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AbstractHuman interaction starts with a person approaching another one, respecting their personal space to prevent

uncomfortable feelings. Spatial behavior, called proxemics, allows defining an acceptable distance so that the interaction

process begins appropriately. In recent decades, human-agent interaction has been an area of interest for researchers, where

it is proposed that artificial agents naturally interact with people. Thus, new alternatives are needed to allow optimal

communication, avoiding humans feeling uncomfortable. Several works consider proxemic behavior with cognitive agents,

where human-robot interaction techniques and machine learning are implemented. However, it is assumed that the personal

space is fixed and known in advance, and the agent is only expected to make an optimal trajectory toward the person. In

this work, we focus on studying the behavior of a reinforcement learning agent in a proxemic-based environment.

Experiments were carried out implementing a grid-world problem and a continuous simulated robotic approaching

environment. These environments assume that there is an issuer agent that provides non-conformity information. Our

results suggest that the agent can identify regions where the issuer feels uncomfortable and find the best path to approach

the issuer. The results obtained highlight the usefulness of reinforcement learning in order to identify proxemic regions.

Keywords Cognitiveagents �Proxemics �Reinforcementlearning

1 Introduction

During a human interaction, people should feel comfort-

able when they perceive that other are approaching.

Therefore, the approaching person should respect the

intimate area. Proxemics is the study of spatial behavior,

concerned with territoriality, interpersonal distance, spatial

arrangements, crowding, and other aspects of the physical

environment that affect behavior. The term was coined by

Hall et al. [1]. He proposed a fixed measure of personal

space, a set of regions around a person to delimit the

acceptable distance to interact with other people.

In recent years, human-agent interaction has gathered

popularity in the scientific community [2]. Furthermore, the

humanization of agents is an expected event, given techno-

logical advances and human nature. Thus, optimal interac-

tion is necessary for both the agent and the person [3].

Reinforcement Learning (RL) is a learning paradigm that

tries to solve the problem of an agent interacting with the

environment to learn a desired task autonomously [4]. The

agent must sense a state from the environment and take

actions that affect it to reach a new state. The agent receives a

reward signal from the environment that they try to maxi-

mize throughout the learning for each action taken. The

agent takes actions from their own experience, or can be

guided by an external trainer that provides feedback [5, 6] .
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Proxemic behavior has been used in different areas with

cognitive agents. For example, human-robot interaction

studies how people behave in the presence of an artificial

agent or robot and how the agent perceives the personal

space [7, 8]. Moreover, machine learning has been used to

study how artificial agents sense the personal space of other

cognitive agents, and it has been used to identify and learn

personal space [9, 10]. These implementations consider

that the personal space is fixed and that the agent previ-

ously knows such space. However, these assumptions are

not necessarily accurate in real-world scenarios; personal

space is different for each person and unknown. Different

characteristics dynamically modify the personal space,

such as culture, family environment, the territory where

they live, and previous experiences, making proxemics’

identification more complex and requiring external infor-

mation to estimate it. In navigation tasks, RL agents learn a

policy to control their movement in space and move. In the

sense of approximation, they perceive the cognitive agent

as one more obstacle or a goal, so the distance relationship

is limited to that allowed by the agent to avoid colliding. In

this work, we study how a RL agent learns to approach

another cognitive agent in two proxemics-based environ-

ments. To address this problem, we implement Q-Learning

and advantage actor-critic (A2C) algorithms in a modified

grid-world and a simulated robot approaching problem,

respectively, where a cognitive agent, the issuer, gives

information to the learning agent. Our study is limited to

experiments with fixed initial values, i.e., the RL agent

remains in the same position at the beginning of each

episode. Also, cognitive agents and their personal space

remain fixed during training. However, we find that the

trajectories of an RL agent may be able to identify the

proxemic region of cognitive agents. Thus, the agent learns

a policy to move in an environment and finds a limit to

which to move.

This paper is organized as follows: In Sect. 2, we present

related works. Section 3 introduces the basics of RL,

Q-learning and advantage actor-critic. In Sect. 4, we

describe the environments with proxemic behavior in cog-

nitive agents, a modified grid-world and the robot

approaching based on ship steering. Experiments, results and

discussion are described in Sect. 5. Finally, Sect. 6 presents

the main conclusions and describes future research.

2 Related works

The interaction process is an animal and human character-

istic that allows the creation of social bonds for survival or

with a specific objective. This process generally has an

approach, action execution, and mutual response. However,

the mere approach is already an interaction in itself. The

execution is the act of approaching, and the response is how

the other reacts to the action of approaching. In nature, the

animals have a behavior based on the species and the crowd,

when each group of animals remain in a territory because of

the feed source or security [11, 12]. In the interaction pro-

cess, each human uses their personal space and perceives the

space of another being. The way how each human uses and

perceive depends on the experience of previous interactions

or contact [1]. It is clear that the experience is unique in the

sense that each human creates relations with other beings,

based on nature, beliefs, culture and society. These aspects

constitute a set of rules that allow an effective interaction

avoiding disagreement between the parties.

Including artificial agents in a human environment

humanizes these entities, in the sense that they have to

behave according to the rules that people build from their

experience. Figure 1 shows how the human-robot interac-

tion process is in the presence of proxemic behavior. The

interaction process includes the robot perception, where the

artificial agent perceives the reactions of the person, the

robot learning and robot performance, where the robot uses

human information to learn the task and perform it and,

finally, the human perception and reaction, where the

human reacts to the performed action by the agent.

2.1 How the human perceives an artificial
proxemic behavior?

It is essential to know how a person perceives the artificial

agent. Previous works have found that people tend to

maintain social aspects in environments that involve robots

or virtual agents [13]. For instance, Li et al. [14] has shown

Fig. 1 General process of interaction with proxemic behavior: Human

perception, Human reaction, Human response, Robot perception,

Learning, and approach (task)
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that humans maintained social distance in virtual envi-

ronments. In addition, people responded to the actions of

virtual agents and tried to remain at a comfortable distance.

Humans not only responded to the movement of other

cognitive agents, but they also needed another signal to

react according to their personal space. Another type of

interaction could change the personal space; for instance,

when the virtual agent made a wave, the human reacted and

modified their social space [15].

In social environments, humans maintain appropriate

distances between themselves. Furthermore, this behavior

is extended to virtual environments, where a human

maintains a relative distance according to the perception in

this environment [16]. Kastanis and Slater [17] investigated

how a learning agent could drive human participants to a

certain previously established position in a virtual space,

exploiting human proxemic behavior. In their work, a

reinforcement learning approach was used for a robot to

learn how to influence people to move to another position.

The authors concluded that the goal was affected by human

behavior. The agent learned to approach the participant

when they were too far and exploited the proxemics to

carry the person back to the goal position. Another case is

to use an action that maintains the attention of the human/

agent. For instance, Kastanis and Slater [17] used wave

action to get the participants’ attention when it was too far

from them. Millan et al. [18] used PING action to com-

municate with a learning agent and an informative issuer.

2.2 How do artificial agents identify non-verbal
aspects?

In non-verbal communication, there are different ways of

identifying social cues to predict discomfort, agreement,

attitude, or another behavioral trait of interest. Individually,

each non-verbal aspect gives some information about the

behavior of the human being. Ponce-Lopez et al. [19]

applied a non-invasive ambient intelligence framework for

analysis of non-verbal communication in conversation

settings. The learning was a binarized classification prob-

lem, where the authors used Adaboost, Support Vector

Machines (SVM), and two kinds of Artificial Neural Net-

works (ANN), in particular Cascade-Forward (CF) and

FeedForward neural networks (FF) [20, 21]. Another

approach to identifying nonverbal communication was

presented in [22]. The authors propose a computational

framework for nonverbal communication for human-robot

interaction, where a storyteller had to recognize attention

from a listener. The main objective was to recognize that

attention encodes social-emotional states through nonver-

bal behaviors.

Concerning proxemics, several works try to predict or

estimate the social space from humans. Different strategies

in the human-robot interaction area suggest extracting

information to construct this space out of the robot control.

For instance, personal space can be related to an uncom-

fortable level that indicates how much the agent discom-

forts the human. Generally, this discomfort level is

estimated based on information about the demography,

sociology, or psychology aspects from participants in a

study. For instance, Kosinski et al. [23] performed a study

with participants to obtain information about demographic

aspects. The study was performed in a robotic environ-

ment, where the participants stopped the robot when they

felt discomfort. The robot’s position from different angles

was captured and used to construct the comfort level.

On the other hand, machine learning is used to find

relationships between a person’s level of discomfort during

the interaction and personal information. Gao et al. [24]

used different deep learning neural networks architectures

to predict comfortable human-robot proxemics based on

the personal information obtained from each participant.

The authors drove the problem as a regression problem,

where the response was the numerical discomfort and the

regressors variables were the values of distance, angles,

and demographic aspects. Kosinski et al. [23] used a fuzzy

dataset-based model, to encode the study information

parametrizing rules to reflect user preferences in the sense

of personal space. Other approaches intend to exploit the

image information to estimate distance. This methodology

can carry several issues due to the camera, quality, and

configuration of images. Seker et al. [25] proposed a

benchmark to evaluate the social distance. For this, the

authors created a dataset with measured pair-wise social

distance under different camera positions. The authors used

YOLOv4 [26] and OpenPose [27] to detect and identify

skeletal points from the people.

2.3 How do artificial agents learn proxemic
behavior?

In environments that involve humans’ proxemic behavior,

an agent has to find the best path to reach a specific place

navigating among humans. The learning agent must be

socially aware that its movement cannot perturb human

activity [28, 29]. In general, the agent moves in the social

or public space, avoiding getting closer to the people.

However, several works show that the estimated paths

invade the personal space from proxemic theory [30].

These findings suggest that motion-based in proxemic

behavior has poorer performance than methods that imitate

human behavior. Nevertheless, the works do not consider

that humans’ proxemic behaviors can change based on

external factors or the situation, as in the navigation pro-

cess. Charalampous et al. [31] proposed a robot framework

to navigate in a human-populated environment. This
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approach considered that the robot exhibits socially

accepted behavior by considering the actions being per-

formed by individuals. The methodology was applied in

indoor areas and working environments, where people

gathered in groups of two or three, but not in a congested

environment. The robot navigated based on a known pre-

computed 3D metric map (constructed offline) during the

learning. The authors used a deep learning action recog-

nition with HTM, consequently, an SVM to classify each

action. Luber et al. [30] suggested a learning model from

observations of humans, i. e., the learning agent learned

through human relative motion behavior. The authors used

an unsupervised way to classify the relative motion pro-

totypes in the methodology. Also, they used a distance

function with an asymmetric Dynamic Time Warping

algorithm (DTW) to ensure that the motion sequences did

not differ in duration and relative speed. They showed that

their methodology can imitate human motion behavior, and

its performance was better than learning using the prox-

emic theory (Hall’s theory).

During navigation, it is expected that cognitive agents

tend to intrude the personal space, differently to the

interaction where this nearness is acceptable only for

people of great social acceptability as good friends or

family members. Luber et al. [30] used relative motion

prototypes (RMP) and showed that social acceptability or

comfort in humans is higher when the learning agent

exhibits the same behavior as a human. They used the

person orientation as a criterion to quantify and distinguish

what they defined here to be social context. Besides, they

compared Hall’s theory of proxemics and highlighted that

invading personal space appears frequent during naviga-

tion. However, the personal space was considered fixed,

and it reduced its size during the trajectory due to the social

situation. Feldmaier et al. [32] combined an emotion model

with the SLAM algorithm to allow the robot to give non-

verbal feedback to a user about the internal processes. The

learning agent explored the environment using the SLAM

algorithm while simultaneously appraising its current pro-

gress with emotions. The estimations of the SLAM were

used as input in an appraisal model to perform the Stimulus

Evaluation Checks (SECs) that were independent modules

in which the agent did its subjective assessment of the

situation based on personal needs, goals, and values. Then,

a categorization module was used to map the pleasure and

arousal space defined by Russell [33].

Other works consider the robot as part of a human

group, in the sense that the robot behaves similarly to the

individuals or behaves according to social rules. Fuse et al.

[34] proposes a robotic model that enables identifying the

robot’s position in a social people group. Furthermore, the

robot considered the change of personal space during the

navigation process. Also, they examined if a robot could

imitate the trajectory of humans. They used an RL

framework in their implementation, considering a value

function to the states and actions and a value function to

the distance. The latter function was used to learn the

agent’s physical distances and determine its physical

position. They concluded that the learning agent main-

tained a behavior like humans while it was approaching

them. In addition, a group of participants assessed the agent

trajectories and determined that they were similar to human

trajectories. The main goal of their work was that the

learning agent does not use trajectory demonstrations from

humans to imitate their behavior. Our work studies the

behavior of an agent in an environment with proxemic

behavior, where it learns trajectories that do not invade the

personal space of an issuer. Table 1 shows a comparison of

some works mentioned above and the objective of each

one.

In Silva and Romero [35], the authors proposed a frame-

work of sharing attention, where a learning agent was pro-

vided the capacity of joint attention with a human. Their

framework used a combination of relational reinforcement

learning (RRL) and recurrent neural network (RNN) with

state classification, the so-calledRLSSACTG.Themain idea

was to maintain the attention in a human based on gaze

behavior, changing the attention to an object when this

appeared, and backing to pay attention to the human. They

studied the framework’s performance in a simulated envi-

ronment, where a learning agent faced a human agent. They

compared the RL (Q-learning) approach, ETG algorithm

[36], and RLSSACTG. The obtained results showed that

architecture is a potential tool to control sociable robots.

Inverse reinforcement learning (InvRL) is commonly

used in navigation problems. The main idea is learning

from demonstration, where the agent tries to find the pat-

terns of experts based on their demonstration behavior.

This approach facilitates the agent to learn how to navigate

among people because it recognizes human behavior in

demonstrating paths [28]. InvRL is generally used to learn

the cost function associated with the path planning algo-

rithm or the navigation controller. InvRL shows better

results than the policy based on proxemic theory because

cost functions can be used in different human environments

[29].

3 Reinforcement learning framework

Reinforcement learning is a learning approach that

involves an autonomous agent learning from interactions

with its environment to achieve a goal [4]. The agent must

be able to learn from its own experience by selecting

actions that affect the environment, reaching situations that

allow it to complete the task. In this approach, the learning
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agent receives a numerical reward signal from the envi-

ronment it that attempts to maximize [37].

The agent and the environment interact at each time step

t ¼ 0; 1; 2; . . .. At each step, the learning agent receives a

representation of the state of the environment xt 2 X, and

of the action selected by the agent ut 2 UðxtÞ, where X is a

set of the all possibles states, and UðxtÞ is a set of the

actions available in the state xt. Eventually, as a result of

performing an action, the agent receives a scalar reward

rtþ1 2 R and reaches a new state xtþ1 [4]. Figure 2 shows

the diagram of the interaction between the agent and the

environment, in the context of RL.

At each time step, the agent relates states to probabilities

to select each possible action. These relations are called the

agent policy and denoted by pt, where ptðut j xtÞ is the

probability to select ut given the current state xt at time t.

The RL method specifies how the agent changes the policy

as a consequence of its experience. Thereby, the goal of the

reinforcement learning agent is to approximate a function

p : X � U �! ð0; 1Þ that maximizes the total amount of

reward it receives over the long run.

A value function represents an estimation of how good a

particular action from that state is in terms of future

expected reward [38]. The state-value function of x, under

all the actions, is the expected return of the discounted sum

starting in the state x and following a policy p. Formally,

we can define it by [4, 38]

VpðxÞ ¼ Ep

X1

k¼0
ckrtþkþ1 j xt ¼ x

" #
; ð1Þ

where Ep½�� denotes the expected value given that the agent

follows the policy1 p.

Similarly, it is defined as an action-value function as the

value of taking action u in the state x under the policy p.
Roughly speaking, it is the expected return starting from

state x, taking action u and following the policy p [4]

Qpðx; uÞ ¼ Ep

X1

k¼0
ckrtþkþ1 j xt ¼ x; ut ¼ u

" #
: ð2Þ

In addition, the value functions satisfy a recursive property.

The expression in (1) can be defined recursively in terms of

the so-called Bellman equation [39]. It is denoted as the

expected return in terms of the immediate reward and the

value of the next state, defined formally by

VpðxÞ ¼
X

U

pðu j xÞ
X

X

Pðx0 j x; uÞ
h
qðx; u; x0Þ

þ cVpðx0Þ
i
dx0du;

ð3Þ

where x is the current state, u is the selected action and x0 is
the new state reached by performing the action u in the

state x. The function Q(x, u) in (2) can also be defined

recursively in terms of the Bellman equation.

3.1 Q-learning

The Q-learning algorithm [40] is an off-policy method

based on TD learning. The one-step Q-learning is a simple

algorithm, in which the update of the value Qðxt; utÞ is
carried out using the value maxu2Uðxtþ1ÞQðxtþ1; utÞ. The

core of the algorithm is based on Bellman equation as a

simple value iteration update, using the weighted average

of the old value and the new information of state:

Qðxt; utÞ  Qðxt; utÞ þ a qtþ1
�

þc max
u2Uðxtþ1Þ

Qðxtþ1; utÞ � Qðxt; utÞ
�
;

ð4Þ

where a is the learning rate, and c is the discount factor.

The value of Qðxt; utÞ estimates the action-value after

applying action ut in state xt. The learned action-value

function, Q, directly approximates the optimal action-value

function Q�, independent of the policy being followed [4].

Fig. 2 Interaction between the agent and the environment in the

Reinforcement Learning context. Figure adapted from Sutton and

Barto’s book [4]

Table 1 Comparison of

different works and its methods

to estimate trajectories. Our

study shows that it is possible to

identify the issuer’s proxemic

region based on the agent’s

trajectories

Author Method Objective

Luber et al. [30] RMP þ Social context To reproduce human relative motion

Feldmaier et al. [32] SLAM þ Emotional model Generate emotional map by navigate

Fuse et al. [34] RL To learn physical distance

Our study RL To learn non-invasive trajectories

1 A summation or integrals define the expected value according to the

nature of the sets X and U.
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3.2 Advantage actor-critic

The advantage actor-critic (A2C) algorithm is an on-policy

method based on TD actor-critic that keeps a separate

memory structure to represent the policy, independent of

the value function [41]. The agent is separated into two

entities: the actor and the critic. The policy takes the role of

the actor, selecting actions in each iteration. The critic,

commonly a state-value function, evaluates or criticizes the

actions performed by the actor [42]. Figure 3 shows the

schematic structure of the general actor-critic algorithm.

In each iteration, the critic values each action through

TD error:

dt ¼ rtþ1 þ cVðxtþ1Þ � VðxtÞ: ð5Þ

Policy-gradient methods [43] are a methodology to

approximate functions in RL. These methods are the most

popular class of continuous action RL algorithms [44].

With this approach, a stochastic policy is approached

through an approximation function, independent of the

value function, with its parameters. A measure is used to

improve the performance of the policy and adjusts the

parameters.

In this context, the policy-gradient framework uses a

stochastic policy p, parametrized by a column vector of

weights t 2 RNa , for Na 2 Z. pðu j xÞ denotes the proba-

bility density for taking action u in the state x. The

objective function CðpÞ maps policies to scalar measure of

performance, defined by

CðpÞ ¼
Z

X

dpðxÞ
Z

U

ptðu j xÞQpðx; uÞdudx; ð6Þ

where dpðxÞ :¼
R
X

P1
t¼0 c

t�1Pðx j x0; uÞ is the stationary

distribution of the discounted states occupancy under p and

Qpðx; uÞ is the action value function. The basic idea of

policy-gradient methods is to adjust the parameter t of the
policy in the direction of the gradient rtCðpÞ:

ttþ1 � tt � atrtCðpÞ: ð7Þ

The fundamental result of these methods is the policy-

gradient theorem [43], which defines the gradient as

rtCðpÞ ¼
Z

X

dpðxÞ
Z

U

rtptðu j xÞQpðx; uÞdudx: ð8Þ

Let hh : X � U �! R be an approximation of the value

function Qpðx; uÞ with the parameter h 2 RNc , for Nc 2 Z,

so that it does not affect the unbiasedness of the policy-

gradient estimate. To find a close approximation of

Qpðx; uÞ by hhðx; uÞ, the parameter h must be found to

minimize the quadratic error of the approximation as

follows:

�pt ðx; uÞ ¼
1

2
Qpðx; uÞ � hhðx; uÞ½ �2: ð9Þ

The gradient of the quadratic error can be used to find an

optimal value of h. Considering the approximation of Qp

by hh, Eq. (8) is expressed as:

rtCðpÞ ¼
Z

X

dpðxÞ
Z

U

rtptðu j xÞhhðx; uÞdudx: ð10Þ

This approximation is acceptable if rhhhðx; uÞ ¼
rt log ptðu j xÞð Þ is satisfied.

Under this approach, the expected value of hh given

policy p is zero, indicating the value function has zero

mean in each state. The most convenient is to approximate

an advantage function Apðx; uÞ ¼ Qpðx; uÞ � VpðxÞ instead
of Qpðx; uÞ [45]. This implies that the approximation

function only represents the relative value of an action u in

some state x and not the absolute value of Qp [46]. The

value function VpðxÞ is a baseline in the advantage func-

tion, such that the variance of the policy-gradient is mini-

mized [47]. In other view, as

Qpðx; uÞ ¼ Ep rtþ1 þ Vpðxtþ1Þ j xt ¼ x; ut ¼ u;½ �; ð11Þ

then, according to Sutton and Barto [4]:

Apðx; uÞ ¼ Ep

h
rtþ1 þ Vpðxtþ1Þ � VpðxtÞð Þ j xt ¼ x; ut ¼ u;

i
;

ð12Þ

that is the expected value of the TD error (5). Thus, hh
would approximate a value function VpðxÞ, and the gradi-

ent in (10) takes the form of

rtCðpÞ ¼
Z

X

dpðxÞ
Z

U

rtptðu j xÞd̂tdudx

¼ Ep d̂trt log ptðu j xÞð Þ
h i

;

ð13Þ

Fig. 3 Schematic overview of an actor-critic algorithm. Taken from

Sutton and Barto’s book [4]
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where d̂t ¼ rtþ1 þ chhðxtþ1Þ � hhðtÞ, and hhðxÞ : X �! R

the function approximation of value function VpðxÞ.
In the context of A2C, let hhðxÞ ¼ VhðxÞ be the

approximate state value function from the critic. The

update from the value function is through h. The parameter

h is adjusted by the gradient of the quadratic error (9) as

follows:

htþ1 ¼ ht þ ahd̂trhVhtðxtÞ;

where ah [ 0 is a step-size parameter of the critic. It is

clear that the gradient of the quadratic error is the gradient

of the approximation scaled by the TD error. On the other

hand, the policy, that represents the actor, is updated based

on the gradient in (12) as follow:

ttþ1 ¼ tt þ atd̂trt log ptðu j xÞð Þ;

where at [ 0 is a step-size parameter of the actor.

4 Proxemics behavior in cognitive agents

In this section, we present different scenarios where agents

confront another artificial agent with a proxemic charac-

teristic. These scenarios are modifications of state-of-the-

art environments, mimicking a proxemics human scenario,

where cognitive agents give signals or react to the agent

behavior.

4.1 Proxemics grid-world problem

We propose a modified version of the discrete grid-world

problem [18]. In this environment, an issuer is placed on

one fixed state and is responsible for giving a signal of

disagreement when the learning agent is too close. Two

regions are defined around the issuer, the uncomfort-

able region and the target region. The uncomfortable re-

gion comprises the states that make up a square around the

issuer. In this environment, the uncomfortable region is

only an area of negative reward. Similarly, the target region

comprises the states that make up a square around the

uncomfortable region. Figure 4 shows the proxemics grid-

world domain with uncomfortable and target regions. A

new action, PING, is added to the four traditional ones (UP,

DOWN, LEFT, RIGHT). This action represents a com-

munication signal with the issuer, i.e., the approaching

agent sends a ping to ask the issuer if it is in the target

region.

The task finishes in three conditions:

• Condition C1: When the agent reaches the issuer.

• Condition C2: When the agent sends ping five times out

of the target region.

• Condition C3: When the agent sends ping in the target

region.

The reward function is defined as

q ¼ qissuer þ qgrid; ð14Þ

where qissuer is a numerical reward given by the issuer

when the agent performs the PING action, and qgrid is the

environment reward defined as

In our experiments, we use a 10� 12 grid-world, the issuer

is placed in (6, 8) and is fixed during the training. Each

agent starts the training in the superior left corner of the

grid (0, 0).

Fig. 4 Proxemics grid-world domain. A robot starts in an initial

position. The issuer is placed in a fixed position and has two regions,

the uncomfortable region (red) and the target region (blue) (color

figure online)

qgrid ¼

�1:0 if conditions C1 or C2

�0:8 if the agent reaches the uncomfortable region

�0:4 if the agent sends PING out of the target region

þ1:0 if condition C3

�0:1 if the agent reaches another state

8
>>>>>><

>>>>>>:

: ð15Þ
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4.2 Robot approaching problem

We present a robot approaching problem based on the ship

steering problem. This is an episodic problem [48, 49]

where a ship has to maneuver at a constant speed through a

gate placed in a fixed position. At each time t, the state of

the ship is given by its coordinate position x and y, ori-

entation h, and actual turning rate _h. The action is the

desired turning rate of the ship r. In each episode, the goal

is to learn a sequence of actions to get the ship through the

gate in the minimum amount of time.

Based on the mechanic of the ship steering, we propose

the robot approaching problem to include proxemic

behavior (see Fig. 5). In our environment, a robot replaces

the ship, that is the learning agent. The issuer replaces the

gate, giving the signal or information when the agent is too

close. Concerning the proxemic problem, the issuer, placed

in a fixed position, has an individual space that avoids the

robot hitting it.

To explore the behavior of the learning agent when the

issuer gives any information during the learning, we pro-

pose two modifications on our environment. These modi-

fications involve the personal space area and the direct

information given by the issuer.

4.2.1 Robot approaching in uncomfortable region

In this environment, two regions are defined around the

issuer, the uncomfortable and the target regions (similar to

the grid-world problem). The uncomfortable region is a

circle area of radius ru around the issuer that mimics the

intimate space of a person. The agent receives a negative

reward if it invades this region. The target region (or social

region) is a circle area of radius rT ðrT � ruÞ that contains
the uncomfortable region (two concentric regions). In our

implementation, the values of ru and rT are 10 and 20

meters, respectively. Figure 5 shows the robot approaching

domain with the uncomfortable and target regions.

Similarly to the grid-world problem, we add the prob-

ability of sending PING, due to the PING being a binary

action. Then, in each time step, the agent selects a two

dimensional action, the turning rate and the probability of

sending PING in this position.

In our experiments, we use the logit of the probability as

action:

logitðpÞ ¼ log
p

1� p

� �
: ð16Þ

The logit modifies the domain of the action, allowing that

the action concerning the PING has the same domain that

the turning rate. The task finishes under the next

conditions:

• Condition C1: When the agent is out of bounds.

• Condition C2: When the agent reaches the

uncomfortable region.

• Condition C3: When the agent sends PING in the target

region.

The reward function is defined as

q ¼

�100 if conditions C1 or C2

�4K if the agent sends PING out of target region

�1 if another state

0 if condition C3

8
>>><

>>>:
:

ð17Þ

where K ¼ dðAðx;yÞ; Iðx;yÞÞðx2I þ y2I Þ
�1

2, and dðAðx;yÞ; Iðx;yÞÞ is
the euclidean distance between the agent, in the position

ðxA; yAÞ, and the issuer, in the position ðxI ; yIÞ.

4.2.2 Robot approaching with disagreement area

In this environment, the field is divided in two areas, the

disagreement area and the agreement area. The disagree-

ment area is a circle area of radius rd with the center in the

issuer. This area is composed of two subregions, the dis-

agreement no stop region and the disagreement stop region.

In the former, the agent is free to move in everywhere, but

receives a negative reward in each step. In the latter, the

agents stop immediately when they reach there. The dis-

agreement area mimics the private area from a person when

a no intimate interaction occurs, i.e., when the two agents

(learning agent and issuer) should be too close to occur the

interaction. The disagreement stop region allows that the

agent does not reach too close to the issuer. In our

implementation, the value of rd is 20 meters, and the

Fig. 5 The robot approaching domain. A robot starts in an initial

position, direction and turning rate. The issuer is placed in a fixed

position and has two regions, the uncomfortable region (red) and the

target region (blue) (color figure online)
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disagreement stop region has a radius of 10 meters. Finally,

the agreement area includes the points outside of the dis-

agreement area. In this area, the issuer is indifferent to the

behavior of the learning agent, except when the agent

stops. Figure 6 shows the robot approaching domain with

disagreement areas, where blue is the agreement area, light

red is the disagreement no stop region and dark red is the

disagreement stop region.

With the aim at using the area as information to the

learning agent, we consider the area as a part of the state.

Then, at each time t, the state of robot is given by its

coordinate position x and y, orientation h, actual turning

rate _h, and the disagreement region d. Here, d ¼ 1 if the

robot is in the disagreement area, and d ¼ 0 if the robot is

in the agreement area. A new action, STOP, is added to the

turning rate one. This action decides whether to stop or not

the robot’s trajectory. Basically, the STOP action is the

decision of the agent if it stops or continues moving in the

environment. Similarly to the previous environment, we

use the logit of the probability of STOP (see expression

(15)) as action to maintain the same domain that the

turning rate.

It is clear that the task ends when the learning agent

selects STOP as action. However, there are other condi-

tions to finish the task:

• Condition C1: When the agent is out of bounds.

• Condition C2: When the agent reaches the disagree-

ment stop region.

• Condition C3: When the agent stops.

The reward function is defined as

q ¼

�100 if conditions C1 or C2

�qd if condition C3

�50 if the agent is on disagreement no stop region

�1 if another state

8
>>><

>>>:
;

ð18Þ

where qd ¼ 100KðdðAðx;yÞ; Iðx;yÞÞ � rdÞ, dðAðx;yÞ; Iðx;yÞÞ is the
euclidean distance between the agent (in the position

ðxA; yAÞ and the issuer (in the position ðxI ; yIÞ, and

K ¼ ðx2I þ y2I Þ
�1

2 if d ¼ 0

rd if d ¼ 1

(
: ð19Þ

The �qd value punishes the agent when it stops far away

from the issuer, and benefits the agent when it is too close

to the disagreement area. The K factor weighs the reward

based on which region the agent is in.

5 Experimental results

This section presents the results obtained and the discus-

sion of the research. To study the performance of the

agents, we observe the behavior of the maximum action-

value Q for the grid-world problem and the action-value Q

for each action. Furthermore, for the continuous scenarios

of the robot approaching problem, we study the behavior of

the obtained discounted reward and the trajectories of the

agents. We present a discussion about the behavior of the

agents and what is the influence of each feature from the

environment.

5.1 Grid-world problem

We perform the training of 100 agents with the Q-learning

algorithm [40] in the modified grid-world problem. Each

agent is trained during 10, 000 time-steps using the reward

function presented in (13). We use �-greedy as action

selection policy. We set the values of both � and the

learning rate a at 0.6 and the discount factor c at 0.9.

To study how the issuer influences the performance of

the learning agent, we consider three scenarios where the

issuer gives numerical information through the reward:

• Scenario S1: qissuer ¼ 0 in each PING action selection.

• Scenario S2: qissuer is a random value in ð�1; 1Þ.

Fig. 6 The robot approach domain with disagreement area. A robot

starts in the agreement area (blue) with an initial position, direction

and turning rate. The issuer is placed in a fixed position and has two

regions, the disagreement no stop region (light red) and the

disagreement stop region (dark red) (color figure online)
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• Scenario S3:

qissuer ¼ �
d1ðPagent;PissuerÞ
d1ðPstart;PissuerÞ

;

where d1ð�; �Þis the L1 distance, Pagent, and Pissuer, and

Pstart are the position on the grid from the agent, the

issuer and the start point. The factor qissuer indicates that
states further from the issuer have a low reward, and the

denominator standardizes it on (�1, 0).

Figure 7 shows the results of our experiments in the

three scenarios. In terms of maximum Q-value per time

step (Fig. 7a–c), there exists more variability when the

issuer gives random rewards. However, according to the

other scenarios, the maximum Q-value reaches values

around 1 in several time steps. On the other hand, when the

issuer gives rewards based on distance, the variability of

Q-values is minor.

The Q-values for each action are more focused on the

target region than on the other scenarios when the issuer

gives rewards based on distance (Fig. 7d–f). This is

expected due to the agent receiving additional information

on how to move through the grid.

Concerning the PING, the issuer reward highlights the

importance of giving PING in the target region, as shown

in Fig. 7g–i. The graph shows how the states of the target

region have only Q-values greater than zero. While with

the lack of information (Scenario S1), states outside the

target region have Q-values greater than zero.

5.2 Robot approaching problem

We study the performance of 20 learning agents in a

continuous domain with proxemic behavior. We analyze

the average collected discounted reward from a training

and validation phase. The training phase consists of 1000

steps per episode, where weights are updated every 10

steps. The validation phase consists of 1000 steps after

each episode, during these steps, the weights are not

updated. In our experiments, the field size is 150� 150, the

issuer is placed in (110, 110) and is fixed during the

training. The agents are trained using advantage actor-critic

(A2C) algorithm [41] for 10000 episodes, each one with

1000 time-steps. Each agent starts the training in the

coordinate (1, 1). We use a Gaussian distribution to select

random actions, with mean lðxtÞ depending on states. We

used a multilayer perceptron (MLP) as function approxi-

mation with a hidden layer for the actor and the critic, the

mean of distribution lðxtÞ and the value function QðxtÞ,
respectively. The approximation is carried out as follows:

• For the value function QðxtÞ, an MLP with a hidden

layer of 256 units, and an output layer with one unit is

used.

• For the mean lðxtÞ of the policy, an MLP with a hidden

layer of 256 units, and an output layer with two units

(the turning rate and the logit) is used.

The input layer depends on the environment, four units are

used for the robot approaching in uncomfortable region

problem, and five units for the robot approaching with

disagreement area problem. In both architectures, we apply

as activation function the hyperbolic tangent (tanh) in the

hidden layer, and in the output layer a linear activation.

The learning rate is empirically set at a ¼ 0:0007, the

discount factor c is set at 0.9, and the standard deviation

from policy at (1.5, 0.5), for turning rate and logit,

respectively. The values of the weights in the neural net-

work are randomly initialized from a uniform distribution

based on Xavier weight initialization [50].

5.2.1 Uncomfortable region

First, we study the behavior of the learning agent in the

robot approaching in uncomfortable region problem. Fig-

ure 8 shows the average discounted reward for 20 agents,

where the red line is the average during the training and the

blue line is the average during validation steps. We can

observe that after 4000 episodes, the average reward is

steady, however, after 6000 episodes, the average increases

and finds a higher steady point. This behavior suggested

that the weights of the value function QðxtÞ reach a local

minimum in these episodes.

To explore how the behavior of the trajectories is, we

empirically select the agent with the highest reward in the

validation phase. Figure 9 shows the trajectories of the

agent during the task. We compute these trajectories with

different start positions and orientations, and these only are

shown when the agent reaches the target region and sends

PING. Due to the fixed start position, the agent only learns

to reach the target region in some part of the coordinate

plane. However, the agent always finds the better way to

finish the task independently of the start orientation. On the

other hand, we observe that the agent always stops in the

frontier of the target position. This behavior is due to the

environment configuration, given that the agent stops

immediately when it sends PING in the target region.

Figure 10 shows the trajectories with the probability of

sending PING, where the blue region indicates a value of

probability closer to zero, and the red region shows a value

closer to one. We observe that the agent commences to

send PING when it is close to target region. This behavior

makes the space into two parts. In the first one, the agent

does not communicate with the issuer, and in the second
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one, the agent maintains a constant communication with

the issuer until the task has finished.

5.2.2 Disagreement area

Finally, we study the behavior of the learning agent in the

robot approaching in disagreement area problem. Figure 11

shows the average discounted reward for 20 agents. We can

observe that until 4000 episodes the average reward is

increasing. However, in episode 4000, there is a

breakpoint, where the average reward decreases but has a

growing tendency afterward. This behavior suggests that

the weights of the value function QðxtÞ could reach a dif-

ferent local minimum in these episodes.

Figure 12 shows the trajectories of the agent with

highest reward in the validation phase. These are shown

only when the agent selects the STOP action. Due to the

start position, the agent does not complete the task suc-

cessfully in some parts of the coordinate plane. We also

observe that with angles �p and � 3
4
p, the agent completes

Fig. 7 Results of our experiments in three scenarios. The first row (a–
c) shows the average of maximum Q-values per time step, the shaded

area is between the maximum and minimum Q values from 100

agents. The second row (d–f) shows the average of the final Q-value

for the actions UP, DOWN, LEFT, and RIGHT. The last row (g–
i) shows the average final Q-values for the PING action
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fewer successfully trajectories in comparison with other

angles. Another important aspect is that several trajectories

do not even reach the frontier of the disagreement area.

This performance can be explained by the STOP action.

Figure 13 shows the trajectories with the probability of

STOP. Similarly to the PING action, the STOP action

divides the coordinate plane into two big areas. In the first

one, the agent is free to move, and in the second one, the

agent is obligated to stop. The light red region is an

overestimate of disagreement areas. We empirically mark

this part of the field. In that section of the coordinate plane,

the agent decides to stop because of the high negative

reward, manifesting a conservative behavior by the agent.

5.3 Discussion

In the environments presented above, the agent can com-

plete the task successfully. However, there is a dependency

on the agent’s initial position that affects its performance in

areas far from that point. Also, the fixed position of the

issuer is an essential factor for agent learning, because the

agent could not perform well if the issuer moves through

space. On the other hand, the agent can identify the best

path to reach the region of interest, obtaining the highest

reward. Furthermore, the agent can identify those regions

where it can freely move without suffering punishment

(based on reward). In the grid-world problem, the Q-value

of the PING highlights those points with the highest

reward, which are also the points in the target region. In

continuous environments, with the help of PING and

STOP, we can see a division of the space that separates

areas where it is more likely to select these actions. These

regions are conservative because they move away from the

target region, implying that the agent prefers to stop rather

than invade that region. This situation is more evident in

the disagreement area, where the STOP high probability

area contains the disagree area (see Fig. 13, light red

covers up the circle), the latter being smaller than the

Fig. 8 Average collected discounted reward over 20 agents using

A2C in the robot approaching in uncomfortable region environment.

The red line is the collected reward during the training, and the blue

line is the collected reward during the validation phase

Fig. 9 Trajectories in the robot approach in uncomfortable region environment. The trajectories are computed from agent with the highest reward

in the validation phase in different start positions. Only success trajectories are shown
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former. Unlike the uncomfortable area, where the area of

the high probability of sending PING is larger than the

disagreement area. However, this is not surprising since the

agent sends PING with information communicated by the

issuer and not with the information perceived by the agent

(in the disagreement area, the agent has information on the

level of disagreement in its state).

6 Conclusions and future works

In this paper, we studied the agent performance in an

environment based on proxemic behavior. We imple-

mented a modified grid-world problem and the robot

approaching problem in two versions, uncomfortable re-

gion, and disagreement area. These environments consider

that an issuer agent gives information about its disagree-

ment level to an RL agent that performs a trajectory,

reaching the goal. Different regions around the issuer

mimic their personal space, which replaces the traditional

target of the agent. We implemented a Q-learning algo-

rithm for the grid-world problem and A2C for the robot

approaching problems. Our results show that the agent can

reach the target region or get close to the issuer, even

without giving information. Regarding the PING and

STOP action, the agent manages to select these actions in a

right place of the space, allowing the task to be performed

satisfactorily. However, the agent is conservative because

it performs these actions where the reward is not so high.

On the other hand, the agent can identify nonconformity

regions, even when it does not have information about

them. This aspect gives the possibility to overestimate the

personal space of the issuer (due to its conservative char-

acteristic). The environments represent simply the inter-

action of the agent and the issuer, which helps to explore

the behavior of the agent in an environment with proxemic

behavior. However, it is necessary to include other features

to approximate an environment with proxemic behavior

Fig. 10 Probability of sending PING in the robot approach in

uncomfortable region environment. Red points show probability

closer to one, and blue points show values closer to zero. The

trajectories are computed from agent with the highest reward in the

validation phase from different start positions. Only success trajec-

tories are shown

Fig. 11 Average collected discounted reward over 20 agents using

A2C in the robot approaching in disagreement area environment. The

red line is the collected reward during the training, and the blue line is

the collected reward during the validation phase
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accurately. For example, it is necessary for the personal

space to be variable and to depend on characteristics

expressed by the issuer, in addition to the agent positively

or negatively influencing the issuer to modify their

proxemics.

In future alignments, we explore identifying the prox-

emics region based on issuer information, such as gaze,

orientation, emotion, or other aspects. Also, we intend to

implement asymmetric proxemic regions to mimic human

proxemic behavior. In our experiments, the fixed start

position influences the trajectory performance and the

Fig. 12 Trajectories in the robot approach in disagreement area environment. The trajectories are computed from the agent with the highest

reward in the validation phase from different start positions. Only success trajectories are shown

Fig. 13 Probability of STOP in the robot approach in disagreement

area environment. Red points show probability closer to one, and blue

points show values closer to zero. The light red region shows an

overestimate of the disagreement area. The trajectories are computed

from the agent with the highest reward in the validation phase from

different start positions. Only success trajectories are shown
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agent’s capability to reach the target. Then, we intend to

implement no fixed proxemic region, considering that the

proxemic space changes by external factors. Finally, we

intend to study the agent performance in more complex

environments, involving other algorithms and techniques

of reinforcement learning and deep learning.
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