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Pablo Barros1 • Özge Nilay Yalçın2 • Ana Tanevska1 • Alessandra Sciutti1

Received: 21 January 2022 / Accepted: 18 August 2022 / Published online: 11 November 2022
� The Author(s) 2022

Abstract
Recent advances in reinforcement learning with social agents have allowed such models to achieve human-level perfor-

mance on certain interaction tasks. However, most interactive scenarios do not have performance alone as an end-goal;

instead, the social impact of these agents when interacting with humans is as important and largely unexplored. In this

regard, this work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior. Our

proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate

the learning of artificial agents. To investigate our proposed model, we design an interactive game scenario, using the

Chef’s Hat Card Game, and examine how the rivalry modulation changes the agent’s playing style, and how this impacts

the experience of human players on the game. Our results show that humans can detect specific social characteristics when

playing against rival agents when compared to common agents, which affects directly the performance of the human

players in subsequent games. We conclude our work by discussing how the different social and objective features that

compose the artificial rivalry score contribute to our results.
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1 Introduction

The social aspects of interaction are usually overlooked

when optimizing an artificial agent through reinforcement

learning [1]. Most of the training loop is done in an offline

manner, or focuses on optimizing objective metrics that do

not directly involve social aspects, for instance by using

planners [2] or human annotation feedback [3]. Some

common success metrics in this regard involve solving the

task in fewer steps, reducing predicted values, or achieving

some predefined intermediate objective goals. When

interaction with humans is the main goal, these artificial

agents are evaluated mostly based on their objective per-

formance [2]. In the few examples where humans are

present in the loop, the success measures are mostly related

to the embodied interaction [4, 5], and not to the underlying

decision-making process that these agents learned.

One scenario where these problems are very evident is

competitive interaction. In a competitive game, an agent

can learn to adapt toward its opponents by using rein-

forcement learning [6], even when these opponents are

humans [7]. However, it is extremely difficult to measure

the social aspects of this interaction, without relying on

typical human–robot or human–computer interaction

schemes [8]. Although providing important insight on

some social aspects, these evaluations usually focus on

controlled lab-scenarios [9] and on the production of dif-

ferent robotic behaviors [10] and dialogues [11]. This in

turn neglects exploring how the agents’ various learning

strategies influence their explicit behaviors and their
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Özge Nilay Yalçın
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interaction with humans [12], despite it being one of their

most important characteristics. This can be evidenced even

in the new area of explainable reinforcement learning

[13, 14].

In this study, we address the problem of including social

aspects in the learning strategies of artificial agents in a

competitive scenario. We propose an objective human-

centered metric based on rivalry [15], to compose the

reward function of the agents. Rivalry is a subjective social

relationship arising between two actors, based on the

competitive characteristics of an individual, as well as the

increasing stakes and psychological involvement in the

situation [16]. We chose rivalry as it showcases the com-

peting relation between individuals, which often affects

their motivation and performance during gameplay

[16, 17]. We model rivalry as a function of objective fac-

tors (such as game performance) and subjective informa-

tion (such as certain personality traits and competitiveness

level), and evaluate our model using the Chef’s Hat Card

Game [18]

To obtain the social features of rivalry and map the

intrinsic personality traits arising from human perception

of learning agents, we run first an exploratory experiment

where human players face artificial agents implemented

using deep Q-learning (DQL) [19] and proximal policy

optimization (PPO) [20]. Both learning agents are imple-

menting COPPER [21], a continual learning adaptation for

Chef’s Hat agents. Using questionnaires, we collect how

these agents impact the human players in terms of com-

petitiveness, and how humans perceive the social charac-

teristics of these agents.

Using the compiled information from this experiment,

we measure how humans perceive such agents in terms of

rivalry. We then attach different social characteristics to

each artificial opponent and use them in a rivalry synthe-

sizing mechanism, to calculate the rivalry of an agent

toward an opponent. We then run two ablation studies to

develop a social characteristic predictor that will be used

by the agents both when perceiving their opponents, and

for finding the best manner to integrate rivalry in the

learning routines.

Finally, we run a second experiment, where each arti-

ficial agent synthesizes a rivalry score against human

players. By collecting the same information from ques-

tionnaires as in the first experiment, we can contrast the

impact of the rival agents on the game when compared with

non-rival agents.

Our results demonstrate that both learning agents are

perceived as different social agents when playing against a

human, in particular when compared with the random

agent. When the learning is modulated by the rivalry score,

we observe a strong contribution of rivalry on the perfor-

mance of the human players. We discuss these results in

terms of the contribution of the social and objective fea-

tures for the formation of the rivalry function, and how

they impact human perception. Ultimately, we detail how

the performance of each agent changes when using the

rivalry modulation.

2 Related work

Reinforcement learning has received ample attention in the

last years, in particular on the development of artificial

agents. However, understanding the social role and the

derived impact of social interaction within a learning

mechanism is not yet fully explored. In particular, in multi-

agent competitive scenarios, there is still a focus on per-

formance-based metrics, which make it difficult to sum-

marize, or even to verify, the social components which are

directly affected when these models are deployed in sce-

narios involving humans. In this section, we detail the most

relevant literature in this field, and the ones we based our

entire explorations on.

2.1 Reinforcement learning in competitive
games

In the late 1990s, several researchers tried to identify the

impact of the Deep Blue artificial chess player [22] on the

development of artificial intelligence [23, 24]. They all

argue that beyond the technical challenge of beating a

human, there is an underlying impact on how this agent

affects the opponents’ behavior during the entire interac-

tion. Over time, these investigations were let aside by the

mainstream community, which focused mostly on solving

more complex problems. This vision is reflected by the

recent development of deep reinforcement learning and the

research on training artificial agents to play competitive

games that have flourished since [25]. AlphaGo [26]

demonstrated that these agents can play competitively

against humans in very complex games. The recent

development of agents that play the StarCraft computer

game [7] pushes these boundaries even further. These

agents learn how to adapt to dynamic environments, how to

map hypercomplex states and actions, and how to learn

new strategies [27]. Most of the studies, however, focus on

the final goal of these agents: how to be competitive against

humans. As such, none of them focus on understanding the

impact that these agents have on human opponents.

2.2 DQL and PPO playing behavior on the Chef’s
Hat card game

In the same development wave, it was recently investigated

the design and development of reinforcement learning
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agents to play the four players Chef’s Hat competitive card

game [28]. These agents were based on deep Q-learning

(DQL) [19] and proximal policy optimization (PPO) [20],

and achieved success in learning how to win the game in

different tasks: playing against random agents, self-play,

and online adaptation toward the opponents. However, it

was observed that these agents present different behavior

during gameplay, while maintaining a similar objective

performance measured by overall wins over a series of

games. What has not yet been done is to measure the social

impact that such strategies can have when the agents play

against humans.

2.3 Human-centric analysis of RL

When analyzing the impact of artificial agents on humans,

there are now decades of studies focused on Human–Robot

[29] and Human–Computer [30] Interaction (HRI and HCI,

respectively). Social and affective computing research

suggests humans tend to treat computers as social actors,

[31] where attributes such as personality and emotions are

modeled to affect how these agents are perceived [32, 33].

In an interaction setting, these attributes can be used to

change the behavior of humans or improve interaction in

different contexts [34, 35]. In RL, most of these studies

however focus on optimizing RL agents to solve a specific

task, even social ones, without having much feedback on

the social aspects of the task as part of their learning

mechanism. Such agents are usually designed to learn an

expected outcome, such as improving engagement [4], or

imitating humans [6]. None of the most recent studies focus

on extracting the intrinsic behavior bias that different

learning schemes apply to the final agent.

2.4 Rivalry in cooperative and competitive
games

One way to explain the behavior of an agent as a factor of

its learning strategy is to measure its impact on humans. In

cooperative scenarios, there exist several social metrics

that take interaction into consideration [36, 37], but most of

them focus on the subjective impressions humans have of

the embodied interaction [38], the subjective quality of the

interaction [39], or the efficiency of the interaction to solve

a task [40].

In a competitive game however, one of the most infor-

mative metrics is the rivalry [15] between the human and

the agents. Rivalry is defined as a competitive relation

between individuals or groups, characterized by the sub-

jective importance placed upon competitive outcomes (i.e.,

win or lose) independent of the objective characteristics of

the situation (e.g., tangible stakes) [16, 17]. A proposed

theoretical model of rivalry suggests that antecedents of

rivalry are similarity factors, competitiveness, and relative

performance of the agents [16]. The presence of a rivalry

effect, in turn, affects the motivation of the individual and

their performance [17]. We aim to evaluate how different

agents affect the user’s perception and their performance

due to the increased competitiveness and rivalry effects.

In competitive games, rivalry is a central concept that

directly affects the opponent’s behavior through their

motivation in play. In human-to-human scenarios and

economics, a healthy rivalry is considered to be an

important factor that can positively affect the performance

of opponents, while in other situations, it can also con-

tribute to unnecessary risk-taking behavior [41].

In human-in-the-loop online learning scenarios for

competitive games, the absence of rivalry or competitive-

ness might result in the human opponent to lose motivation

to play the game and show sub-optimal performance during

gameplay. The agents who are learning actively from the

human are bound to learn from this bad performance input,

which in turn would result in sub-optimal learning. By

introducing the notion of rivalry, we expect to increase

motivation and engagement in the game and thus also the

user performances.

3 Proposing artificial rivalry

Our rivalry modulation acts directly on two types of agents:

a deep Q-learning (DQL) one and a proximal policy opti-

mization (PPO) one. Both agents were recently adapted and

optimized for the Chef’s Hat game through the COPPER

modulation [21]. COPPER introduces an opponent-specific

experience-prioritizing memory used to improve the con-

tinual learning capabilities of each agent when playing

against known opponents. We use these agents’ imple-

mentation as our artificial opponents, and apply the rivalry

modulation to their learning mechanism. It is important

that our agents continually update their playing strategy

when playing against the human opponents, so the rivalry

score is created and updated accordingly.

3.1 A Chef’s Hat agent

The DQL and PPO implementations of the agents were

chosen due to their success on learning different strategies

[28], and their good performance when playing against

human players [21]. Both agents are implemented as

COPPER-based agents, and are set to keep learning during

all of our experiments.

The Chef’s Hat game, illustrated in Fig. 1, is a multi-

player competitive card game. At the beginning of the

game, each player receives 17 cards, and the player that

discards all of them first wins the match. The entire rules of
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the game and the capability of agents to learn different

strategies were recently explored in different studies

[18, 21, 28]. The game state is composed of 28 values,

referring to the 17 possible cards each player has in their

hands, and 11 cards on the game board. The action space is

represented by 200 different discard actions an agent can

do, which reflects the complexity of the strategy formation

in this game.

3.1.1 Deep Q-learning

Our deep Q-learning (DQL) agent implements a Q function

as:

Q : SxA ! R ð1Þ

where S is the state, in our case represented by the 28

values composed by the cards at hand and the cards at the

board. The actions, A, are expressed using the 200 discrete

values for all the possible actions.

To update the Q-values, the algorithm uses the follow-

ing function:

Q0ðst; atÞ ¼ Qðs; aÞ þ a� TDð Þ ð2Þ

where t is the current step, a is a pre-defined learning rate

and TD is the temporal difference function, calculated as:

TD ¼ rt � c� maxQ stþ1;at

� �
� maxQ st1;at

� �
ð3Þ

where rt is the obtained reward for the state (st) and action

(at) association, c represents the discount factor, a modu-

lator that estimates the importance of the future rewards,

and maxQ st1;at
� �

is the estimate of Q-value for the next

state.

This agent also implements a target model, which is a

time-delayed policy which receives a snapshot of the

original policy after a certain number of training steps.

The target model is used to obtain the target Q learning

when calculating the updated TD:

TD ¼ rt � c� maxQ stþ1;at

� �
� maxQt st1;at

� �
ð4Þ

where maxQt st1;at
� �

is the Q-values obtained from the

target network.

3.1.2 PPO

Our proximal policy optimization (PPO) [20] agent

implements an actor-critic model:

Aðst; atÞ ¼ rt þ c� Vðs0Þ � VðsÞ ð5Þ

where V(s) represents the critic value for a given state, and

Vðs0Þ for the future state. The advantage function is used to

stabilize training the actor-network, while the critic net-

work uses the discounted rewards as the target.

The actor-critic base model is updated by implementing

adaptive penalty control, based on the Kullback–Leibler

divergence, to drive the updates of the agent at each

interaction. It showed to be important to learn different and

more optimized strategies [28], probably due to how this

method simplifies the necessity of having a large-memory

replay [42, 43].

3.2 COPPER

Both agents implement the COPPER modulator [21] that

expands the prioritize experience replay (PER). Traditional

PER can be expressed as:

Fig. 1 Illustration of the Chef’s

Hat card game environment

used for all our experiments.

Available at: https://github.com/

pablovin/ChefsHatGYM
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PER(i) is calculated based on the network’s loss after

calculating TD in a forward pass of the network (using an

input i):

PERðiÞ ¼ piaP
k p

k
a

ð6Þ

where a indicated how much we want to rely on the pri-

ority, p is the priority, and k the total number of saved

experiences. COPPER, on the other hand, introduces a new

opponent-specific term (o):

COPPERðiÞ ¼ o
piaP
k p

k
a

ð7Þ

In recent experiments, COPPER was shown to be much

more effective on learning new strategies against recurrent

opponents, in particular when playing against humans [21].

3.3 Modeling rivalry from a human perception

To optimally define the impact each agent has on the

players, we used a standard formalization of rivalry [16].

Rivalry can be defined as a subjective social relationship

arising between two actors based on the competitive

characteristics of an individual, as well as the increasing

stakes and psychological involvement in the situation.

Thus, a proposed theoretical model of rivalry, illustrated in

Fig. 2, suggests that antecedents of rivalry are similarity

factors (Sa), competitiveness (C), and relative performance

(P) of the agents [16].

Rivalry research suggests that individuals tend to eval-

uate their abilities by comparing their performance to

persons who have similar characteristics to themselves.

The similarity can be measured in demographics [16],

gender [44], personality [16], perceived traits [45] and rank

in competition [17] to assign social or behavioral attributes

to the other.

For this work, in addition to the ranking and perfor-

mance similarity, we included trait similarity as a factor

consisting of competence, agency, and communion traits as

the indicators of relevant behavioral attributes. These traits

are frequently used in social stereotypes research (e.g.,

gender, nationality, age, status) [46] and have been shown

to affect liking [47]. Moreover, social perception [48] has

been previously shown to affect competitive behavior [49].

Agency, competence, and communion traits have also been

used in virtual agent research to examine users’ judgments

of expected agent behavior [50]. These traits were chosen

as representative ones due to their comprehensibility,

which facilitates the self and other assessment [51]. We

collect the agency (ag), competence (ct), communion (cm),

and competitiveness (C) assessments of each of the agent

players, from a human perspective, through an exploratory

experiment. Once these values are calculated, we can

define a rivalry score as (Ra):

Sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðagh � agaÞ

2 þ ðcth � ctaÞ2 þ ðcmh � cmaÞ2
q

ð8Þ

C ¼Ch ð9Þ

Pa ¼ðpointsh � pointsaÞ=15 ð10Þ

Ra ¼ðSa þ Ch þ PaÞ=3 ð11Þ

where the index a defines one of the opponents, the index

h defines the human ratings about the social behavior of the

opponents, obtained in a prior human study. The individual

performance of each player is calculated by the Chef’s Hat

environment1 as the sum of the average score of each game

(given by the sum of the points in each round, divided by

the number of rounds in the game), divided by the total

number of played games.

The rivalry score (Ra) is used as our main evaluation

metric on how the agents impact the human players, thus

we expect it to change accordingly to the game develop-

ment. As the participants evaluate the entire game behavior

of an agent, and the only difference among artificial players

is the way they play the game, the measure of rivalry

reflects directly the user’s perception of the outcome of the

reinforcement learning strategies.

3.4 Rivalry as a learning modulator

Once rivalry can be defined from a human perspective, we

need to model it from an agent perspective, and use it as a

learning modulator. This will make the agents create a

rivalry sense against the other players, and most important,

will help the agents to develop a behavior that can make it

be identified by a human as a rival.

To achieve a rivalry modulator, we calculate rivalry in a

similar manner as we do from a human perspective. To

predict similarity, though, the agents used a similarity

predictor trained based on the humans’ responses collected

during our exploratory experiment. The agent-player sim-

ilarity predictor (praðhÞ) matches state þ action chosen by

humans (h) with the human-assessed competence, agency

and communion traits (aga, cta and cma), and it follows the

Fig. 2 The theoretical model of rivalry used for our new rivalry

metric proposition, based on the framework proposed by [16] 1 https://github.com/pablovin/ChefsHatGYM.
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survey scales used in virtual agent research in terms of

calculation of the scores for each trait [50].

Our similarity predictor was built as a multi-layer per-

ceptron (MLP) neural network mapping an interval of

action/spaces with a set of similarity scores. The similarity

predictor of each agent inferred during gameplay the traits

of each human the agents played against. Each type of

agent (DQL and PPO) also have a single set of traits

associated, derived from the human judgments provided in

the exploratory study. Thus, the similarity based on an

agent’s (a) perspective (Sh) is given as:

Sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpraðhÞ � ðaga; cta; cmaÞÞ2

q� �
ð12Þ

The performance measure of the agents was given by

their own assessment of their actions. To achieve this, each

agent computed the introspective confidence (ica) [52] of

each action, which focused on scaling the selected Q-value

of an action toward the final goal, using a logarithm

transformation which computes the probability of success.

In our case, this was the probability of winning the game.

The introspective confidence gives us a self-assessment of

the agent’s actions, based on its own game experience. We

use the introspective confidence as the agent’s

competitiveness:

Ca ¼
P

icaðactÞ
totalActions

ð13Þ

where act, is each of the actions the agent took during the

game.

The relative performance (Ph) is calculated similarly to

the human’s perspective but considers the agent’s per-

spective. Thus, the predicted rivalry (Rh) is defined as the

mean of the previous three factors:

Rh ¼ ðSh þ Ca þ PhÞ: ð14Þ

To guarantee the agent learns how to be a rival of an

opponent, we include the predicted rivalry (Rh) into the

final reward of the agent by a simple weighted average,

optimized in an ablation study described below.

4 Experimental setup

Our rivalry modulation is directly related to a very specific

reinforcement learning task: multi-agent competitive

interaction. In this regard, the Chef’s Hat Card game was

chosen as our primary investigation environment. As our

experiments involve a good mix of human-based studies

and artificial agents optimization, we separate them into

four categories: first, we perform our exploratory study to

understand how the PPO and DQL agents are perceived by

humans. Our second experiment uses the information

collected from the exploratory study to train and validate

the similarity predictor neural network. The third experi-

ment optimizes and evaluates the rivalry learning modu-

lator. And finally, we run a human-based study to identify

the impact of the rival agent on human perception.

4.1 Chef’s Hat environment

The Chef’s Hat environment is an OpenAI GYM-based

implementation of the Chef’s Hat card game2. It includes

all the rules and mechanics of the original game and can be

used to train and evaluate artificial agents. The game itself

is based on turns, and on each turn a player can do a discard

action or a pass action. For every match played, the players

gain points based on their finishing position, with the

winner gaining 3 points. A full game consists of several

matches until one of the players reaches 9 points.

Following our previous experiments with the Chef‘s Hat

environment, we use a global reward scheme that only

gives a full reward once the agent performs an action that

leads to it winning the game. We also start the game with

pre-trained agents, which learn how to play the game using

a self-play strategy [28] available through the Chef’s Hat

Player’s Club repository3.

To collect human data, and to allow humans to play

against the agents, we use the Chef’s Hat Online software4,

which is a browser-based interface for the Chef’s Hat

Environment and allows human players to participate in the

game.

4.2 Exploratory study: understanding the agents

In our first experiment, we perform an exploratory study

using the Chef‘s Hat Online environment. The goal of this

study is twofold: we want to understand and measure the

impact of each learning agent on the rivalry attribution.

Also, we collect the human attributions to these agents, and

use them to describe both agents socially, when synthe-

sizing rivalry.

For this study, we implement three agents, a DQL, a

PPO, both with COPPER, and a naive agent that only

performs random actions during the entire game. A human

plays a 9-points game against these agents, and we collect

the entire game status over the entire experiment, which

includes all players’ performance. We also run two ques-

tionnaires, one at the beginning of the game to collect the

human players’ self-assessment, and one by the end of the

game to investigate the participants’ perspective about the

agents.

2 https://github.com/pablovin/ChefsHatGYM.
3 https://github.com/pablovin/ChefsHatPlayersClub.
4 https://github.com/pablovin/ChefsHatOnline.
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In our questionnaire, we follow the standard traits

questions to measure competence, agency, and communion

[46]. In particular, we measure competence score as an

average of the scores of the items related to ambition,

courage, decisiveness, and aggressiveness; agency as an

average of intelligence, innovation, organization, and

compassion; and communion as an average of compassion,

affection, emotional response, and sensitiveness. Each of

these terms is represented with a Likert scale that varies

from 1 (Not at all) to 5 (Very).

We also asked humans to self-assess their competitive-

ness and the perceived competitiveness of each agent, once

the game was over. Each agent was only identifiable by one

of three names (Evan, Dylan and Frankie), in order to make

the entire evaluation based on their game behavior alone.

The questionnaires are available on our Appendix. In total,

28 different persons played the game.

Using the collected information, we calculate the rivalry

score from the human perspective for each agent. We then

proceed with a statistical test to identify the contribution of

each of the terms that compose rivalry (similarity, relative

performance and competitiveness).

4.3 Rivalry ablation: similarity predictor

The goal of this experiment is to achieve a reliable simi-

larity predictor, to be used by the agents. We implement it

as a fully-connected multi-layer perceptron (MLP) neural

network, that receives as input a sequence of pairs of action

and cards on board, and predicts a similarity label. We fine-

tune it and evaluate it using the data obtained from the

previous exploratory study.

To optimize this network we used a Tree-Parzen Opti-

mizer (Hyperopt [53]), and a cross-validation with 70% of

the collected data for training and 30% for testing. We

report the optimization search-space and the final archi-

tecture in the Appendix Section A.3. We calculate the

performance in terms of mean accuracy over 30 runs.

4.4 Rivalry ablation: rivalry learning modulator

To maximize the effect of the rivalry modulator in the

agent’s learning, but without losing the focus on winning

the game, we run an optimization study to find the best

weight when adding rivalry in the agent’s reward function.

Our rivalry score is defined in a way that it would increase

when an agent plays against itself, as the social behavior,

performance, and game strategy of the agents are the same.

So, we optimize the rival weight toward the reward by

maximizing the rival score while maintaining a similar

performance against each other.

We run 1000 simulation games, where an agent plays

against three other agents, among which one is another

instance of itself. During all the games, we add the rival

score weight as an updatable parameter of the network, and

optimize it toward the opponent that has the same imple-

mentation of the agent. We stop the training when the rival

score of both agents’ instances toward each other is max-

imized. We track the rivalry evolution over time, together

with the agents’ performance, to guarantee that the opti-

mization reaches a satisfactory state.

4.5 Rivalry impact: playing against humans

Once the rival agents are implemented, and we found the

optimal reward weight, we deploy them into the same

scenario as our first exploratory experiment. We repeat the

same settings, but now the human plays the game against a

rival agent, a non-rival COPPER agent that continues

learning and a non-rival agent that does not learn during the

game. In this experiment, as we are interested on the dif-

ferences within these agents, we only implemented a DQL-

based agent. The goal of this experiment is to verify the

impact of the rivalry in terms of perceived game play. We

collect the same data, using the same questionnaires, and

calculate the rivalry score of all the participants toward the

agents.

We then run statistical tests to identify the impact of the

rival agent in the game, in particular when compared to the

non-rival agents. This experiment aims to identify the

contribution of rivalry in terms of social perception, but

also on the final performance of the agents.

5 Results

5.1 Exploratory study

A total of 28 games were completed and were therefore

included in all subsequent evaluations in this experiment.

Of these games 13 were played in English, 14 in Por-

tuguese, and 1 in Italian. All of them, however, played

using the same Chef’s Hat Online platform, so following

the same game rules. Of the participants who played these

games, 54% were between the ages 31 and 50, 36%

reported to be between 18 and 30, 7% reported to be aged

over 50, and one participant chose not to disclose their age.

On average, each game was played for 3.34 matches

(SD = .47), with an average score of 2.25 (SD = .71). We

calculated the rivalry scores for each participant toward

each of the three agents, based on the proposed equations

(see Sect. 3.3), by using the Similarity, Competitiveness

and Performance measures.

Similarity scores were computed using Eq. 9 (see Sect.

3.3). An analysis of the results showed that agents were

rated as significantly different in terms of their overall
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similarity scores with participants (Friedman test:

v2 ¼ 6:82, df ¼ 2, p ¼ 0:033). Further analysis using

Durbin multiple comparisons [54] showed that the random

agent was perceived significantly different than the DQL

(p ¼ 0:009) agent. Moreover, there were significant dif-

ferences in the similarity scores for particular items in the

traits questionnaire, namely ‘‘Decisive’’ (Friedman test:

v2 ¼ 6:40, df ¼ 2, p ¼ 0:041) and ‘‘Innovative’’

(v2 ¼ 6:05, df ¼ 2, p ¼ 0:049) traits, and scores showed a

tendency to differ for ‘‘Creativity’’ (v2 ¼ 5:43, df ¼ 2,

p ¼ 0:066).

The relative performance scores stand of the three

agents showed significant difference (v2 ¼ 28:1, df ¼ 2,

p\0:001), where both the DQL (Durbin multiple com-

parisons, p\0:001) and PPO (p\0:001) agents were sig-

nificantly different from the random agent. No significant

difference was seen between the DQL and PPO agent

(p ¼ 0:23). Finally, we used the self-attributed values for

the competitiveness scores for all the users (M ¼ :89, SD =

.17). Rivalry scores calculated using these three measures

were significantly different among the agents (v2 ¼ 25,

df ¼ 2, p\0:001). Pairwise comparisons revealed that

both DQL (p\0:001) and PPO (p\0:001) agents were

significantly different than the random agent. No difference

was found between the DQL and PPO agents (p ¼ 0:791).

5.2 Similarity predictor

In our First Experiment, we collected a total of 16,000

action/cards on board pairs, and associated them with the

‘‘Decisive’’, ‘‘Innovative’’ and ‘‘Creative’’ labels self-

assessed (from humans), or given by (from the agents)

during the human data collection, using the average of

them as our final similarity score. We report the optimized

search-space and the final architecture in Table 1.

The final performance of the similarity predictor after

running 30 cross-validation routines, when trained with the

data collected from humans and agents, is 83% accuracy,

with a standard deviation of 0.5.

5.3 Rivalry learning modulator

After running 1000 games, the final optimized weighted

value for the reward is as follows:

R ¼ Ro þ 0:2 � Rh ð15Þ

where Ro is the original reward of the agent, and Rh is the

rivalry score. We also tracked the performance of the agent

over time. Without rivalry, when playing in the same set-

ting, a DQL agent obtained an average of 1.3 (game score),

with a standard deviation of 0.1. When the rivalry modu-

lation was used, the average wins stayed at 1.2, with a

standard deviation of 0.2.

5.4 Rivalry impact

In this experiment, a total of 25 games were completed.

From the final set of the completed games, 9 were played in

English, 9 in Portuguese, 3 in Spanish and 4 in Italian.

From the participants who played these games, 55%

reported to be aged between 31–50 and the remainder

reported to be between 18–30.

On average, the games were played for 3.65 matches

(SD = .48), and with an average human score of 3.06 (SD =

.68) which is significantly higher than the participants’

scores from Study 1 (tð46Þ ¼ �3:98, p\0:001). Similar to

the previous study, the rivalry scores for each participant

were calculated using the proposed equations in Sect. 3.3,

by using the Similarity, Competitiveness and Performance

measures.

An analysis of the similarity scores, computed using

Eq. 9 (see Sect. 3.3), showed that the agents were not rated

as significantly different in terms of their overall similarity

with participants (Friedman test: v2 ¼ 1:57, df ¼ 2,

p ¼ 0:457). The relative performance scores of the three

agents showed significant differences (v2 ¼ 23:7, df ¼ 2,

p\0:001), where Durbin–Conover multiple comparisons

test revealed that all agents performed significantly dif-

ferently than each other. Pairwise comparisons showed the

rival DQL agent performed the best, being significantly

better than both COPPER DQL (p ¼ 0:036) and offline

DQL agents (p\0:001). The COPPER DQL agent was

also significantly better (p\0:001) than the DQL agent.

Finally, the rivalry scores calculated using these two

measures and the self-attributed competitiveness scores of

the participants (M ¼ :79, SD = .18) were significantly

different among the agents (v2 ¼ 15:7, df ¼ 2, p\0:001).

Pairwise comparisons revealed that the rival DQL agent

had significantly higher rivalry scores compared to both the

COPPER DQL (p ¼ 0:036) and DQL (p\0:001) agents.

Further, the COPPER DQL agent had significantly higher

rivalry scores (p ¼ 0:009) than the DQL agent. However,

Table 1 Search space and final architecture, in bold, used to optimize

the similarity predictor

Parameter Search space

Concatenated actions [3,5,10, 15]

Number of layers [1,2,3]

Units per layer [16, 32, 64, 128, 256, 512, 1024]
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the participants’ motivation to play with agents were not

significantly different among different types of agents

(v2 ¼ 0:2133, df ¼ 2, p ¼ 0:9). Table 2 shows the values

for the relative performance and rivalry scores of the three

agents.

6 Discussions

In our study, we are mostly interested on how humans

perceive the impact of different learning strategies when

interacting with artificial agents. In particular, we evaluate

if we can modulate this perception in a controlled manner

using the rivalry term. Our experiments demonstrate that

we can indeed achieve such manipulation, although in a

limited manner. In this section, we discuss these findings in

more detail.

6.1 Are learning agents perceived as rivals?

Our experimental results provided insights to identify

whether agents trained with different RL strategies yield

distinct rivalry and whether including rivalry in the reward

function enable agents to modulate human’s response on a

rivalry scale. Our first exploratory study showed that agents

trained with DQL and PPO strategies yield distinct rivalry

if compared to a random agent when playing the Chef’s

Hat card game against humans, which confirms that their

capability of learning a strategy is indeed perceived by

humans. However, we failed to find a significant difference

between DQL and PPO agents, which mirrors the lack of

significant difference between their relative performances

and their scores for the ‘‘Decisive,’’ ‘‘Innovative’’ and

‘‘Creative’’ traits.

6.2 Agents optimization

When developing the agents, we needed to adapt them

toward using rivalry as a learning modulator. Our experi-

ments demonstrate that in our simulation environment, the

inclusion of the rivalry term does not affect the general

performance of the agent, and helps in changing their

underlying behavior. This behavior can be explicitly

demonstrated when a DQL rival agent plays a game against

a non-rival version of itself, a PPO agent and a random

agent. Figure 3, illustrates a match between a DQL agent,

with rivalry, a DQL agent without rivalry, a random agent,

and a PPO agent. We observe that the rivalry value

increases constantly for the DQL agent, as they share the

same strategy and social traits. Against the PPO agent, the

rivalry score increases at a different pace, which demon-

strates that the rival agent can detect the strategy of the

PPO agent, and associate a different social trait set to it. A

random agent however does not have a strategy, and the

rival score fluctuates for each action it takes as expected.

6.3 The role of rivalry in Chef’s Hat

Our last experiment, where we measure the impact of

rivalry, showed that agents trained with a predicted rivalry

as a part of their reward function can modulate human

responses on a rivalry scale, and in turn yield significantly

higher rivalry results. Moreover, the rivalry scores for the

rival, COPPER-based, and offline learning agents were all

significantly different from each other, with the rival agent

exhibiting the highest score. Similarly to the exploratory

study, these differences mirrored the relative performances

of the agents. The similarity results instead were not sig-

nificantly different for any of the agents. This suggests that

agents’ behaviors were not providing enough information

to be perceived as different in terms of their agency,

communion and competence traits.

Our experiments confirmed the importance of agent’s

performances to trigger a sense of rivalry. Moreover, the

agents learned to modulate their behavior enough to yield a

significantly higher rivalry. However, their performances

did not reach those of the participants, suggesting there is

still room for improvement.

The addition of rivalry and the better performances of

the agents seemed to increase the motivation of participants

to play better, as it can be seen in the increased average

scores from the first exploratory to the second one.

Although we cannot exclude that this might depend also on

a difference between the two players’ samples, such result

would be expected from rivalry literature [16]. We saw that

the significant difference in rivalry scores did not had a

significant effect on participants’ motivation to play with

different agents. Motivation to play again could be further

investigated by allowing participants to only play with one

type of agent in future studies. Another observation is that

the rival RL agents were not associated to different judg-

ments in terms of social traits such as agency, competence

or sense of communion, on which the similarity estimation

is based. This might be due to the scenario of the game,

where the agent’s behavior could be appreciated only from

its choices in the game. This point could be further

investigated in a study where agents have more indicators

Table 2 Relative performance and rivalry scores of the three agents

Agent type Performance (SD) Rivalry (SD)

Rival DQL 1.50 (.50) 0.44 (.08)

COPPER DQL 0.63 (.24) 0.35 (.08)

Offline DQL 0.41 (.32) 0.30 (.36)
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of social traits such as an embodiment, gestures or emo-

tional expressions.

However, even in such a socially impoverished setting,

the rival agent succeeded in triggering a higher rivalry in

the human participants, revealing the potentiality of intro-

ducing rivalry in social reinforcement learning research.

In comparison with the first human experiment, the

subjects of the second human experiment played slightly

more turns, but achieved a significantly higher average

score. This might be an indication that the rival agent made

the game more motivating, and more challenging.

Observing these characteristics from the behavior of each

agent alone is a strong indication that when adding explicit

social traits to the agent’s behavior, the rivalry modulation

could be a game-changer on social reinforcement learning

research.

7 Conclusion

In this work, we examined the inclusion of social aspects in

the learning strategies of reinforcement learning (RL)

agents in a competitive card game scenario. We proposed

the social metric of rivalry based on the background

research in social psychology, and trained RL agents with a

reward function that reflects this metric. The resulting

agents, trained with the rivalry metric, were successful in

yielding significantly different play styles, distinguishable

in terms of a main antecedent of rivalry: relative perfor-

mance. However, the similarity scores calculated based on

social traits—another main factor in rivalry—failed to

show differences. We plan to further address this issue in

future studies by equipping RL agents with distinguishable

social signals. Our results suggest that using social con-

cepts such as rivalry shows promise in training agents to

perform in human interaction contexts.

Appendix 1: Questionnaires

We used two questionnaires in our experiments. One

before the game start, to collect the self-assessment infor-

mation of the players, and one after the game finishes, to

identify the players’ perception of the agents. The trait

similarity questions consisting of competence (Questions 9

to 12), agency (Questions 5 to 8), and communion

(Questions 13 to 16) traits as the indicators of relevant

behavioral attributes, as used as indicators of stereotypical

traits [46] and previously used in virtual agent research

[50].

Pre-game questionnaire

1. Which was the nickname you choose?

2. What is your mother tongue?

3. How old are you?

• Less than 18 years old

• Between 18 and 30

• Between 31 and 50

• More than 50

• Do not want to disclose

4. How competitive you are when playing games?

5. How ambitious are you when playing games?

6. How courageous are you when playing games?

7. How decisive are you when playing games?

8. How aggressive are you when playing games?

9. How creative are you when playing games?

10. How Intelligent are you when playing games?

11. How innovative are you when playing games?

12. How organized are you when playing games?

13. How compassionate are you when playing games?

14. How affectionate are you when playing games?

15. How sensitive are you when playing games?

16. How emotional are you when playing games?

Fig. 3 Example of the rivalry

score calculation of a rival DQL

agent playing against a non-

rival DQL, a PPO and a

random-based agent
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17. How experienced are you with competitive card

games?

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

1(Not at

all)

2 3 4 5

(Very)

Post-game questionnaire

1. Which was the nickname you choose?

2. How competitive were your opponents?

3. How ambitious were your opponents?

4. How courageous were your opponents?

5. How decisive were your opponents?

6. How aggressive were your opponents?

7. How creative were your opponents?

8. How intelligent were your opponents?

9. How innovative were your opponents?

10. How organized were your opponents?

11. How compassionate were your opponents?

12. How affectionate were your opponents?

13. How sensitive were your opponents?

14. How emotional were your opponents?

15. Would you like to play with these opponents again?

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan
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1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

1(Not at

all)

2 3 4 5

(Very)

Dylan

Frankie

Evan

Yes No

Dylan

Frankie

Evan

Appendix 2: Similarity predictor
optimization

To optimize this network, we used a Tree-Parzen optimizer

(Hyperopt [53]) based on the search space defined in

Table 3.
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