
S. I . : HUMAN-ALIGNED REINFORCEMENT LEARNING FOR AUTONOMOUS AGENTS

AND ROBOTS

Policy regularization for legible behavior

Michele Persiani1 • Thomas Hellström1

Received: 9 December 2021 / Accepted: 11 October 2022 / Published online: 26 October 2022
� The Author(s) 2022

Abstract
In this paper we propose a method to augment a Reinforcement Learning agent with legibility. This method is inspired by

the literature in Explainable Planning and allows to regularize the agent’s policy after training, and without requiring to

modify its learning algorithm. This is achieved by evaluating how the agent’s optimal policy may produce observations

that would make an observer model to infer a wrong policy. In our formulation, the decision boundary introduced by

legibility impacts the states in which the agent’s policy returns an action that is non-legible because having high likelihood

also in other policies. In these cases, a trade-off between such action, and legible/sub-optimal action is made. We tested our

method in a grid-world environment highlighting how legibility impacts the agent’s optimal policy, and gathered both

quantitative and qualitative results. In addition, we discuss how the proposed regularization generalizes over methods

functioning with goal-driven policies, because applicable to general policies of which goal-driven policies are a special

case.
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1 Introduction

As widely agreed in Explainable Artificial Intelligence,

well-functioning collaboration between humans and artifi-

cial agents requires transparency [1]. Agents should not

only perform their assigned tasks efficiently and accurately,

but should also make sure that the humans in their opera-

tive context understand their intentions and actions.

Facilitating intention recognition through a behavior that

is understandable by a human observer has several

advantages [2]. For example, in human-robot interaction

signaling the robot’s intention increases collaborators’ trust

in the robot, safety, and fluency of interactions, because

aiding collaborators to predict what the robot is doing or

will do [3–5], and in conditions of shared control allows to

mediate, arbitrate, and guide the interaction [6] by

informing the user about the robot’s intended action. In

applications for autonomous vehicles simple solutions

augmenting the driver understanding of the car’s inten-

tional state, like sharing its goal, is sufficient to increase

trustworthiness and acceptability of the autonomous driv-

ing system, as well as acceptance of higher levels of

automation [7]. In addition, recent developments in tech-

nologies for virtual or mixed reality are further enabling

and enhancing methods for intentionality in physical

robots, by allowing to plot and manipulate the robots’

intentional states in the virtual 3D world [8].

Given the importance of intentions during interactions

with artificial agents, it is therefore becoming relevant to

combine methods that allow to express intentions with

techniques generating highly performing behavior. The

online creation of behavior of which intention is easily

discernable or that is furnished with congruent explana-

tions is addressed in Explainable Planning under the

umbrella of interpretable behavior, where several methods

to regularize behavior for explicability [9], predictability

[10] or legibility [11, 12] have been proposed. These

techniques relate to an implicit communication of intention
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by making it transparent to its user, and is in contrast with

explanations that instead is an explicit communication.

Transparency is achieved by interacting with a user

observer model. For example, legibility skews plan tra-

jectories such that their goal is easily discernable, expli-

cability makes sure that observations have at least one-

associated complete plan, or predictability reduces the

amount of possible future possible trajectories.

While a substantial amount of formalizations of inter-

pretable behavior exists in the Explainable Planning liter-

ature, there is very little-related work for the framework of

Reinforcement Learning (RL). RL has been shown to

produce powerful agents for a variety of domains (in-

cluding robotics, games or recommender systems) often

surpassing human performance, however, the RL frame-

work still lacks formalization about creating agents that are

interpretable as intended in Explainable Planning, and

mostly borrows its definition of interpretability from the

Machine Learning (ML) literature. This definition is more

concerned into making the decision taken by the algorithm

explainable by a domain expert upon inspection in an

offline setting, rather than to enable interpretability online

during collaborations, therefore resulting unsuitable in

fulfilling the needs of transparency of online interactions.

There is therefore still a large untapped potential in

adapting methods for interpretability to RL. This would

also provide valuable input for research in explainability

that at the moment contemplates advanced methods such as

those based on neural networks mostly as black boxes

generating behavior that is optimal yet highly uninter-

pretable from a human perspective [13].

With the goal of including legibility criteria in RL, in

this paper we translate legibility from Explanable Planning

to the RL framework as a measure of discernability of

policy, that we loosely equal to the agent’s intention. As we

propose, injecting legibility inside an agent’s policy

doesn’t require to modify components of the learning

algorithm. We rather suggest to evaluate how the optimal

policy may produce state-action pairs that would make an

observer model to infer a wrong policy, and to later find a

trade-off that minimizes those while remaining consistent

to the original policy. This is performed through what we

refer to as the Mirror Agent Model that is a model fur-

nishing legibility to the agent as a service [14], that is

without modifying its underlying functioning or training

procedure. As we will later discuss, this setting adds sev-

eral degrees of freedom to the previously proposed meth-

ods from the literature relying on augmenting the agent’s

training (such as regularizing its reward function).

2 Background

Since RL borrows the term ‘‘interpretability’’ mostly from

the ML literature [15, 16], merging the terminology from

Explainable Planning and Reinforcement Learning could

create some confusion. In ML interpretability generally

means to provide insight into the agent’s mechanisms such

that its decisions are understandable by an expert upon

inspection [16]. This can be achieved firstly by translating

the classifiers’ latent features responsible for its decisions

into a space that is interpretable, and then compute

explanations on that space [17]. In RL, [18] for example

proposes to use attention to visualize which features the

deep Q-network attends when taking decisions, while [19]

trains linear tree models on Deep Q-networks to obtain

corresponding interpretable models. See [15] for a survey

of this type of techniques applied to RL.

These techniques for interpretability have been shown

useful in many ML application domains by giving insight

into models’ decisions. They have, for example, been

successful in health-care [20], and societal (e.g., decisions

regarding loans, hiring, risks, etc.) applications. However,

they may be less suitable in domains characterized by real-

time interaction, such as in human-robot interaction, where

the fluency of the interaction prohibits deep inspections of

the decision-making algorithm. Also, while the produced

explanations in terms of relevant features could be under-

stood by an expert, they may be unsuitable for users who

are uninformed of the underlying models, and more

focused on common sense reasoning. People generally very

good at forming hypotheses on intentions and beliefs

explaining an observed behavior through what is referred

to a theory of mind reasoning [21]. However, it has been

commonly shown how the behavior of advanced agents

operating at human level, such as in competitive games, are

often beyond human intuition and highly inexplicable

[22, 23]. Especially for such cases, but also in general, it is

therefore necessary to regularize artificial agents toward

behaviors compatible with common sense reasoning, while

maintaining their high performance.

In this paper we refer to interpretability as intended in

planning, where an agent behavior is interpretable when an

observer can easily discern what the agent is doing by

understanding its intention [24]. Also when applied to RL,

this definition conforms better to real-time interaction in

the presence of an observer that could be either passive or

part of a larger collaborating agent. As previously intro-

duced, in this context a multitude of definitions capturing

smaller aspects of interpretability have been used. Each

aspect expresses different types of expectations that an

eventual observer has on the agent, such as expectations

about its goal [11], expectations about entire future

16782 Neural Computing and Applications (2023) 35:16781–16790

123



trajectories [10], or expectations toward a communication

model [25]. While there is a lot of variety in the models and

theories leveraged by all this techniques, it can be generally

shown that this set of methods requires an expectation

model that is a second-order theory of mind focused on the

observer’s inferences about the agent [2, 24], and that

interpretable behavior can be seen as minimizing the dis-

tance between the estimated model possessed by the

observer and the true model of the agent (see Fig. 1). The

agent’s behavior is interpretable whenever conforming

with the expectations casted by the second-order model,

and uninterpretable when not conforming [2].

In agents applications the second-order theory of mind is

the model that the agent thinks the observer is using to

interpret its behavior and can have many forms, for

example, in [10] it is a label predicting whether a human

observer is understanding the agent, while in [26] is a

complete planning model. In general, simple observer

models are easier to maintain aligned with the actual

expectations of the user, while those that are more struc-

tured allow to simulate with greater detail the inferences of

the observer. Also, structured models can be selectively

changed through a reconciliation process [26] thus ulti-

mately allowing the agent to autonomously re-align its

model with the observer’s whenever it detects the need.

To the best of our knowledge very little work exists in

RL relating to interpretable behavior as we just described.

Both [27, 28] propose methods relying on a transposition of

the original formulation of legibility. The methods result

applicable only for goal-driven policies, thus excluding all

other types of policies available in various RL frameworks.

In addition, they require to specify distance measures

between states that, while easy for manipulators working in

the cartesian space, can be a difficult task for arbitrary

state-spaces.

Rather than relying of goal locations, we define a legi-

bility criteria that is directly applicable on policies. A

regularization method similar to ours is proposed in works

on offline policy learning [29–31] where during training

the agent’s on-policy behavior is regularized toward

another behavior. We can see our method as a specific

application inside this class of methods, where the policy is

regularized toward the legible policy. However, we pro-

pose to regularize the policy after training, while the

training of the agent is left untouched. The proposed

method furnishes explainability as a service, that is as a

wrapper of an existing computational model. This has

major advantages in terms of usability of the methods

because doesn’t require to retrain the agent for every

variation of the observer model.

3 Method

The main goal of interpretable behavior is to bring the

intention predicted by the observer’s model close to the

intention of the agent, and to maintain such closeness in

time. Consistently with the definition of a legible intention

we define a legible policy as: An agent’s policy is legible if

it is discernible from a set of other policies. It is useful to

work with this definition because it reflects the general case

where an observer is attempting to understand which policy

the agent is currently enacting among a set of candidates.

Furthermore, the definition doesn’t pose constraint on the

type of policy but can be applied to arbitrary policies. The

goal of legibility is therefore to help the observer to infer

the correct policy from the set of those being considered.

For this case we hypothesize an observer watching the

agent and inferring the policy it is currently pursuing.

The agent can simulate the presence of an observer by

implementing a second-order theory of mind modeling the

expectations that it is using to infer intentions. To imple-

ment the second-order theory of mind we utilize a middle

way between the expressiveness of a complete agent

model, and the simplicity of using a hand-crafted solution.

This model for theory of mind reasoning, that we refer to as

the Mirror Agent Model, describes agent and observer

models as two equivalent Bayesian networks denoted PR

and PH
R (Fig. 2). PR determines how the agent acts, while

PH
R is the observer’s model of how the agent acts. Since the

real observer model is part of the observer and it is not

directly accessible by the agent. The agent must therefore

Fig. 1 PR: an RL agent

interacting with its

environment. PH
R : model of the

expectations that an observer

has about the agent. The goal of

interpretable behavior is to keep

the distance j PR � PH
R j low,

signifying that the agent’s

behavior effectively matches the

observer’s expectations
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for all computations rely on the estimated model PH
R , the

second-order theory of mind. To simplify notations, we

make in the following no distinction between these two

entities, and we use observer model and second-order

theory of mind as interchangeable.

The Bayesian networks are structurally the same and

describe the agent as a Markov Decision Process (MDP)

with multiple possible policies, however, the random

variables (P; S and A) can be differently distributed in PR

compared to PH
R , depending on the agent’s reasoning and

prior information about the observer. A simplifying

assumption this model makes is that the user internalizes an

agent model with the same structure as the true agent

model. While this assumption may not hold in the general

case, it can, for example, be achieved by communicating

the agent model, or by performing model alignment dia-

logues with the goal of communicating the latent variables

that the agent uses to act.

We assume that the agent has a fixed set of pre-trained

policies identified by the random variable

P ¼ fp0; . . .; png. Notably, among these there is the cur-

rently pursued policy pR with PRðP ¼ pRÞ ¼ 1. Initially,

the observer is modelled as ignorant of which policy the

agent is pursuing, leading to a uniform prior of the policies:

8i PH
R ðpiÞ ¼ k; k ¼ 1

jPj. When using Q-learning, two cor-

responding Q-value tables QRða; p; sÞ and QH
R ða; p; sÞ

respectively determine the probability distribution for the

agent selecting actions, with PRðajp; sÞ ¼ f ðQRðp; s; aÞÞ,
and for the observer inferring the agent’s actions, with

PH
R ðajp; sÞ ¼ gðQH

R ðp; s; aÞÞ. The Q-value tables can be

obtained using any of the available RL methods, while f

and g are arbitrary functions that transform Q-values into

probability distributions of actions, for example the

Boltzmann or the �-greedy distributions [32].

To be legible, the agent should select actions a that

communicate the observer its policy pR, while avoiding

communicating the others. This is obtained by selecting

actions based on how they reduce the distance D between

the probability distribution over the agent policies, PRðPÞ,
and the corresponding distribution PH

R ðPjs; aÞ that the

observer infers, given an observation of state-action pair.

To implement D we utilize cross-entropy that specifies

how much information would be additionally required to

identify pR by using PH
R ðPjs; aÞ instead of PRðPÞ, that is by

using the observer model rather than the agent’s.

DðPRðPÞ;PH
R ðPjs; aÞÞ

� logPH
R ðpRja; sÞ

� logPH
R ðajpR; sÞ þ logE½PH

R ðajp; sÞ� � logPH
R ðpRÞ:

ð1Þ

where the last line is obtained through the Bayes’ theorem

and law of total probability. Since the action probabilities

in Q-learning depend on the Q-values, we can use Eq. 1 to

define regularized versions of the Q-values as:

QlegðpR; s; aÞ
QRðpR; s; aÞ � aDðPRðPÞ;PH

R ðPjs; aÞÞ
QRðpR; s; aÞ þ a logPH

R ðpRja; sÞ:
ð2Þ

with a[ 0 determining the magnitude of regularization. In

this way, the right part of Eq. 2 regularizes the resulting

policy such that the selected actions aim at a small distance

between the agent policy and the policy inferred by the

observer. Therefore, the decision boundary introduced by

legibility impacts the states in which the optimal action

aopt ¼ pRðsÞ is an action that has high probability also in

other policies. In such cases, a trade-off between the

optimal action, and a sub-obtimal/legible actions is made.

4 Experiments and evaluation

We tested and evaluated the proposed model with two

experiments. The first is an illustrative example in a

grid*world setting and is intended to provide insight into

how the legible policy modifies the original policy. The

second experiment is more extensive and is performed with

a Deep Q-network.

4.1 Grid-world experiment

In this experiment we tested the proposed method on a

gridworld scenario. The grid is 7x7 and without obstacles.

There are 3 possible goals at the corners, for which we

trained three corresponding policies with Q-learning. For

simplicity we set QR ¼ QH
R and f ¼ g, meaning that the

agent assumes the observer to use the same Q-values and

derived action probabilities as its own, i.e.,

8i PRðAjpi; SÞ ¼ PH
R ðAjpi; SÞ. This has the advantage of not

require modeling how the observer models the task, which

is a costly procedure. However, nothing prohibits usage of

Fig. 2 Agent model and second-order theory of mind as equivalent

Bayesian Networks. The networks model how agent and observer

respectively select and infer actions using the current state and a set of

predefined policies, while the function D measures the distance

between these two processes
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different Q-values for the observer. In such cases, the agent

would be evaluated by a different set of policies than those

it possesses.

Figure 3 shows in the left column the optimal policies

learned by the agent. In the right column the correspond-

ingly legible policies obtained using a ¼ 1. The learned

policies move toward a wall adjacent the goal, and then

approach the goal by walking along the wall. However, to

be legible, it is important to approach the right wall that

disambiguates the goal location. The legible policies sys-

tematically approach an unambiguous wall. Notice also

how for g1, the legible policy makes the agent walk in the

middle to avoid approaching the other goals.

4.2 Deep Q-network experiment

In the second experiment we used OpenAI Gym [33]. We

designed a simulated environment in which the agent had

to pass through tunnels of length L and width W, composed

of C þ 2 types of cells: empty cells, obstacle cells, and C

types of cells of different colors (see Fig. 4). The agent was

defined to see a maximum of S cells in front of it and had 3

possible actions: move one cell up, move one cell down, or

stay at the same position. If the agent moves to a colored

cell it receives a reward of þ1 while if it moves to an

obstacle it gets a punishment of �10 and a new episode

restarts. Moving to an empty cell or to a cell of a color

different from its own does not result in any reward or

punishment. The environment is not goal-oriented but

rather defines regions of reward and of punishment for the

agent. These regions can be of arbitrary shape and we used

rectangles for colored regions and squares or lines for

obstacles.

Since the agent is unaffected by cells of a color different

from its rewarding color, to simplify the learning process it

was trained on tunnels containing only one color and

obstacles. Later, tunnels containing C colors are obtained

by using C tunnels sharing obstacles and agent position.

Inside a single-color tunnel, at every timestep the obser-

vation corresponds to a set of three matrices M0;M1;M2 of

size W � S, each representing a slice of the tunnel up to the

agent’s sight distance. The first matrix contains only col-

ored cells, the second only obstacles and the third the

agent’s position. Inside every matrix, each cell is charac-

terized by the summation of three embedding vectors:

cij ¼ wi þ sj þ tij: ð3Þ

where wi and sj are position embeddings identifying the

cell inside the matrix. For example, hw0; s5i indicates cell

0 � 5. While tij identifies whether that cell is occupied: in

M0 a cell is occupied if it is colored, in M1 if it is an

obstacle, in M2 if it contains the agent’s position.

Figure 5 shows the employed Q-network. In the net-

work, / is a convolution network which convolves on the

matrices of embeddings, and is shared by all the inputs

M0;M1 and M2. w is a fully connected network that takes as

input the vector h/ðM0Þ;/ðM1Þ;/ðM2Þi and outputs a

vector of size 3 for the Q-values.

We trained the agent on 30,000 random, single-color

tunnels of length 200 and width 12 cells, while the agent’s

observation windows was set to 20 cells. For every tunnel 5

colored rectangles and 10 obstacles of shape square or line

were randomly placed. Table 1 shows the network’s

hyperparameters used for training the Q-network.

As previously mentioned, after training to obtain a

tunnel with C colors we merged C tunnels at once, with

each tunnel containing only cells of the respective color,

while all sharing the same obstacles and agent position. In

this way, at each step the agent has C different policies to

follow, each one seeking a particular color. This is equal to

the result of training C different policies simultaneously.

4.2.1 Quantitative evaluation

We tested the proposed method for legible policy in a

setting where both agent and observer use the same
Fig. 3 Left: policies for the three goals (red dots) learned with

Q-learning. Right: legible policies. The legible policies avoid

ambiguity of goal location
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Q-function (the trained Q-network) and the greedy policy

to always select the action with highest Q-value. Since the

introduced regularization penalizes actions with high

probability in other policies, we expected the agent to

avoid cells of colors that are not its own. In other words,

since the observer model judges the agent’s behavior by

confronting it with policies that seek cells of given colors,

by avoiding cells of other colors the agent decreases the

probability of those policies in the observer’s inferences.

We tested this hypothesis first quantitatively by mea-

suring the average gathered reward over 200 episodes,

while using increasing values for the regularization factor

a. Every random tunnel had C ¼ 4 colors, 5 rectangular-

colored patches for each color, and 10 square obstacles. In

this setting we measured the reward gathered by the agent

when pursuing the color C0, and the average reward for the

other colors C1::3 accumulated while pursuing C0. We then

divided these scores by the maximum rewards that the

policy could have gathered for the corresponding colors,

thereby obtaining a reward ratio with values between 0 and

1. For example, a reward ratio of 0.5 means that the agent

accumulated half of the possible maximal reward. As a

complement to the reward ratio, success rate was computed

as the probability of succeeding, i.e., reaching the end of

the tunnel without hitting any obstacles during an episode.

Table 2 summarizes this experiment.

Table 3 instead summarizes the degree of legibility of

the agent’s policy measured as the expected probability

that the observer model gives to the agent’s policy through

the episodes:

L ¼ E
ha;si� E

½PH
R ðpRjs; aÞ�: ð4Þ

where every state transition is given equal weight

pðs; aÞ ¼ 1
jEj. The second row of the table shows the gain of

legibility obtained by using the legible policy rather that

the original:

LgainðxÞ ¼
La¼x

La¼0

: ð5Þ

4.2.2 Qualitative Evaluation

Figure 6 shows the effect of regularization on two sampled

tunnels. In the plots red is the rewarding color of the agent

and obstacles are in brown. The trajectories in yellow are

obtained by simulating and averaging 200 trials. As

noticeable the regularized trajectories are sharper and avoid

non-red-colored regions. This arguably increases the legi-

bility to a human observer as well. The most convincing

reason is that if we would see the agent avoiding e.g.,

purple cells, we would suppose it is not rewarded by that

color. In our experiments this prediction of intention is also

Fig. 4 Sampled tunnel environment. While traversing a tunnel the agent is rewarded to walk on cells of its same color (green). Hitting an obstacle

(teal) instead punishes the agent and resets the episode

Fig. 5 Q-network for the tunnel enviroment. /: convolution network

shared by the three inputs. w: fully connected network

Table 1 Hyperparameters of the Q-network for training the agent

Parameter Amount Type

Layers/ (100,100,100,100) 2D-convolution

Layersw (200,200,50) Fully connected

Embedding size 100 –

Learning rate 1e� 3 –

Learning rate decay 1e� 4 –

Buffer size 150,000 –

Policy � 0.1 –

Discount factor 0.98 –

Table 2 Average accumulated reward ration by the policies for color

C0 and colors C1::3 for increasing values of a. The row Success
indicates the probability of completing a tunnel without hitting

obstacles

a ¼ 0 a ¼ 0:1 a ¼ 0:5 a ¼ 1 a ¼ 2 a ¼ 5

C0 0.8 0.8 0.76 0.76 0.77 0.75

C1::3 0.29 0.21 0.15 0.14 0.13 0.11

Success 0.99 0.95 0.96 0.95 0.92 0.87
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possible in advance to a certain degree, because the agent

starts avoiding cells before actually walking on them but as

soon as they enter its field of view.

In addition, to better understand the effect of regular-

ization, the agent’s behaviors for three different configu-

rations of colored regions and increasing factor a are

plotted in Fig. 7. The plots have two colors: red as reward

color for the agent’s policy, and blue as reward color for a

different policy. Legibility clearly skews the trajectories

such that they pass farther away from non-red cells in a

way that is proportional to a. However, regularization

becomes detrimental for values of a that are too high. In

such cases, the agent’s original policy of walking over red

cell is dominated by the regularization to avoid blue cells,

and in some cases the agent is not able to pass over any red

cells even if there aren’t any obstacles.

Notice how this type of reward regions simulates goal

locations, and thus allows to qualitatively confront the here

obtained legible behavior with those for goal-driven poli-

cies from literature [27, 28]. The behaviors are quite sim-

ilar, with trajectories that are arced to disambiguate the

goals. Crucially, previous methods require to retrain the

agent each time the goals or environment change, because

the regularization is embedded in the training procedure of

the agent. In our method this is not necessary.

5 Discussion

Our quantitative results indicate that the proposed regu-

larization for legibility is effective in making the observer

model discriminate the true agent’s policy. This is high-

lighted in Table 2 where we can see that the reward ratio

for colors different from C0 decrease as a increases, sig-

nifying that the agent avoids regions with colors different

from its own. The qualitative results also confirm this

observation, by showing that as a increases so does the

effort of the regularized policy to avoid other colors.

We calculated how high values of a are detrimental both

in terms of accumulated reward and success rate of the

episodes. The reason is that the agent is regularized so

much to avoid other policies that its original policy is

overridden rather than regularized. However, the agent

incurs a noticeable loss in terms of accumulated reward or

success rate only for high regularization factors.

The general results confirm our originally formulated

hypothesis that legibility increases the probability of the

agent policy appearing in the observer’s inferences by

making the agent avoid rewarding regions of other policies.

This is an emergent behavior that was not coded in the

equations and in our experiments represented a general-

ization over goal-driven solutions for legibility. This is

because the reward regions of goal-driven policies, i.e.,

having reward regions at goal locations, are a special case

of those of arbitrary policies, that can instead have reward

regions anywhere in the environment.

Furthermore, we noticed that our results are obtained

with a simple observer model that considers the same

policies that are available to the agent but with a uniform

probability. Because our results are qualitative similar to

Table 3 Policy legibity for increasing values of a

a ¼ 0 a ¼ 0:1 a ¼ 0:5 a ¼ 1 a ¼ 2 a ¼ 5

L 0.30 0.36 0.44 0.48 0.48 0.51

Lgain 1 1.2 1.46 1.6 1.6 1.7

Fig. 6 Qualitative results for two sampled tunnels. The left column shows the agent’s optimal learned behavior while the right column its

regularized version

Fig. 7 Qualitative results for three types of positions of reward regions and increasing levels of a
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those reported in earlier works on legibility [11, 27, 28]

i.e., legible trajectories are skewed to avoid other goal

locations, it is suggested that a similarly uniformly ini-

tialized observer model was implicitly utilized in those

papers as well. However, we regularize the agent by

working on policies rather than reward distributions, and

for this reason the proposed method has three major

advantages: firstly it easily generalizes over different

shapes of reward regions and not only only on goal states

that are a particular type of reward region. Then, it allows

to easily generalize over differences between agent and

observer models, that is by using different corresponding

Q-networks. This was not possible in previous methods

because the observer was imprinted in the agent’s Q-values

during training. And finally, it allows to regularize the

agent for arbitrary positions of rewards and obstacles

without requiring to retrain the agent for each of them.

6 Conclusion

In this paper we introduced a model that allows to regu-

larize a reinforcement learning agent for legibility. In our

formulation we propose a legibility criteria that induces an

observer model to disambiguate the agent’s intention from

a set of others, with intentions being implemented as

policies. We suggest that rather than modifying the learn-

ing procedure of the agent we can wrap a priorly learned

set of policies by a pair of Bayesian Networks that model

agent and observer, respectively. The coupled networks

describes a setting of second-order theory of mind that, by

reasoning on how the observer infers policies, increases the

discrimination between the agent’s true policy and other

candidate policies.

We evaluated the method on an illustrative example

showing how legibility impacts the decision boundary of

the agent, and on a Deep-RL example. In general, our

model is successful at increasing the legibility of trajec-

tories without incurring in losses for the agent when the

regularization factor is kept at a reasonable level. Fur-

thermore, our qualitative results show that the obtained

trajectories are similarly arced as those obtained in earlier

work on Explainable Planning, but with the main differ-

ence of computing legibility on reward regions rather goal

states.

The proposed methods introduces three relevant degrees

of freedom in legibility. The first is that legibility is com-

puted with respect to reward regions rather than goal

locations. This allows to regularize arbitrary policies and

especially those that can run indefinitely. Policies of this

type can’t be regularized by methods relying on the orig-

inal formulation of legibility because of the need of a goal

state. The second degree of freedom is on the possibility of

decoupling agent and observer models. This allows to

specify that the the observer uses a different reward dis-

tribution, and legibility is to be computed against that

distribution rather than the agent’s. This decoupling is not

easy to implement using previous methods relying on

distance measures computed on the Cartesian space,

because would require to specify how the observer mea-

sures distances on the state-space differently from the

agent. Finally, since we don’t rely on augmenting the

agent’s reward distribution for legibility, but regularize its

policy after training, our method results applicable on all

combinations of the environment without retraining the

agent. Since the agent’s learning algorithm is unmodified,

it is straightforward to apply our method to arbitrary

problems and types of agents. Even though we couldn’t test

it on extensive test beds of agents and problems, it is

reasonable to think that problems effectively captured as

MDPs can be regularized without major additional

implementations.

7 Future work

Possible future work relates to test legibility on settings

striving toward real scenarios. In particular, it is relevant to

test highly nonlinear environments, such as those from

Atari games. In these environments the agent emergently

develops behaviors that are more symbolic rather than

purely reactive. For example, it may learn to focus on a

particular region of the environment (thus creating a sub-

goal, Breakout), or learn to perform sequences of actions

achieving sub-goals one at a time (Montezuma Revenge),

[34, 35]. How would legibility behave in such scenarios?

We could expect a similar behavior, avoiding to commu-

nicate wrong policies (or plans). However, due to the

increased complexity, this could require to leverage

observer models that explains the agent symbolically e.g.,

through planning, rather than as an MDP. This is possible

in the mirror setting by changing the observer model into

one that leverages symbolic reasoning, yet maintaining

compatibility between nodes to compute the divergences.

In alternative, we can think of learning, in the mirror set-

ting, symbolic observer models best explaining the agent’s

behavior, thus extracting the planning model embedded in

the agent’s neural network.

Another interesting line of research reformulates legi-

bility as control mechanism for the agent, allowing to

dynamically regularize its behavior in real-time. This is

possible by allowing a controller to explicitly set part of the

observer’s network, thus constraining the regularization

process towards a desired outcome (e.g., perform while

avoiding blue cells, or perform while walking on red cells).

In general we see implications for research on the gap
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between symbolic and sub-symbolic reasoning and for

supporting explainability in RL.
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