonstrating the robot behavior in both simulation and

hardware is available on YouTube.15

6 Discussion

While the fully autonomous RL had a favorable perfor-

mance with almost half of the runs presenting no apparent

behavioral problem, the other half contained imperfect runs

with room for improvement. The imperfection of these runs

can be considered undesired behavior, which in determined

environments may represent unsafe behavior. From the

machine learning point of view, the imperfection could be

tackled in different ways, for instance, parameter

Fig. 4 Results of setup I:

Averages of the metrics of

success throughout the learning

process among the independent

runs before human help. Lines

represent the medians and

clouds represent the first and

third quartiles

13 The plots of validation for these runs are available in Fig. 1 of

Appendix 1, in the folder supplementarymaterial of our GitHub (see

Supplementary information).

14 Efficiency was not compared because the time steps in simulation

and hardware are not comparable.
15 https://youtu.be/n-Z-QDVCJCM.
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tuning [27], reward shaping refinement [28], etc. However,

we did not intend to propose algorithmic improvements for

the fully autonomous RL but to demonstrate and discuss

the promotion of safety by keeping the human in the loop

preventing the takeover of undesired behavior. Note that

safety promotion is not intended to occur in the fully

autonomous setup stages but in the hybrid setup stages: RL

in cooperation with humans. Importantly, the robot loses

control whenever the human-helper presses a button but

regains control immediately after the button release. In this

way, they are both responsible for the final robot behavior,

and in such a way that the robot is never idle. We

Fig. 5 Results of setup II: with=setup II-a and without=setup II-b.

Each row (made of four plots) represents one run that improved both

in efficacy and efficiency and with human help. The line plots show

the metrics of success in the validation stages throughout the learning

processes: naturally, the lines overlap in the stages that were simply

copied from setup I. The boxplots compare the best controllers found

by each experiment. The number of the run is displayed at the left of

the plots. The horizontal dotted lines mark the maximum number of

packages achievable, while the vertical ones mark the best validation

stage of the run before human help. The plots of the runs that

improved only in efficiency are available in Fig. 2 of Appendix 1
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emphasize that the human-helper has always precedence

over the robot policy, providing a quick alternative for

situations in which the robot is behaving dangerously.

Ultimately, the inclusion of a non-specialist human in

the loop benefited significantly the efficacy and/or effi-

ciency of the learnt robot behavior in the majority of the

imperfect runs.16 Whereas our research goal was achieved,

there were multiple challenges involved. These are

described below and are related to the design choices for

human help presented in Sect. 4.3.2.

1. Translating the human choice of actions into the

‘‘language’’ of the policy: we did that by adding the

human-generated state-action pairs and their rewards to

the replay buffer when there was human interference.

2. Understanding perceptual differences between robot

and human-helper (Theory of Mind): after several

failed attempts, we realized that the human-helper was

taking actions based on environmental states that were

not available for the robot. We tackled that by

watching the robot vision field in the first person,

reflecting on what environmental information was

available, and then transforming these insights into

new states.

3. Sparse rewards from human demonstration: we solved

it by adding a ‘‘human reward’’ for state-action pairs

that would normally be punished.

4. Balancing real rewards and human rewards: when the

human behavior achieved real rewards, they were used

summed up to the human reward, so that (real) low

partial rewards did not seem less attractive than the

human rewards.

5. Calibrating the magnitude of human interference

effects on the learning: because the human is not an

expert or necessarily experienced with the task, there

can be mistakes. Therefore the learning should not

happen too greedily, so to avoid that mistakes be too

deeply incorporated into the policy. We dealt with it by

redesigning the replay buffer dynamics.

6. Dealing with policy exploration during human help:

the policy exploration proved very confusing for the

human-helper since it made it difficult to observe if the

human demonstrations had been learned or not. We

decided to completely turn off the exploration, con-

sidering that this should not be a problem: that is the

case because the policies had already gone through a

stage of learning, and were just being fine-tuned while

guided by the human-helper.

Beyond improving robot behavior and promoting safety,

this solution could impact society in another way:

employment. Automation can drastically and abruptly lead

to high levels of unemployment [29], in opposition to the

Fig. 6 Summary over all

experiments of Setup II:

assessment of the average

change in efficiency: 174�153
174

¼
12% of decrease in steps; and

efficacy: 6:5�5
5

¼ 30% of

increase in total_success. Each

point in the bloxplot is the

average within a run. with =

Setup II-a and without = Setup

II-b

Fig. 7 Comparing the success of

controllers tested in simulation

and in hardware. sim =

simulation and hard = hardware

16 To facilitate clear results, human interference was applied only

after the convergence of each run. In a real-world scenario

nevertheless, human interference could be applied as soon as

undesired behavior was observed.
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promotion of societal progress. Picturing a scenario in

which this system would be deployed in a warehouse, an

imaginable outcome is: the robots act as a labor-saving

technology, and thus the demand for non-specialist human

labor is reduced, but this reduction is mitigated by the need

for labor to fine-tune the robots. Moreover, there may

continuously be a need for behavior fine-tuning because

such an environment is never static. Therefore, non-spe-

cialist human labor demand could be preserved to some

extent, thus tackling unemployment.

To conclude, we demonstrated how to promote safety

using human help to prevent undesired robot behavior. One

limitation of this study was using a single human-helper,

and who was involved with the development of the system.

Additionally, because in some cases the human-helper

could not improve the robot behavior, further work is

necessary to tackle the current challenges. For future work,

it would be interesting (a) to repeat this experimental setup

using a large number of human-helpers with different

profiles (age, sex, education, etc); (b) to design a frame-

work to implement such a system in a real-world ware-

house subject to changing environmental conditions, e.g.,

through what means would humans monitor and assess

robot behavior, where would the joysticks be localized,

etc., and (c) to provide the full images of the camera to the

neural network, as opposed to extracting features

beforehand.
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