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Abstract
Since 2020, novel coronavirus pneumonia has been spreading rapidly around the world, bringing tremendous pressure on

medical diagnosis and treatment for hospitals. Medical imaging methods, such as computed tomography (CT), play a

crucial role in diagnosing and treating COVID-19. A large number of CT images (with large volume) are produced during

the CT-based medical diagnosis. In such a situation, the diagnostic judgement by human eyes on the thousands of CT

images is inefficient and time-consuming. Recently, in order to improve diagnostic efficiency, the machine learning

technology is being widely used in computer-aided diagnosis and treatment systems (i.e., CT Imaging) to help doctors

perform accurate analysis and provide them with effective diagnostic decision support. In this paper, we comprehensively

review these frequently used machine learning methods applied in the CT Imaging Diagnosis for the COVID-19, discuss

the machine learning-based applications from the various kinds of aspects including the image acquisition and pre-

processing, image segmentation, quantitative analysis and diagnosis, and disease follow-up and prognosis. Moreover, we

also discuss the limitations of the up-to-date machine learning technology in the context of CT imaging computer-aided

diagnosis.
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1 Introduction

In December 2019, the first case of novel coronavirus

pneumonia (COVID-19) was confirmed in Wuhan, China,

which, nowadays, has spread rapidly worldwide and caused

a global outbreak due to its strong infectiousness and high

transmission rate [1]. The typical clinical symptoms of

COVID-19 include fever, cough and malaise, with a few

patients going upper respiratory and gastrointestinal

symptoms such as nasal congestion, runny nose and diar-

rhea. Severe cases may develop complications such as

acute respiratory distress syndrome, multi-organ failure,

and even life-threatening [2–4]. Virus detection is critical

for cutting off the transmission route, and the detection

method includes the reverse transcription polymerase chain

reaction (RT-PCR), i.e., nucleic acid testing. However, the

limitations of nucleic acid detection exist, such as accuracy

differences among manufacturers, poor sensitivity for
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patients with low viral load and difficulty in proper clinical

sampling [5]. These issues make nucleic acid testing time-

consuming and possibly false-negatives, which can easily

lead to missed diagnoses and repeated testing [6, 7]. With

the development of new medical imaging devices and

technologies, many tools have been applied for disease

diagnosis and evaluation, including X-ray, computed

tomography (CT), cone-beam CT, magnetic resonance

imaging, functional magnetic resonance imaging (MRI),

ultrasound imaging, and so on. Among them, X-ray and CT

are the two most commonly used diagnostic methods for

COVID-19 analysis. X-ray is convenient and fast, and the

examination cost is low. It can preliminatively determine

whether a lesion occurs in a part of the patient’s body, but

it is not easy to detect the specific details of early lesions,

and the accuracy is not high. In contrast, CT is more sen-

sitive and provides a clearer picture of microscopic lung

lesions that cannot be detected by X-ray. It can show

substantial lesions in COVID-19 patients, including ground

glass shadow areas (GGO), interlobular septal thickening,

prominent interlobular linens, and areas of consolidation

[8–10]. It can help detect suspected cases earlier and is a

highly effective method for COVID-19 detection. How-

ever, CT detection is prone to cross-infection, which

requires good protection [7, 11]. In Italy, the USA and

China, most cases of COVID-19 are identified by the

presenting features in CT images [12]. However, the

diagnostic accuracy of CT, with more than 300 images

generated in a single scan and a high reading workload,

depends to some extent on the experience and meticu-

lousness of the physician. During the outbreak of COVID-

19, thousands of CT images are produced while performing

CT detection, and the prolonged manual review of the films

is prone to misdiagnosis. Recently, the applications of

machine learning technology in the field of medical

imaging are increasing rapidly, which has dramatically

eased the workload of clinical physicians while improving

detection rate and diagnosis efficiency [13–15]. Especially,

it has shown good results in using CT images to assist in

lung disease analysis [16–20]. Machine learning techniques

are widely applied to problems such as classification,

detection, and segmentation in medical images. Computer-

aided CT imaging diagnosis and treatment systems are of

good detection sensitivity and automatic quantitative

analysis, e.g., InferRead CT Pneumonia System (http://

www.infervision.com/), Deepwise healthcare (www.deep

wise.com), etc.

Generally, the procedure of computer-aided CT imaging

diagnosis consists of (1) image acquisition and prepro-

cessing, (2) image segmentation, (3) quantitative analysis

and diagnosis, and (4) disease follow-up and prognosis. A

large number of works have been studied for each process,

such as Wang et al. [21] proposed an AI-assisted diagnosis

and treatment system that automatically analyzes CT

images and provides infection probabilities for rapid

detection of COVID-19. It includes data collection, medi-

cal image segmentation and diagnostic functions that can

save physicians about 30–40% of detection time. Shi et al.

[22] proposed a machine learning-based method to distin-

guish COVID-19 from community-acquired pneumonia,

which mainly includes steps such as image acquisition, pre-

processing of lung infection and visual field, and calcula-

tion of infection area size distribution. Savitha et al. [23]

proposed a fully automated computer-aided detection sys-

tem with the functions of image noise reduction segmen-

tation, feature extraction and selection, and lesion

diagnostic classification. It can identify and differentiate

subsolid nodules in the lungs shown in CT scans. Zhang

et al. [24] developed an AI system to diagnose patients

through lung lesion segmentation, accurate diagnosis of

pneumonia, evaluation of drug treatment effects, and

prognosis of critical diseases. Usually, the computer-aided

diagnosis system acquires CT images of the patient’s chest.

By importing these CT images, the system automatically

segments the right and left lungs, lobes, and lung segments

to identify inflammatory features and segment lesions in

the lungs. The volume of the segmented lesions in the

whole lung, the left and the right lung, and the corre-

sponding percentage of infection are counted to determine

whether the patient is infected with COVID-19.

2 ML-based CT imaging diagnosis

2.1 Image acquisition and preprocessing

The large volume of high-quality datasets, as the essentials

for the model training, are urgently needed for the auxiliary

diagnosis of COVID-19. Although some datasets are

already available to public, the time-consuming task of

labeling data, which usually takes 1–5 h for users to label

out the infected regions of CT images, makes these existing

public datasets very scarce compared to the data required

for training. The common datasets currently available are

shown in Table 1.

To improve the efficiency of data annotation, Shan et al.

[25] proposed an artificial in-the-loop strategy and VB-Net

semantic segmentation network model. The manual-in-the-

loop strategy groups the training data. Meanwhile, the

physician manually labels the smallest batch of CT data

and uses the batch to train the segmentation network as an

initial model to apply to the next dataset of infected

regions. Then, the physician manually corrects the seg-

mentation results and uses the corrected segmentation

results as new training data input to iteratively increase the

training dataset and builds the final VB-Net. Zhang et al.
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[25] proposed a deep domain adaptation method for diag-

nosing COVID-19 by transferring domain knowledge from

the well-labeled common pneumonia source domain to the

partially labeled COVID-19 target domain, minimizing

domain differences by aligning the feature distributions of

the two domains through adversarial learning and achiev-

ing 98.2% accuracy and 88.33% sensitivity using the

ResNetl8 model. Yan et al. [26] mined these abundant

retrospective medical data to build a large-scale lesion

image dataset -DeepLesion, a dataset with 32,735 lesions

in 32,120 CT slices from 10,594 studies of 4427 unique

patients. Zheng et al. [27] proposed a deep learning algo-

rithm to obtain strong detection performance without

labeling training for COVID-19 lesions. The algorithm

trains an unsupervised learning network to segment the

lung region and then determines whether the infection with

COVID-19 is present. The algorithm has great potential for

clinical application in the accurate and rapid diagnosis of

COVID-19, which is of important help to medical staff.

Although CT images are featured with higher image

resolution compared with other imaging methods, images

still need to be preprocessed before the segmentation.

Messay et al. [28] used down-sampling algorithm to pro-

vide approximate resolution compatibility between test and

training data before the segmentation of lung CT images. It

significantly improved the efficiency of image processing

and reduced the image noise. Local contrast enhancement

was performed on each down-sampled profile image of a

given case to improve image details. In order to avoid the

constant power additive noise (e.g., Gaussian noise) in CT

images hinders doctors’ diagnosis, Darmanayagam et al.

[29] used Adaptive Wiener filter for denoising. Consider-

ing that there are various types of noises in the CT image

processing, Chen et al. [30] used a median nonlinear filter

with a 3 9 3 window to eliminate the noises, which was

easy-to-obtain and was capable of keeping the image edge

clear. In order to remove the effect of contrast difference

caused by glare, noise and poor illumination conditions in

the process of image acquisition. Ashwin et al. [31] gen-

erated a low-frequency image by replacing the pixel value

with the median pixel value calculated on the 5 9 5 pixel

square area centered on the pixel position and enhanced the

CT image with the technology of limited contrast adaptive

histogram equalization (CLAHE). Al-Tarawneh et al. [32]

proposed a lung cancer detection technology, in which

Gabor filtering, automatic enhancement and fast Fourier

transform algorithm are used to preprocess lung CT images

to achieve the purpose of eliminating noise, pollution and

interference, respectively.

2.2 Image segmentation

Image pre-processing is an essential step for the computer-

aided CT Imaging diagnosis and treatment of COVID-19.

The presence of a large amount of non-essential informa-

tion in the initial CT images can affect the efficiency and

diagnostic accuracy of the system to some extent. There-

fore, removing interference, such as chest tissue and image

artifacts, and enhancing useful information are the main

goal in this step. Segmenting the region of interest (ROI) in

CT images through image processing can reduce the

computation of subsequent algorithms while segmenting

the lesion region can help track and observe the condition.

The infection rate can be calculated based on the size of the

infected region, which could assist in the follow-up of

diagnosis and treatment. Image segmentation is a hot topic

Table 1 Frequently used COVID-19 CT Dataset from Public Source

Name CT Images Source

COVID-CT Contain 349 COVID-19 CT images from 216 patients and 463 non-COVID-19

CTs

UCSD-AI4H

Mosmed COVID-19 CT Scans Contain 1000 anonymized human lung CT scans from a unique patient, include

COVID-19 related or unrelated findings

Morozov et al. [111]

COVID-19 CT Lung and

Infection Segmentation Dataset

Contain 20 labeled COVID-19 CT scans. Left lung, right lung, and infections are

labeled by two radiologists and verified by an experienced radiologist

Ma et al. [102]

COVID-19-CT-CXR Contain 1,327 CT and 263 CXR images (as of May 9, 2020) with their relevant

text

Peng et al. [112]

COVID-19 CT segmentation

dataset

Contain 100 axial CT images from 40 patients with COVID-19 segmented by a

radiologist using 3 labels

Johannes et al. [113]

3D CT scans of confirmed cases

of COVID-19

Contain 3D CT images of 10 confirmed COVID-19 cases shared for scientific

purposes

CORONACASES.ORG

COVID-19 Resource Imaging of UK patients with either confirmed or suspected COVID-19 for

reference and teaching

BSTI & cimar.co.uk
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in the field of computer vision. Traditional image seg-

mentation algorithms include threshold segmentation

algorithm [33], edge detection segmentation algorithm

[34], region segmentation algorithm [35], active contour

model segmentation method [36], and graph cutting

method [37], etc. These methods usually suffer from some

issues, such as low computing speed, high noise level, and

strongly influenced by subjective factors. In order to

improve the accuracy and applicability of image segmen-

tation, a large number of medical image segmentation

methods based on machine learning are proposed (Fig. 1).

In 2012, Alex Krizhevsky first proposed AlexNet, the

embryonic form of CNN [38], which completely adopted

the training mode of supervised learning and adopted Relu

activation function to accelerate the convergence rate.

Dropout strategy is introduced to alleviate the over-fitting

phenomenon in the training process. In 2014, Goodfellow

proposed the generative adversarial network (GAN) [39] to

complete the generation task under the condition of balance

between generator and discriminator with the strategy of

game training. In 2015, Evan Shelhamer et al. [40]

replaced the full connection layer with the convolutional

layer in CNN and proposed the full convolutional network

(FCN). In 2015, Ronneberger et al. [41] designed u-Net

network on the basis of FCN, which retained a large

number of feature channels in the up-sampling process, so

that more information could flow into the segmented image

eventually restored. In order to facilitate the processing of

3D medical images and meet the needs of accurate seg-

mentation of medical images, Milletari et al. [42] proposed

a 3D deformation V-NET in 2016, which uses 3D convo-

lution to check images for convolution operation. Zhou

et al. [43] proposed u-Net?? network in 2018. Its

advantage lies in the redesign of jump path and depth

supervision, which can achieve rapid and accurate

segmentation of lung region and promote the development

of computer-aided diagnosis of lung diseases to a certain

extent.

Chen et al. [44] proposed a U-Net ?? -based segmen-

tation model for identifying COVID-19 on patients’ chest

CT images. Firstly, the raw CT images were entered to the

model, which processed them and outputted the predicted

frames used to construct suspicious lesions. Then, valid

regions were extracted and invalid fields were removed to

avoid possible false positives. The CT images with the

predicted results were divided into four quadrants. The

results were output only when three consecutive images

were predicted to have lesions in the same quadrant. The

evaluated performance of the model achieved 95.2%

accuracy, 100% sensitivity and 93.6% specificity. With the

help of the model, radiologists’ reading time was reduced

by 65%.

In 2015, Chen et al. [45] combined the idea of deep

convolutional neural network (DCNN) and fully connected

conditional random field (CRF) to construct the DeepLab

model, which is capable of producing semantically accu-

rate predictions and detailed segmentation graphs with

computational efficiency. Based on the DeepLab, atrous

convolution is used as a powerful tool in dense prediction

tasks to reduce computational effort, it is a convolution

idea proposed to reduce image resolution and lose infor-

mation in image semantic segmentation. A spatial pyramid

pool (ASPP) is proposed to segment objects at multiple

scales, and finally, by combining DCNN and probabilistic

graphical models, the localization of object boundaries is

improved, and better semantic segmentation performance

is achieved [46]. In 2017, Chen et al. revisited the appli-

cation of atrous convolution in semantic image segmenta-

tion by designing cascaded or parallel atrous convolution

modules to solve multiscale object segmentation problems

Fig. 1 The evolutional structure of machine learning-based image processing algorithms
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and capturing multiscale contexts by employing multiple

atrous rates. The previously proposed spatial pyramid

pooling module is also extended to further improve the

performance [47]. Based on the network of DeepLab V3,

Chen et al. added a decoder network and proposed Dee-

pLab V3? . DeepLabv3? adds a decoder model to

DeepLabv3 and obtains an enhanced segmentation result,

especially for object edges. It introduces the Xception in

deep separable convolution and integrates the ASPP and

decoder models to improve the training speed and robust-

ness of encoder-decoder networks [48].

Alom et al. proposed the NABLA-N network in 2019 for

the dermoscopic image segmentation task. This model

ensures better feature representation for semantic seg-

mentation by combining low-level to high-level feature

maps, showing better quantitative and qualitative results

with the same or fewer network parameters [49]. In 2020,

Alom et al. applied the NABLA-N network to segment CT

and X-ray images of patients with COVID-19, delineating

the infected regions of the lungs [50].

In 2020, Guszt’av et al. [51] applied the U-Net archi-

tecture by adding Attention Gates (AGs) to improve the

accuracy of the segmentation model, focusing on important

local features and reducing the false positive rate by

reducing the features with low correlation. A lung region

segmentation network was designed using GAN and

Attention U-Net to achieve 97.5% Dice on the JSRT

dataset. Nabila et al. [52] proposed a generalized focal loss

function based on the Tversky exponent to solve the

problem of data imbalance in medical image segmentation.

They improved the Attention U-Net model by adding an

image pyramid to preserve contextual features and per-

formed experiments on the BUS2017 dataset and ISIC2018

dataset, which improved the segmentation accuracy by

25.7% and 3.6%, respectively, compared with the raw

U-Net.

Chen et al. [53] proposed a novel method for automatic

segmentation of infected regions in CT images of patients

with coronavirus pneumonia. The model is based on the

U-Net structure, using the residual network to improve the

segmentation of features, and constructing an efficient

attention mechanism in the decoding process to achieve

high-quality multi-class segmentation results and improve

the effectiveness of U-Net. The experimental results show

that the algorithm achieved an excellent performance in the

automated segmentation of chest CT images for the

COVID-19 patients.

Gozes et al. [54] developed an artificial intelligence-

based automated CT image analysis tool for the detection,

quantification and tracking of COVID-19. It was used to

segment the lungs to extract ROI, a Resnet-50-2D deep

convolutional neural network was used to detect novel

coronavirus-related abnormalities, and commercial soft-

ware was applied to analyze nodular or focal opacities in

3D space. Using the rapid evaluation of many CT images

in different ways, a 95% accuracy rate was achieved in

identifying COVID-19 in a public database in China. This

primitive study is now being expanded to a larger popu-

lation and could achieve high accuracy in COVID-19

detection as well as quantification and tracking of disease.

Rajinikanth et al. [55] propose an image-assisted system

for extracting infected slices from lung CT images, which

uses value filters to extract lung regions by eliminating

possible artifacts, image enhancement by Harmony-

Search-Optimization and Otsu thresholding. With the

completion of segmentation to extract infected regions, the

region of ROI is extracted from the binary image to assess

the severity. Finally, the features extracted from the ROI

are used to identify the pixel ratio between the lung and the

infected part to determine the severity of the infection.

Kuchana et al. [56] proposed a two-dimensional deep

learning framework with U-Net backbone for segmentation

to identify interstitial lung spaces and modified the

hyperparameters to improve the model’s performance and

reduce the training time. Two segmentation tasks were

performed using this framework: segmentation of lung

gaps from CT slices; and segmentation of abnormal regions

in chest CT scans associated with COVID-19, using

semantic segmentation of lung CT images acquired by

Kaggle and GitHub. Both segmentation tasks allow for

chest CT scan prediction and volume assessment to provide

statistical information on abnormalities associated with

COVID-19.

Cao et al. [57] proposed a method based on the longi-

tudinal progression of COVID-19 detection using deep

learning at the voxel level to segment lung cloudiness.

Different CT images from 10 positive cases of COVID-19

were used to predict manual segmentation. It uses a CNN-

based U-Net with manual segmentation of lung images as a

benchmark. The model was validated by analyzing the

comparative evolution of two confirmed cases of COVID-

19 in Wuhan.

Voulodimos et al. [58] proposed a deep learning-based

CT image semantic segmentation method for identifying

COVID-19 infected regions in patients’ CT images. The

comparasive results of U-Net and FCN models for CT

image segmentation showed that in the presence of data

imbalance on the dataset and human labeling errors on the

boundaries of symptom presentation regions, FCNN was

still able to provide accurate segmentation of symptom

regions, thus helping physicians to rapidly detect COVID-

19 symptoms (Table 2).

Neural Computing and Applications (2024) 36:181–199 185

123



2.3 ML-based COVID-19 diagnosis models

Computer-aided diagnostic tools are more mature in the

diagnosis of pulmonary nodules than in the COVID-19. In

2016, Arnaud et al. [59] proposed a novel computer-aided

detection system for pulmonary nodules using multi-

viewpoint convolutional networks (ConvNets) from train-

ing data automatically learned discriminative features with

a high detection sensitivity of 90.1% in 888 scans of the

publicly available LIDC-IDRI dataset. In the same year, He

et al. [15] proposed the residual network ResNet, which

explicitly reformulates the layers as a learned residual

function regarding the layer inputs. It is easier to optimize

and can obtain accuracy from greatly increased depth, with

only 3.57% error on the ImageNet test set. With this

improvement, the depth of the neural network has been

able to reach 152 layers. Jung et al. [60] achieved a com-

petitive performance index score of up to 0.91 using a 3D

deep convolutional neural network (3D DCNN) with

shortcut connections and a 3D DCNN with dense con-

nections to classify lung nodules in CT images. The system

successfully mitigated the gradient disappearance problem

using shortcut connectivity and dense connectivity by

allowing fast and direct passage of gradients. Features of

spherical nodules were captured more efficiently compared

to shallow 3D CNNs (Fig. 2).

2.3.1 Methods for identifying the positive patient

Alom et al. [50] proposed a novel multi-task deep learning-

based method for fast and efficient identification of

COVID-19 patients based on the NABLA-N network

segmentation model. It adopts the Inception Residual

Recurrent Convolutional Neural Network and Transfer

Learning (TL). The detection accuracy of this detection

model is about 84.67% for X-ray images and 98.78% for

CT images.

Mei et al. [61] combined chest CT presentation with

clinical symptoms, exposure history and laboratory tests to

rapidly diagnose positive COVID-19 patients. A deep

convolutional neural network was developed to understand

the imaging characteristics of patients with COVID-19.

Then, support vector machine (SVM), random forest, and

multilayer perceptron (MLP) classifier were used to clas-

sify the patients. Finally, a neural network model for

COVID-19 is developed to predict patient status by com-

bining predictive data and clinical information. The area

under the curve AUC was 0.92 with a sensitivity of 84.3%

when 279 patients were tested [61].

Wang et al. [21] compared widely used segmentation

models such as full convolutional networks (FCN-8s),

U-Net, V-Net, and 3D U-Net??, and advanced classifi-

cation models (such as ResNet-50, Inception networks,

DPN-92), and Attention ResNet-50. The ‘‘3D U-Net?? -

ResNet-50’’ combination model was selected to achieve an

optimal area under the curve AUC of 0.991, saving

physicians approximately 30–40% of detection time.

Zheng et al. [62] proposed a 3D deep convolutional

neural network (DeCoVNet) for detecting COVID-19 from

CT images. The process includes three phases: The first

phase is the network’s backbone, which consists of a nor-

mal 3D convolution, a batch specification layer and a

pooling layer; the second phase consists of two 3D residual

blocks (ResBlocks). In each block, a 3D feature map is

passed to a 3D convolution with a batch specification layer

and a shortcut connection containing the 3D convolution.

The generated feature maps are added in an elemental way;

the third stage is the progressive classifier (ProClf), con-

sisting of three 3D convolutional layers and a fully con-

nected layer (FC) containing the softmax activation

function. ProClf progressively extracts information from

CT images by 3D max-pooling and finally outputs the

probability of positive and negative COVID-19 directly.

However, in DeCoVNet, the network design and training

process needs to be improved on 3D segmentation

Table 2 Image processing methods

Image segmentation method Application

Threshold segmentation algorithm Helen et al. [33]

Edge detection segmentation algorithm Saad et al. [34]

Region segmentation algorithm Zhang et al. [114]

Active Contour Model Zhang et al. [36]

Graph Cut Linguraru et al. [37]

CNN Hinton et al. [115]

GAN Goodfellow et al. [39]

FCN Shelhamer et al. [40]

Voulodimos et al. [58]

U-Net Ronneberger [41]

Chen et al. [3]

Gozes et al. [54]

Kuchana et al. [56]

Voulodimos et al. [58]

Cao et al. [57]

Zheng et al. [27]

V-Net Milletari et al. [42]

U-Net?? Zhou et al. [43]

Chen et al. 3

DeepLab V1,V2, V3,V3?? Chen et al. [45, 48, 116]

rN-Net Alom et al. [49]

Attention U-Net Guszt’av et al. [51]

Abraham et al. [52]

Harmony-search-optimization&Otsu Rajinikanth et al. [55]
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networks and using accurate ground facts annotated by

experts. The generalizability of this approach should be

validated by using databases from different hospitals rather

than only one database.

Song et al. [63] constructed a new deep learning archi-

tecture DRENet. For a given CT image, a pre-trained

ResNet50 was first combined with an FPN network to

detect potential lesion regions at different scales. Based on

the detected regions, the local features of each region and

the relational features between regions are extracted again

using ResNet50. These features are then connected with the

global features extracted from the original images and fed

into multilayer perception (MLP) for image-level predic-

tion. Finally, the predictions of the patient’s CT images are

aggregated and used for individual-level diagnosis. The

model extracts the main lesion features, especially the

gross glass opacity (GGO), to visually aid the physician in

diagnosis.

Alshazly et al. [64] used a deep convolutional neural

network architecture for a comprehensive study of COVID-

19 detection based on CT images, exploring different CNN

models to obtain the best performance. A migration

learning technique is also proposed to provide the best

performance using inputs tailored for each deep architec-

ture. Using the t-SNE algorithm, the learning features were

analyzed and the results showed well-separated clusters of

non-COVID-19 and COVID-19 subjects. The obtained

network was also analyzed using the Grad-CAM algorithm

to obtain a high-resolution visualization showing abnormal

differentiated regions in CT images, achieving 92.2%

specificity, 93.7% sensitivity, 91.3% precision and 92.9%

average accuracy.

Mukherjee et al. [65] designed a convolutional neural

network CNN customized deep neural network DNN to test

and train both chest X-ray and CT images. The system had

a false negative rate value of 0.0208 and an AUC value of

0.9808, with an overall accuracy of 96.28%. In addition,

the authors achieved better results when integrating chest

X-ray and CT images to diagnose subjects with COVID-19

infection compared to conventional DNNs such as ResNet,

MobileNet and InceptionV3.

Li et al. [66] proposed a stacked autoencoder detector

model, which greatly improved the accuracy and recall of

the detection model. Four autoencoders are first con-

structed as the first four layers of the whole stacked

autoencoder detector model to extract better CT image

features. Then, the four autoencoders are cascaded together

and connected to the dense layer and softmax classifier to

form the model. Finally, a new classification loss function

is constructed by superimposing the reconstruction loss to

improve the detection accuracy of the model. The model

achieves an average accuracy of 94.7% and a recall of

94.1%.

Ardakani et al. [67] proposed a deep learning-based

computer-aided diagnosis and treatment system using

AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet,

Fig. 2 The ML-based diagnosis

models and their evolutional

structure
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MobileNet-V2, ResNet-18, ResNet-50 ResNet-101 and

Xception that were used to distinguish whether patients

were infected with COVID-19. The AUC of Xception was

0.994 (sensitivity, 98.04%; specificity, 100%; accuracy,

99.02%).

Han et al. [68] proposed an attention-based deep 3D

multiple instance learning (AD3D-MIL). AD3D-MIL can

semantically generate deep 3D instances after possible

infected regions and further apply the attention-based

pooling method to 3D instances to gain insight into the

contribution of each instance to the label. It is shown that

the algorithm achieves an overall accuracy of 97.9%, an

AUC of 99.0%, and a Cohen kappa score of 95.7%, which

can be an effective aid for COVID-19 screening.

Ko et al. [69] developed a fast-tracking COVID-19

classification network (FCONet) for diagnosing COVID-19

pneumonia based on a single chest CT image. FCONet was

developed by migration learning using one of four state-of-

the-art pre-trained deep learning models (VGG16, ResNet-

50, Inception-v3, or Xception) as the backbone, and

experimentally, ResNet-50 was shown to exhibit excellent

diagnostic performance (99.58% sensitivity, 100.00%

specificity, and 99.87% accuracy) and outperformed the

other three pre-trained models in the test dataset.

Mishra et al. [70] experimentally evaluated various

existing Deep CNN-based image classification methods

VGG16, InceptionV3, ResNet50, DenseNet12 and Dense-

Net201 for identifying COVID-19 positive cases in chest

CT images. A decision fusion-based approach combining

the prediction of each individual Deep CNN model to

improve the prediction performance is also proposed, and

the experimental results show that the method exceeds 86%

in all aspects of performance metrics while greatly reduc-

ing the number of false positives, which is highly practical

in real-world diagnostic scenarios.

Wu et al. [71] constructed a multi-view fusion model

based on a modification of the ResNet50 architecture, using

a three-view image set instead of the RGB three-channel

images in a typical ResNet50 as network input. The model

achieved better performance through single-view model

and subset analysis for initial screening of COVID-19 and

showed great potential in improving diagnostic efficiency

and reducing the workload of radiologists.

Jaiswal et al. [72] designed a novel deep migration

learning model for COVID-19 with the help of a convo-

lutional neural network and a pre-trained DenseNet201

model to diagnose whether a patient is infected or not. The

proposed model, its learning weights on the ImageNet

dataset, and convolutional neural structures were used to

extract features. The performance of the proposed deep

migratory learning model on chest CT images is evaluated

through extensive experiments and compared with VGG16,

ResNet152V2 and Inception-ResNetV2, the model

classifies chest CT images with 99.82%, 96.25% and

97.4% accuracy for training, testing and validation,

respectively, outperforming competing methods.

Yang et al. [73] developed a deep learning model based

on the densely connected convolutional network (Dense-

Net) to detect COVID-19 features on patients’ high-reso-

lution CT (HRCT) images. DenseNet is an improved CNN

that can extract both shallow and internal features of

images, showing excellent in ImageNet classification tasks

performance. Experiments show that the model achieves a

sensitivity of 97% and an accuracy of 92%, which is

similar to the level of young radiologists, but with much

higher detection efficiency.

2.3.2 Methods for distinguishing COVID-19 from other
types of pneumonia cases

Lin et al. [74] developed a 3D deep learning framework

COVID-19 for the robustness of detection. The COVNet

framework consists of ResNet50 as the backbone network,

using CT images as input and generating features for the

corresponding images; features extracted from all images

are merged using a maximum pooling operation; the final

feature maps are sent to fully connected layers and softmax

activation function to discriminate the probability scores of

patient types. The model achieves a high sensitivity of 90%

and a high specificity of 96% on an independent testing

dataset, can accurately detect coronavirus 2019 and dif-

ferentiate it from community-acquired pneumonia and

other lung conditions.

Kang et al. [24] used a 3D classification network

adapted from 3D ResNet-18 for patient diagnosis. The

network uses multiple 3D convolutional blocks with

residual connections to successively extract local and glo-

bal contextual features and calculate the final prediction

with a fully connected layer and a softmax activation

function. COVID-19 was distinguished from other com-

mon pneumonia as well as normal controls with 92.49%

accuracy, 94.93% sensitivity, 91.13% specificity and an

area of 0.9797 under the subject’s working features on an

internal validation dataset.

Cheng et al. [109] segmented lungs based on U-Net and

identified positive cases of COVID-19 using a slice diag-

nostic module with 2D ResNet152 as the backbone. The

parameters of ResNet152 were pre-trained on a consider-

able dataset, ImageNet. The output of the classification

network four scores indicates the confidence level of four

categories: non-pneumonia, community-acquired pneumo-

nia, influenza A/B, and COVID-19. The sensitivity and

specificity of the system for detecting COVID-19 were

0.8703 and 0.9660, respectively.

Xu et al. [75] proposed a method to automatically screen

CT images of COVID-19 by deep learning techniques that
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can be used to differentiate between healthy cases, influ-

enza A viral pneumonia IAVP, and COVID-19. A 3D deep

learning model is first used to isolate candidate infection

regions from the lung CT image set. These separated

images are then classified into COVID-19, influenza A

viral pneumonia IAVP and with confidence scores in the

healthy group using a location-attention classification

model. Finally, the type of infection and the overall con-

fidence score were calculated for each CT case using the

Noisy-OR Bayesian function, and the experimental results

showed that the model was able to achieve an overall

accuracy of 86.7% for detection.

Polsinelli et al. [76] proposed a lightweight convolu-

tional neural network CNN design based on the Squeeze-

Net model for the differentiation of CT images of patients

with COVID-19 from other community-acquired pneu-

monia or healthy CT images, which achieved 85.03%

accuracy, 87.55% sensitivity, 81.95% specificity, 85.01%

accuracy and 86.20% F1 score with accuracy comparable

to more complex CNN designs, 10 times more efficient

than more complex CNNs using pre-processing, and does

not require GPU acceleration and is less demanding on

equipment.

Shi et al. [22] proposed a machine learning method for

extracting specific features of COVID-19 based on the

infection size-aware random forest approach (iSARF),

which can be used to distinguish COVID-19 from com-

munity-acquired pneumonia in patient CT images, result-

ing in a sensitivity of 90.7%, specificity of 83.3%, and

accuracy of 87.9%. The system first uses a deep learning

model to subdivide CT images into pulmonary and infected

regions and then uses the generated predictive model to

design a set of manually crafted location-specific features.

Compared with models trained using CT-SS and radiomics

features as well as other classifiers, the method proposed by

Feng Shi et al. has excellent performance and is highly

scalable for both thin-section and thick-section CT images.

However, the system still suffers from insufficient data, a

lack of real-time CT images and differential diagnoses of

the severity and pneumonia subtypes.

Ozkaya et al. [77] proposed a new method for fusing and

ranking deep features to detect early-stage COVID-19. The

method obtained deep features by pre-training a convolu-

tional neural network CNN model and VGG-16, Google-

Net and ResNet-50 were used as pre-training networks. To

improve the performance, feature fusion and ranking

methods were applied, and then, the processed data were

classified using a support vector machine SVM. However,

the lack of a large database and the failure to distinguish

between common viral pneumonia and COVID-19 affected

the diagnostic capability of the method to some extent.

Wang et al. [78] analyzed CT images based on an initial

migration learning technique in which a GoogleNet

Inception V3 CNN predefined model was used for training.

The method was based on a retrospective multi-cohort

diagnostic study using a modified model for differentiating

COVID-19 from other common viral pneumonia. The

method achieved high sensitivities of 0.88 and 0.83 on

some internal and external CT image datasets, respectively,

but still suffers from low signal-to-noise ratios and com-

plex data integration, both of which pose challenges to its

efficacy.

Liu et al. [79] developed an automated and robust deep

learning model COVIDNet by directly analyzing 3D CT

images that can rapidly and accurately distinguish COVID-

19 from other pneumonia infections. COVIDNet is a

modified DenseNet-264 model consisting of four dense

blocks. Each dense block has a different number of com-

binatorial units. Each cell consists of two sequentially

connected stacks with an instance normalization layer25, a

ReLU activation layer, and a convolutional layer. Through

dense connections, it receives feature maps from all pre-

vious cells in the same dense block. The training batch size

is 8. An Adam optimizer26 with a learning rate of 0.001 is

used to minimize the binary cross-entropy loss.

Bai et al. [80] built and evaluated an AI system for

distinguishing COVID-19 from other common pneumonia

by chest CT images, using the EfficientNet B4 architecture

for the pneumonia classification task. They ultimately

achieved 96% test accuracy, 95% sensitivity and 96%

specificity, with results superior to those of general

radiologists.

Ouyang et al. [81] developed a 3D CNN network with

online attention improvement and a dual sampling strategy

(i.e., ‘‘Attention RN34 ?DS’’) for differentiating commu-

nity-acquired pneumonia from COVID-19 in chest CT

images. The results show that the algorithm has an AUC

value of 0.944, an accuracy of 87.5%, a sensitivity of

86.9%, a specificity of 90.1%, and an F1-score of 82.0%,

which is suitable for assisting physicians in diagnosing

COVID-19 in the early stages of the outbreak.

Wang et al. [82] proposed a framework to effectively

predict whether CT images contain pneumonia while dis-

tinguishing COVID-19 from interstitial lung disease (ILD)

caused by other viruses. Two 3D-ResNet-based branches

are integrated into a model framework for end-to-end

training by designing a prior attention residual learning

(PARL) module to localize lesion regions better. Experi-

mental results show that the proposed framework can sig-

nificantly improve the performance of COVID-19

screening and be extended to other similar clinical appli-

cations, such as computer-aided detection and diagnosis of

pulmonary nodules in CT images and glaucomatous lesions

in retinal fundus images.

Yan et al. [83] designed an AI system using a multiscale

convolutional neural network (MSCNN) and evaluated its
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performance at slice and scan levels. MSSP, MSCNN, and

data augmentation were used together to alleviate the

scarcity of training data to improve the diagnostic perfor-

mance of the AI system. The experimental results show

that the system has good diagnostic performance in

detecting COVID-19 and distinguishes it from other com-

mon pneumonia with a limited amount of training data,

which contributes significantly to help physicians make

rapid diagnoses and reduce their heavy workload.

2.3.3 Methods for COVID-19 severity classification

Guan et al. [84] classified 244 patients into three cate-

gories: (1) mild; (2) common and (3) severe. They used

semi-quantitative evaluation methods based on lobar and

segmental CT scores, opacity-weighted scores, and

quantitative evaluation methods for lesion volume to

quantify lung lesions. All four quantification methods

observed significantly higher lesion loads in the severe

type than in the common type, and the semi-quantitative

and quantitative methods had good reproducibility in the

measurement of inflammatory lesions and were able to

distinguish well between the common and severe

patients. The quantitative method has high specificity and

low sensitivity compared with the semi-quantitative

method, which is highly sensitive and suitable for severe

patients.

Tang et al. [85] proposed a random forest-based severity

assessment model for COVID-19 to achieve an accurate

severity assessment of COVID-19 using features from

different perspectives and to explore potential features

associated with the severity of COVID-19. The model

inputs patients’ chest CT image data and radiomic features

as well as laboratory indices of each patient to output the

severity of COVID-19 in patients. It is found that some

chest CT image features and laboratory indices are highly

correlated with the severity of COVID-19 and are valuable

for the clinical diagnosis of COVID-19. This is the first

work to assess the severity of COVID-19 using chest CT

images and laboratory indices.

Huang et al. [86] proposed the percentage pulmonary

turbidity (QCT-PLO) parameter by using an automated

deep learning approach to quantitatively assess lung load

changes in patients with COVID-19 disease using contin-

uous CT scans. The method was validated against data

from 126 patients, and the CT lung cloudiness percentage

was analyzed in 126 patients. It was observed that the

quantitative lung parameters could be used to show the

progression of COVID-19. However, their study still has

limitations such as insufficient data, systematic confirma-

tion that has not been proven to correlate directly with

pathologic impact.

Shen et al. [87] proposed a quantitative CT analysis

method for the severity stratification of COVID-19 suit-

able for the assessment of lesions, such as CT signs, con-

solidation of gross glass opacities (GGO), and significant

fibrosis of the disease. They found that the proportion of

solid lesions increased with the mean density of the lesion

and the proportion of GGO decreased with the mean den-

sity of the lesion. Limitations of the method include the

retrospective nature of the study, selection bias in cases of

severe COVID-19, small sample size, and bias in assess-

ment based on radiologist-defined CT scores. In the future,

their work may be improved by examining the correlation

between quantitative CT parameters and clinical symp-

toms, and laboratory clues will support clinical decision-

making.

Chaganti et al. [88] proposed a method to automati-

cally quantify gross glass shadows and solid lesion areas

in chest CT scans using a deep learning algorithm. Using

the patient’s chest CT as input, the lungs, lobes, and

lesion areas were segmented three-dimensional. The

percentage opacity (PO) and lung severity score (LSS)

were calculated to quantify the extent of infected lungs

and the distribution of infected lobes, respectively.

However, they did not assess other lung diseases,

including common pneumonia, making it difficult to

distinguish other diseases from COVID-19 and the

impact of this assessment process on the diagnostic

power of the algorithm.

Gozes et al. [89] proposed a weakly supervised deep

learning method based on chest images to detect, localize

and quantify the severity of COVID-19 manifestations

from patients’ chest CT images. The region of interest ROI

of the lung is first localized in the patient’s chest CT. The

second step classifies the lung ROI into normal and

abnormal using a 2D ROI classification network. A fine-

grained map of the pathological tissue is extracted using a

multiscale application of the GradCam method. Finally, in

order to understand the different patterns of abnormal

disease manifestations, unsupervised clustering of normal

and abnormal slices is proposed. However, the database of

this system was formed only on the normal and abnormal

regions of COVID-19, without classifying other viral types

of pneumonia, so this may lead to a false positive diagnosis

of COVID-19 cases.

Yu et al. [90] used four pre-trained deep models

(Inception-V3, ResNet-50, ResNet-101, DenseNet-201) to

extract features from CT images. They then fed these

features to multiple classifiers (linear discriminant, linear

SVM, cubic SVM, KNN, and Adaboost decision trees) to

detect severe and non-severe COVID-19 cases. Three

validation strategies (hold-validation, tenfold cross-vali-

dation, and leave-one-out method) were used to verify
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feasibility. The best performance was finally achieved by

DenseNet-201 with a cubic SVM model (Table 3).

2.4 ML-based COVID-19 disease prognosis

In addition to the determination of COVID-19, disease

prognosis are important in the management of COVID-19

treatment in order to monitor the progress of patients and

investigate potential sequelae after treatment. The studies

focused on disease prognosis are still limited.

2.4.1 Image-feature-oriented ML models

United Imaging Intelligence (UII) proposed machine

learning-based methods and visualization techniques to

verify changes in lesion size, density, and other clinically

relevant factors in infected areas of patients with COVID-

19 and then automatically generate diagnostic reports to

reflect these changes and provide theoretical references for

physicians to determine future treatment procedures. In

addition, the Perception Vision Company (PVmed) team

attempted to create a comparative model to reflect changes

in different CT images of the same patient by aligning the

infected areas and observing trends in these quantitative

values, providing a follow-up solution for COVID-19 [91].

Qi et al. [92] developed and tested a machine learning-

based CT radiomics model for predicting the length of stay

in patients with COVID-19. Lesion regions in CT images

were extracted using a U-net-based algorithm and fed into

two machine learning models, logistic regression and ran-

dom forest, which were trained and validated against each

other by using a multicenter cohort on a separate set of data

from the COVID-19 dataset. Their study has limitations

such as small sample diversity and semi-automatic lesion

segmentation that may lead to selection bias. A large

prospective multicenter cohort is needed to properly set up

and test the machine learning-based CT radiomics model.

Wang et al. [93] proposed a method for a fully auto-

mated deep learning system for diagnosis and prognostic

analysis of COVID-19 using CT images. The model uses a

DenseNet-like structure consisting of four dense blocks,

where each dense block is a multiple stack of convolution,

Table 3 Diagnosis models

Diagnosis model Application

ConvNets Setio et al. [59]

ResNet He et al. [15]

Xu et al. [75]

Lin et al. [74]

Kang et al. [24]

Cheng et al. [101]

Wang et al. [118]

Song et al. [63]

Mishra et al. [70]

Ardakani et al. [67]

Wang et al. [82]

Wu et al. [71]

3D DCNN Jung et al. [60]

VGG Ozkaya et al. [77]

Ardakani et al. [67]

Mishra et al. [70]

Xception Ardakani et al. [67]

Inception Mishra et al. [70]

Yu et al. [90]

EfficientNet B4 Bai et al. [80]

AD3D-MIL Han et al. [68]

Transfer Learning Alom et al. [49]

Wang et al. [82]

Ko et al. [69]

CNN Alom et al. [49]

Mei et al. [61]

Polsinelli et al. [76]

Ozkaya et al. [77]

Wang et al. [78]

Alshazly et al. [64]

Mukherjee et al. [65]

Ouyang et al. [81]

Yan et al. [83]

Jaiswal et al. [72]

Yang et al. [73]

DenseNet Yu et al. [90]

Li et al. [66]

Mishra et al. [70]

Jaiswal et al. [72]

Yang et al. [73]

Quantitative analysis&Semi-quantitative

analysis

Guan et al. [84]

Shen et al. [87]

Random forest method Tang et al. [85]

Shi et al. [22]

Stack Autocoder Li et al. [66]

DeCoVNet Zheng (UNET) et al.

[27]

Table 3 (continued)

Diagnosis model Application

QCT-PLO Huang et al. [86]

Location-Attention Xu et al. [75]

LSS&PO Chaganti [88]

Weakly supervised deep learning Gozes et al. [54]
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batch normalization, and ReLU activation layers. Dense

connections are used inside each dense block to consider

multiple layers of image information. A global averaging

pool is used at the end of the last convolutional layer to

generate 64-dimensional DL features. The final output

neuron is fully connected to the DL features to predict the

input patient’s probability of being infected with COVID-

19. The 64-dimensional DL features are combined with

clinical features such as age, gender, and concomitant

disease to construct a combined feature vector, and prog-

nostic features are selected using a stepwise approach.

These selected features were subsequently used to con-

struct a multivariate Cox proportional risk model [110] to

predict the length of hospital stay required for patients to

return to health.

2.4.2 Clinical-feature-oriented ML models

Jiang et al. [94] combined features such as lymphocyte

count, white blood cell count, body temperature, creatinine,

and hemoglobin to assess the probability of developing a

fatal complication, acute respiratory distress syndrome

ARDS, in patients with COVID-19. The system used

machine learning model types such as decision trees, ran-

dom forests, and support vector machines to achieve 80%

accuracy.

Yan et al. [95] developed a novel prognostic model for

coronavirus pneumonia based on the xGBoost (eXtrellle

Gmdient Boosting) algorithm, which identified three key

clinical features such as lactate dehydrogenase (LDH),

lymphocytes and high-sensitivity C-reactive protein (hs-

CRP) from more than 300 features for rapid prediction of

patient risk, with an accuracy rate of over 90%. Enables

detection, early intervention and potential reduction in

mortality in high-risk patients. Enables high-risk patients to

be prioritized for treatment and improves survival of

patients with COVID-19.

Assaf et al. [96] used three different machine learning

algorithms: neural networks, random forests, and classifi-

cation and regression decision trees (CRT) to predict

patient conditions changes. Significant differences were

found between critically ill and non-critically ill patients

with advanced COVID-19, mainly in vital signs (respira-

tory rate and room air oxygen saturation) and markers of

inflammation (blood leukocytes, neutrophil count and

CRP) and in APACHE II scores combining these markers.

Machine learning algorithms amplify these markers’

diagnostic accuracy and discriminatory efficacy, maxi-

mizing their use to predict the risk of developing the severe

disease in patients with COVID-19 over the course of

treatment.

Zhang Li et al. [97] developed a fully automated AI

system to quantify pulmonary abnormalities associated

with patients with COVID-19 and to assess disease severity

and disease progression using thick-layer chest CT images.

This study found that a deep learning model trained on a

multicenter community-acquired pneumonia CT dataset

could be directly applied to segment lung abnormalities in

patients with COVID-19; the fraction of infection (POI)

and mean infectious HU (iHU) in severe and non-severe

patients, with AUCs of 0.97 (95% CI 0.95, 0.98) and 0.69

(95% CI 0.63, 0.74), with a statistically significant differ-

ence (p value\ 0.001); the change in POI evaluation of

whole lung infections was in good agreement with the

radiologists’ reports.

Liang et al. [98] combined deep learning techniques

with traditional Cox models to perform a survival analysis

of nonlinear effects of clinical covariates to predict clinical

outcomes in patients with COVID-19. The C index and

AUC of this method were 0.894 (0.95 CI, 0.857–0.930) and

0.911 (0.95 CI, 0.875–0.945), respectively, on the model

validation set, demonstrating that this deep learning sur-

vival Cox model can efficiently classify patients with

COVID-19 for high-precision classification.

Iwendi et al. [99] proposed a fine-tuned random forest

model based on the AdaBoost algorithm. The model uses

the travel history, health status, and demographic data of

patients with COVID-19 to predict the severity of the

patients and the subsequent possible outcomes. On the

dataset used, the model had an accuracy of 94% and an F1

score of 0.86.

Abdulaal [100] et al. proposed an artificial neural net-

work ANN that can analyze a range of patient character-

istics, including demographics, comorbidities, lifestyle

factors, and presenting symptoms, to predict the risk of

death for patients during their current hospitalization.

These data can be collected during the patient’s initial

contact with the physician, thus allowing early prediction

of outcomes in order to inform clinical management

decisions as early as possible.

Cheng et al. [101] developed a new supervised machine

learning classifier that can use hospital EMR data to predict

the risk of transferring patients with COVID-19 to the ICU

within the next 24 h. The system applies a random forest

approach, is promising in analyzing multiple types of

complex clinical data, has high model generalization, and

can elucidate higher-order interactions between variables

without compromising prediction accuracy, facilitating

hospital planning and operational efficiency.

2.4.3 Clinical and image features mixed ML models

Zhang et al. [24] analyzed clinical data and radiological

features leading to the progression of critical illness and

developed AI-assisted models to estimate clinical progno-

sis. Systematically extracted quantitative pulmonary
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disease lesion characteristics and clinical parameters such

as age, serum albumin, and oxygen saturation were created

and applied to predict clinical outcomes from initial

admission to progression to critical illness (by death or

clinical need for mechanical ventilation or transfer to the

ICU). The model used an optical gradient elevator and a

Cox proportional risk regression model for prognosis pre-

diction. The results showed that pulmonary lesions and

clinical metadata could significantly predict prognosis. In

conclusion, the work examining the prognosis of disease

tracking in COVID-19 is still not very well established

compared to the work on disease determination. However,

with the continuous advancement of COVID-19 treatment

tools and machine learning techniques, it is believed that

more techniques and systems will be available for COVID-

19 disease tracking and prognosis.

Ma et al. [102] used machine learning methods random

forest and XGboost to analyze data on symptoms, com-

plications, demographics, vital signs, CT scan results, and

laboratory findings at the time of patient admission to

predict clinical characteristics of the risk of death in

patients with COVID-19.

Bai et al. [103] used a multilayer perceptron MLP and

LSTM to build an artificial intelligence model to predict

disease progression in mild patients with COVID-19 and

found that the complementary nature of clinical data and

quantitative chest CT sequences was important for pre-

dicting patient disease. The method can effectively and

accurately identify mild patients prone to deteriorate into

severe cases, which can help optimize treatment strategies,

reduce mortality, and alleviate medical stress (Table 4).

3 Limitations

3.1 Data issue while applying ML to CT imaging
diagnosis

Generally, the larger dataset a machine learning model uses

for training, the better the performance of the system will

achieve. However, although some datasets are publicly

available, the sample number of effectively labeled

COVID-19 CT images is still limited or they are of weak

quality, resulting in a lack of qualified large-scale dataset

for quantitative studies. Therefore, a database with a sys-

tematic review of submitted data is more conducive to

computer-aided diagnosis and treatment system than the

immediate release of data of weak quality as a public

database [104]. Due to the high cost of sign sample image

generation, the size of current sign libraries is around a

hundred to a thousand images. The criteria for generating

them vary among libraries and their coverage is limited.

For training robust visual feature classification models, the

samples are not sufficient, much less for the application of

deep learning algorithms.

The NABLA-N network proposed by Alom et al. [50]

was trained on only 300 samples in its initial version. The

system output showed some false positives due to the lack

of labeled samples for lung segmentation of CT images.

Training and testing with more samples are needed to

generalize and increase the accuracy of the model. The CT

image semantic segmentation approach proposed by

Voulodimos et al. [58] suffers from the data issues (such as

the poor availability and the imbalance), affecting the

complexity of the selection and topology of the classifi-

cation model. Lin et al. [74] developed a 3D deep learning

framework- COVNet, due to the lack of laboratory con-

firmation of the origin of pneumonia cases caused by other

types of viruses, such as non-influenza viruses, bacterial

pneumonia, and tissue pneumonia caused by any cause,

and the fact that the testing and training datasets were from

the same hospital, other viral pneumonia could not be

selected for comparison in this study. Cheng et al. [109]

proposed a 2D ResNet152 module that lacks more data on

other subtypes of lung disease and the diagnostic capability

of the system needs to be improved. The construction of a

large dataset containing relevant CT and clinical informa-

tion, especially for the underlying disease, would allow

additional analysis of the diagnostic system and the

development of more functionalities such as mortality

severity assessment.

Table 4 Disease prognosis applications

Prognosis method l Application

Decision Tree Jiang et al. [94]

Assaf et al. [96]

Random forests Jiang et al. [94]

Qi et al. [92]

Assaf et al. [96]

Iwendi et al. [99]

Ma et al.[102]

Cheng et al. [101]

SVM Jiang et al. [94]

xGBoost Yan et al. [83]

Ma et al. [102]

Logistic Regression Qi et al. [92]

Cox proportional hazards model Zhang et al. [24]

Wang et al. [82]

Liang et al. [98]

ANN Abdulaal et al. [100]

MLP Bai et al. [80]

Mei et al. [61]

LSTM Bai et al. [80]
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The small sample size is the main shortcoming of the

deep convolutional neural network developed by Mei

et al. [61]. Although the result of screening patients

using this model is promising, further data collection is

needed to test the model’s generalizability to other

patient groups. The ‘‘3D U-Net?? -ResNet-50’’ com-

bined model used by Wang et al. [21] relies too much

on fully annotated CT images and a large set of anno-

tated CT images, including lung contours, lesion regions

and classification, is needed to train the network. The

evaluation model proposed by Tang et al. [85] may lead

to overfitting problem in the training phase of the model

due to the few number of patients. The U-Net-based

model- DeCoVNet for lung segmentation in the 3D deep

convolutional neural network [62] did not utilize tem-

poral information, was trained using an imperfect

ground-truth mask and the data used in the study were

from a single hospital without cross-validation. The

number of model samples in the automatic screening

method proposed by Xu et al. [75] was limited. The

number of test samples should be expanded, and more

multiple-center clinical studies should be conducted to

improve the accuracy of the system, cope with complex

clinical situations, and improve the segmentation and

classification accuracy of the model. The GoogleNet

Inception V3 CNN predefined model used by Wang

et al. [78], with a low signal-to-noise ratio and complex

data integration, poses a challenge to its efficacy. The

performance of this system will increase when the

training volume increases. To optimize the diagnostic

system, a large database is needed to link it to all

pathological stages of disease progression and COVID-

19. DRENet proposed by Song et al. [63] could not

effectively address batch effects or make accurate pre-

dictions for other data sources due to insufficient training

data. The method works efficiently only on the original

data of the hospital dataset but could not directly predict

external data (i.e., not produced by the same hospital).

The COVID-19 classification network FCONet developed

by Ko et al. [69] was mainly validated using split-test

datasets. Therefore, the test dataset obtained from the

same source as the training dataset may trigger gener-

alization and overfitting problems. Yan et al. [83]

designed an AI system that worked properly on a test

dataset of 88 CT scans but still needed to be tested on a

large CT dataset to prove its generalization.

3.2 Clinic issues while applying ML to CT
imaging diagnosis

Computer-aided diagnosis and treatment system faces

many difficulties in clinical use. The structure of body

organs is complex, e.g., the lung has many branches. Its

internal structure shows polymorphism, and the grayscale

of various tissues on medical images is similar. There-

fore, the responses to various types of lung injuries can

easily overlap. There is also a great deal of overlap in

presenting many lung diseases that depend on factors,

e.g., age, drug reactions, immune status, and potential

complications. Clinical practice shows that the current

pneumonia auxiliary diagnosis system cannot accurately

recognize the main signs of pneumonia, such as grinded-

glass shadow, solid shadow, striated shadow, and lobular

septal thickening. Moreover, the clinical features of

COVID-19 and other common pneumonia (e.g., com-

munity-acquired pneumonia, histoplasmosis, and eosino-

philic pneumonia) are similar. The CT imaging

manifestations have some overlap and low differentia-

tion, which is easy to cause misdiagnosis and omission

in the clinical diagnosis.

COVNet, a 3D deep learning framework developed by

Lin et al. [74], is difficult to distinguish all lung diseases

only based on the imaging presentation of chest CT

scans. Given the non-specific nature of the grinded-glass

opacity and other features on chest CT images, the AI

model proposed by Mei et al. [61] has some limitations

in its ability to discriminate COVID-19 from other

causes of respiratory failure. Therefore, the algorithm

may be helpful in places with a high prevalence of

COVID-19, but may not work accurately in places or

times with low prevalence. Wang et al. [21] used a

combined ‘‘3D U-Net?? -ResNet-50’’ model that per-

formed poorly in multiple types of lesions or with sig-

nificant metallic or motion artifacts. Xu et al. [75]

proposed an automated screening method for CT images

of COVID-19 that could not distinguish COVID-19 from

other common pneumonia. The accuracy of the 3D CNN

network developed by Ouyang et al. [81] in identifying

COVID-19 infections in small regions was not satisfac-

tory. Therefore, the clinical diagnosis of COVID-19 still

requires the combination of CT images and other infor-

mation, such as the patient’s exposure history, travel

history and onset symptoms. The system designed to

automatically detect quantitative COVID-19 CT images

has difficulty in distinguishing COVID-19-associated

Abnormalities from other types of diseases such as

interstitial lung disease, non-solid pulmonary nodules and

heart failure [105]. Moreover, the presence of co-mor-

bidities may affect the segmentation and assessment of

CT imaging, and it usually requires additional procedures

to complete the task. In addition, these methods cannot

accurately detect tiny areas close to blood vessels or

very low-density pulmonary grinded-glass shadows. In

practice, clinical information or other tests should be

considered along with imaging findings to rule out false-

positive detection at the final diagnosis [107].
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3.3 Interpretability while applying ML to CT
imaging diagnosis

A common issue of all machine learning approaches is the

lack of transparency and interpretability [106], which could

potentially pose a severe threat and cause some constraints

in practical applications. Computer-assisted diagnosis and

treatment systems are usually used only as an auxiliary

tool, and a qualified assisted diagnosis and treatment sys-

tem must be transparent and interpretable to gain the trust

of the physicians and patients. A model that lacks inter-

pretability may lead to unreliable treatment solution for

patients and, in some cases, threatens patients’ life.

COVNet developed by Lin et al. [74] uses heat maps to

visualize important regions of the scan that lead to algo-

rithmic decisions. However, the heat maps are still not

sufficient to model which unique features will be used to

differentiate COVID-19 from community-acquired pneu-

monia. DeCoVNet [62] works in a black-box fashion in

diagnosing COVID-19, and its interpretability is still at an

early stage. In the 3D CNN network developed by Ouyang

et al. [81], although the proposed online attention module

can greatly improve the interpretability of COVID-19

diagnosis, but (the same as traditional methods, e.g., Grad-

CAM) it also needs to analyze the correlation between

these attentional localizations and specific imaging signs

commonly used in clinical diagnosis. A limitation of the

MSCNN by Yan et al. [83] using multiscale convolutional

neural networks comes from the black box: Although

attention maps aid interpretation by highlighting significant

regions, they are still insufficient to visualize the unique

features of CNN algorithms used to distinguish COVID-19

from community-acquired pneumonia (Table 5).

4 Conclusion

Although the research of machine learning applied to

medical diagnosis and treatment systems has achieved

significant advancement, the computer-aided diagnosis and

treatment systems based on CT imaging has not yet been

widely adopted in hospitals. There are still many issues that

need to be addressed. More high-quality datasets should be

collected and applied to improve the algorithm perfor-

mance. Machine learning methods such as weakly super-

vised, self-supervised, and deep migration can be used to

train samples and alleviate the problem of insufficient data.

In addition, clinical data, travel exposure history, can also

be taken into the diagnosis to make up for the shortage of

medical images. The interpretability has been an critical

issue while applying AI in health care industry, and it

ensures the impartiality of decision-making and promotes

system stability by highlighting potential adversarial per-

turbations that may alter predictions, ensuring the presence

of potentially true causal relationships in model inference.

Recently, a number of researchers have proposed inter-

pretable artificial intelligence (XAI), which is able to

achieve finer localization mapping than traditional class

activation mapping (CAM) while highlighting important

regions that are closely related to predicted outcomes. It

also can facilitate the use of AI-assisted diagnosis in clin-

ical practice and contribute to the trust and transparency of

AI systems, which are considered to be essential for AI to

continue steadily develop without disruption [107, 108].

CT imaging technology played an important role in the

diagnosis of COVID-19. This paper comprehensively dis-

cussed the applications of machine learning in aiding the

diagnosis and treatment of COVID-19 and analyzed

existing literature works published by global scholars in

data acquisition, image processing, disease diagnosis,

tracking prognosis, etc. The adoption of CT imaging

computer-aided diagnosis and treatment systems is limited

by the issues such as small sample size, the lack of detailed

application scenarios and quantitative assessment, the

unsatisfactory identification of the main signs of pneumo-

nia, and the low discrimination. In future, there is still

Table 5 The limitations Identified in Existing Literatures

Limitation References

Insufficient Data Alom et al. [49]

Voulodimos et al. [58]

Lin et al. [74]

Cheng et al. [101]

Mei et al. [61]

Wang et al. [82]

Tang et al. [85]

Zheng et al. [27]

Xu et al. [75]

Wang et al. [82]

Song et al. [63]

Ko et al. [69]

Yan et al. [83]

Clinical Application Lin et al. [74]

Mei et al. [61]

Wang et al. [82]

Xu et al. [75]

Ouyang et al. [81]

Pu et al. [105]

Interpretability Lin et al. [74]

Zheng et al. [27]

Ouyang et al. [81]

Yan et al. [83]

Xiao et al. y[106]
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tremendous space for developing datasets, comprehensive

diagnostic data, and interpretable artificial intelligence

methods. Establishing a faster and more accurate com-

puter-aided diagnosis and treatment system can better

assist doctors in detecting, diagnosing, and treating

COVID-19 and other diseases, improving the efficiency of

diagnosis and treatment and the cure rate, and has a broad

clinical application prospect.
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