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Abstract
Human-to-machine (H2M) communication is an important evolution in the industrial internet of health things (IIoHT),

where many H2M interfaces are remotely interacting with industrial and medical assets. Lightweight protocols, such as

constrained application protocol (CoAP), have been widely utilised in transferring sensing data of medical devices to end-

users in smart satellite-based healthcare IIoT networks (SmartSat-IIoHT). However, such protocols are extensively

deployed without appropriate security configurations, making attackers’ mission easier for abusing these protocols to

launch advanced cyber threats. This paper, therefore, presents a new threat intelligence framework to examine and model

CoAP protocol’s attacks in these systems. We present a ransom denial of service (RDoS) as a new threat that would exploit

this protocol’s vulnerabilities. We propose many RDoS attack’s techniques to understand the attack indicators and analyse

their behaviour on systems. Moreover, we present a real-time discovery of attacks’ network behaviours using deep

learning. The experiment results demonstrate that this proposed discovery model obtains a better performance in revealing

RDoS than other conventional machine learning algorithms and accomplishing high fidelity of protecting SmartSat-IIoHT

networks.
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1 Introduction

The Industrial Internet of Thing (IIoT) is becoming a

critical part of healthcare systems and the medical world

(i.e. IIoHT) that scale from a closed cyber-physical control

loop (i.e. sensor, controller and actuator) to massive cross-

platform deployments of connected industrial and medical

systems, edge and cloud technologies connecting in real

time [1]. The emerging technology of IIoHT would be

connected using Smart Satellites (SmartSat) and new

communication protocols that enable flexible and rapid

connectivity between on-premise devices, humans, physi-

cal and medical assets [2, 3]. Humans usually interact with

and remotely control connected physical and medical

assets. They can use their mobile applications to apply the

recommended decisions directly to the connected devices,

read telemetry data from sensors and send commands to

actuators [4]. This is an example of human-to-machine

(H2M) messaging communication, where humans are

involved in the cyber-physical control loop to assert the

legitimate behaviour of these devices at the application

layer [5].

CoAP is one of the most common messaging protocols

that is broadly deployed as an H2M messaging channel in

SmartSat-IIoHT networks [6]. As a case study of smart

healthcare systems, doctors can read data of patients heart

rates on their smartphones from an implanted chip [7]. The
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human operators can read the temperature and humidity in

COVID-19 vaccines using mobile applications. The inter-

action between mobile human-machine interface devices

(e.g. smartphones and tablets) and critical physical assets

and medical devices has increased attack surfaces [8]. The

critical concern comes from the emerging messaging pro-

tocols such as CoAP, which are deployed without appro-

priate configurations and security mechanisms [9, 10].

Considering that humans are the weakest link in the

security chain, attackers can easily inject malware into

human’s (e.g. doctor, nurse, or operator) mobile devices to

exploit H2M messaging protocols (e.g. CoAP) and launch

advanced threats against endpoints [3, 8]. For example,

CoAP has been recently exploited for performing DDoS

attacks, and it is expected to be the most abused protocols

for such threats [11].

The integration of the recent information technology

(IT) (e.g. cloud, edge, mobile, satellites and current con-

nectivity protocols) with operational technology (OT)

(medical and physical assets) is an extremely difficult task

to entirely secure SmarSat-IIoHT networks. It is hard to

protect thousands of new communications and endpoints,

each of which with its features and firmware to update,

against every potential threat [3, 12]. This raises the need

for implementing a more effective and proactive security

approach such as threat intelligence (TI) [13, 14]. TI refers

to any evidence or event-based knowledge about potential

attacks that highlight the risk landscape [15]. It can be

described as a big picture of the attacker’s intention and

capability to target a specific asset that enables the orga-

nization (e.g. healthcare) to prepare this threat and defend

against it [16]. Understanding the potential threats and the

nature of attacks that would abuse these IIoHT protocols

(e.g. CoAP) and collecting data fundamentals associated

with these threats can enhance the security team’s situa-

tional awareness and develop efficient risk assessment

models.

Current TI solutions for SmartSat-IIoHT highly depend

on the intelligence related to traditional IT system attacks

and their indicators (e.g. malicious URL and blacklist IP)

and OT malware behaviour (e.g. Triton) against physical

assets [14, 17]. Unfortunately, this sort of TI is not suffi-

cient to provide holistic security. There is a need to keep up

with TI related to new and specific SmartSat-IIoHT attacks,

which can be associated with emerging protocols (e.g.

CoAP) and deployed devices [18]. The research in this area

is still in its early stages, and much effort is required. This

is highly needed for the CoAP protocol as it is extensively

used in operating critical healthcare applications without

any consideration for its security. Therefore, some research

focus on the CoAP protocol is required to protect the

healthcare systems against any potential attacks.

This paper proposes a new framework that describes the

RDoS-CoAP threat intelligence modelling. It elucidates

how the RDoS attack can exploit the CoAP protocol’s

weakness to affect the critical physical process in Smart-

Sat-IIoHT systems, discover its behaviour and indicators,

make the decision, and perform the appropriate actions to

prevent or mitigate this attack. Our paper is the first to

introduce a RDoS where attackers exploit the CoAP pro-

tocol to send multiple requests to the available resource for

affecting the server endpoint and threatening to organize a

huge DDoS attack in case of ransom is not paid. Consid-

ering the critical of the actions performed by physical and

medical assets (i.e. sensors), volumetric RDoS-CoAP

attacks could have more devastating consequences to the

whole system and human safety, making such a system

much easier profitable for attackers. The key contributions

of this paper thus as follows:

• We design a system architecture that illustrates the

implementation and integration of Smart Satellite and

IIoHT systems.

• We propose a new framework that describes the RDoS-

CoAP threat intelligence modelling. In this framework,

we introduce a Ransom Denial of Service (RDoS) threat

to exploits network vulnerabilities of COAP protocol. It

is worth noting that such an attack has not been

presented yet.

• We propose several attacker tactics, techniques and

procedures for performing RDoS-CoAP attacks.

• We discuss how the proposed and extracted TI can be

used to make decisions and actions to prioritize and

enrich defence mechanisms. We also highlight key

challenges with their implementation in SmartSat-

IIoHT networks.

• We propose an online discovery model using long

short-term memory (LSTM) to reveal such attacks and

protect the SmartSat-IIoHT networks.

The rest of the paper is organized as follows. Section 2

describes the background and related work. Section 3

describes our proposed framework and the testbed archi-

tecture. Our proposed intelligence-driven threat discovery

model is introduced in Sect. 4. Section 5 presents experi-

mental results and discussions of TI and discover models.

Lastly, the conclusion and future work are presented in

Sect. 6.

2 Background and related work

2.1 Smart satellites-based healthcare systems

Satellites play today a critical role as an alternative for the

cellular network in connecting remote IIoT devices in any
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sector. They are a solution for the fragmented regulations

and enhancing global connectivity in low-power wide-area

(LPWA) networks for supporting long-range, low-bit rate

and low-power of different IIoT devices [13, 19]. They

have unique traits in linking IIoT devices and assets, pro-

viding truly all-embracing coverage to reach items with or

without limited access to terrestrial or cellular networks.

This sort of communication is highly reliable where the

proper satellite constellation provides more than 99%

availability (much higher than the cellular network), and a

consistent service across the coverage area [19]. In

SmartSat-IIoHT systems, as described in Fig. 1, satellite is

integrating with deployed devices and systems to facilitate

earth’s long-range digital communication in different

aspects of healthcare.

A satellite can support hospitalization, surgery, pre-

hospitalization care, nursing, telemedicine and remote

health monitoring. It receives signals from IIoHT sensors

deployed in rural areas, mountains, peaks, oceans and other

places where communication cannot reach easily, amplifies

and enhance these signals and then sends them back to the

earth. As healthcare systems operate critical services, they

require dependable, high-throughput and low latency con-

nections. These requirements can be achieved by using and

deploying appropriate satellites [19]. For example, satel-

lites that operate close to the earth, such as Low Earth Orbit

(LEO) and Highly Elliptical(HEO), are the best candidates

as they are light and provide low path loss and latency [20].

They can be integrated with wide body area network

(WBAN), which operates inside the body and within a

limited range, to collect the data and send it to the cloud or

remote healthcare providers. High throughput satellites

(HTS) are also integrated with healthcare systems to

increase the speed and capacity of LEO and HEO satellite

constellations as they utilize spot beams and high-fre-

quency bands and reuse [19].

The adoption of satellite in the healthcare industry has

recently been accelerated by the increasing prevalence of

chronic and contagious diseases. Particularly, the abrupt

emergence of the CoVID-19 pandemic threw a significant

burden on the organisation and provided health and social

services, especially in isolated regions with weak internet

connectivity. This virus’s unregulated spread often affected

the mental and physical of the elderly and vulnerable

people because of the virus and the imposition of physical

distances. SmartSat is presented as a solution to deal with

pandemic and mitigate the impact of COVID on mental

and physical issues to the people in rural area or regions

without cellular or internet connectivity [21]. It can support

the immunisation programming by assisting with health

resource mapping, population estimation, immunisation

services microplanning, modelling regional accessibility to

health services, disease tracking, campaign monitoring and

modelling vaccine coverage [19, 21].

For example, in SmartSat-IIoHT systems, a tele-health

service is used in remote sites to connect health experts to

others via satellite communications, or to patients any-

where in the world (e.g. rural area) [13]. Moreover, maps

can be compiled with satellite Earth observations (EO) and

global satellite positions to produce geospatial data. Typi-

cally, these satellite data are incorporated into the geo-

graphical information system to visualise these data or to

conduct advanced spatial assessments using other land

characteristics (such as highways, buildings and

Fig. 1 Smart satellite IIoHT systems
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landmarks), and populations (such as how many people

there live in a given area) in smart city [21]. SmartSat

mapping can help locate hospitals and other healthcare

facilities or locate a relief workers’ camp [22]. In case of

emergency and if the patient’s location is far away from

hospitals, the treatment can be provided remotely using

tele-medicine. The near doctors can provide the appropri-

ate care based on given advice from remote specialists

through high-quality video calls.

Integration SmartSat, and IIoT technologies with

healthcare systems and deploying new devices and con-

nectivity protocols create major cyber security concerns.

This is because most deployed medical devices are

designed as stand-alone without communications and net-

working or any considerations for cyber security require-

ments. Other devices have been deployed with poor and

default passwords, or their security is vendor task-specific

such as X-rays scanners. These devices are nowadays

integrating with mobile applications, wireless, new tech-

nologies (i.e. edge, fog and cloud computing), and new

connectivity protocols (e.g. CoAP and MQTT) [18, 23].

Furthermore, new services are introduced and stored in the

cloud, such as E-prescription services and health electronic

records (HER). Implementing these services and tech-

nologies without any risk assessment and management plan

has expanded the threat landscape and paved new ways for

targeting these SmartSat-IIoHT systems by attacks such as

RDoS.

2.2 An overview of threat intelligence

Threat intelligence (TI) can be defined as any information

or knowledge obtained about malicious attacks through the

collection, transformation, observation, analysis and inter-

pretation [24]. It also can be described as the process of

analyzing information about indicators of potentially

malicious attacks, which allow organizations to take the

appropriate action for safeguarding their systems and net-

work [14]. Also, TI can be described as information related

to the adversary’s or attacker’s intention, capabilities and

opportunities. According to studies [25, 26], the threat

consists of capabilities multiplied by intention and oppor-

tunities; if anyone is zero, the threat is zero. This TI should

be relevant, actionable and valuable. The relevant means it

should have sufficient information about potential targets

(opportunities), the attacker’s intention (purpose) and

attacker capabilities, tactics and technique; actionable

means information should be sufficient to take the serious

action and decision to prevent or detect attacks. Valuable

means it should help in securing the business outcome [13].

The information related to the attacker’s intention and

capabilities is the most essential TI and business priority as

they can be implemented and shared among organizations.

TI is commonly multi-purpose, and it can be used in

many practical ways before, during and after the attacks.

By integrating TI, which is a collection of correlated data

points about potential threats, with intrusion detection

systems (IDSs) and firewalls, new and known threats can

be easily detected before attacks happen. This means that

TI can be used as a data or information source for IDSs by

providing them with attack patterns. During attacks, intel-

ligence-driven attack detection can be used to speed up the

detection time and response process. This also helps pri-

oritise relevant IOCs and focus more on severe security

alerts. After attacks, TI can be used in forensic, attack

investigation and reporting after attacks which help the

cyber security incidents response team to provide the

required actions [24, 25].

2.3 An overview of CoAP protocol

CoAP is a client-server application protocol similar to the

HyperText Transfer Protocol (HTTP) but on the top of the

UDP protocol. Given its flexibility and lightness, it is being

adopted to provide all kinds of communications such as

H2M, machine-to-machine (M2M) and machine-to-human

(M2H) [4]. CoAP exchanges request/response messages (

as shown in Fig. 2). Each message consists of a fixed size

(bytes) headers including information such as version

number (two bits), message type (i.e. Confirmable (CON),

Non-confirmable (Non-CON), Acknowledgement (ACK)

and Reset (RST)), token length (4 bit), method code (8 bits)

that is unique for request/response message (i.e. GET,

POST, DELETE, OBSERVE and PUT) and message ID

(16-bit ) for detecting duplicate messages and matching

ACK/RST to CON/NON-messages. These contents are

also followed by a variable-length token value (0 to 8

bytes) to correlate request/response message, a sequence of

zero or more options in Type-Length-Value (TLV) format,

optional Uniform Resources Identifier (URI) and payload.

To access CoAP resources, a specific URI

(‘‘=resource name00) is used to connect with a server on

default UDP port 5683 [8, 10]. To address the lack of data

transmission reliability over UDP, CoAP implements

lightweight reliability features including message ID to

detect any message duplication and stop-wait mechanism

with a back-off exponential retransmission time [5]. CoAP

also supports block-wise for dividing a large payload into

blocks and sending them separately, which tackles the risk

of amplification-DDoS attacks. Although CoAP protocol

supports multiple security mechanisms, including Data-

gram Transport Layer Security (DTLS) at the transport

layer and Internet Protocol Security (IPSec) at the network

layer, it does suffer from several internal and external

attacks such as IP spoofing, URI parsing attacks, DoS/

DDoS and cross-protocol attack [8].
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Most deployed SmartSat-IIoHT messaging protocols

such as CoAP are poorly designed, configured and imple-

mented. This allows attackers to execute a malicious

command, re-programming firmware, inject malware in the

endpoint or expose sensitive information [3]. Among the

many cases that recently attracted the researchers’ atten-

tion, growing CoAP-based devices as one of the most

prevalent types of cyber weapons in a DDoS-botnet [27].

Given the criticality of SmartSat-IIoHT devices, such

malicious attacks generate a profound impact on the sys-

tem’s resiliency and reliability and human safety. There-

fore, generating TI for such protocol is becoming of the

utmost importance proactively discovering attacks and

taking the appropriate actions before it might happen.

Thus, exploring the protocol’s vulnerabilities, providing

potential attack scenarios, and extracting malicious attack

indicators and patterns will give proper visibility in such

emerging security issues to reduce the potential risk of

disrupting critical healthcare system operations.

2.4 Related work

In this section, we provide reviews for state-of-the-art

research related to CoAP security. Examples of the existing

literature that can be categorized under the banner of threat

intelligence related to CoAP protocol include the study of

[28] where the authors presented a comprehensive study for

IIoT lightweight protocols (e.g. MQTT, AMQTT and

CoAP) and their security issues and vulnerabilities. They

found and detected many security issues in each of the

protocols and; thus, they provided a framework to measure

the risk of these vulnerabilities. These studies’ purposes

were to provide intelligence related to new IIoT devices

and protocols that can be used to protect them from

potential threats. Our work also aims to provide intelli-

gence about potential threats that can exploit CoAP pro-

tocol to affect the endpoints.

Studies of [29–32] provided intelligence specifically for

CoAP protocol; these studies introduced various DoS/

DDoS CoAP attack scenarios such as malformed CoAP

requests, a non-intended message for CoAP from other

protocols such as TCP and ICMP, and invalid CoAP

messages. They also introduced insights about detecting

these attacks based on the count of active connections on a

specific host or port, malicious and suspicious IP and the

payload size. Vieira et al. [33] tested two attacks, including

port scanning and host discovery against the COAP server.

In related work, Canuto et al. [34] studied CON and NON-

CON CoAP/CoAPS flow messages. Their experiments

found that DDoS attacks can be detected based on the

number of traffic flows where the number of received

traffic flows from the external network is more than the

number of sending flows from the internal IoT network.

[30] extracted indicators from IEEE 802.15.4, 6LoWPAN,

IPv6 and COAP protocols parameters for detecting invalid

CoAP request DoS attacks. Similarly, Granjal et al. [35]

investigated DDoS against CoAP and other protocols in the

6LoWPAN network.

In summary, existing cyber security studies on CoAP

protocols focus on how the underlying layers’ DoS/DDoS

attacks (i.e. network and physical layer) affect the server.

Other studies also concentrate on CoAP attacks, including

sending malformed requests, unsupported resources (i.e.

URI), and fake acknowledgement along with their coun-

termeasures which highly relied on signatures and rules

models with a predefined threshold. However, our work

focuses on RDoS attack over CoAP that utilises the sup-

ported requests for sending multiple ‘‘GET’’ requests

embedded with a ransom note for the available resource.

We propose several attacker tactics, techniques and pro-

cedures. We analyse RDoS intention (i.e. motive) and their

impact on server resource and logs, network traffic and

physical asset, and discover and reveal attack behaviours

using LSTM and based on extracted intelligence CoAP-

RDoS attack. It is noteworthy that our paper is the first and

Fig. 2 CoAP message packet
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novel TI framework to explore the vulnerability of CoAP

through performing RDoS attack and hunting its indicators.

3 Proposed framework

3.1 Proposed RDoS threat intelligence modelling
framework

In this section, we propose and design a new framework

that describes the RDoS threat intelligence modelling. It

elucidates how the RDoS attack exploits CoAP protocol’s

weakness to affect the critical physical process in Smart-

Sat-IIoHT systems, how to discover its behaviour and

indicators, making the decision and performing the

appropriate actions to prevent or mitigate this attack, as

shown in Fig. 3. It is worth noting that, this paper is the

first to provide and design such a TI framework specifically

for CoAP-RDoS attacks in SmartSat-IIoHT systems.

– Threat observation It includes different types of

information about potential threat and vulnerabilities.

It consists of RDoS attacks modelling to provide how

attacks can exploit CoAP protocol in the H2M scenario

to affect the physical process and the endpoint. It also

includes the potential tactics, techniques and proce-

dures that attackers can use to achieve their goal

(obtaining financial profit). Furthermore, it describes

behavioural and extracted indicators and their impact

on the targeted system. This module is explained using

RDoS attack scenarios, behaviour and impact in

Sect. 4.

– Discovering It correlates the provided information or

extracted intelligence to identify the RDoS-CoAP

attacks. In our proposed framework, we utilise two

techniques for discovering: In the first technique, we

use the hunting technique to chase attacks and correlate

its indicators. This will be provided through the paper

during attack experiments. In the second one, we use

deep learning to perform discovery task based on

network-based intelligence. We choose to use the DL

technique to provide an efficient way to discover the

hidden pattern of the provided information and gener-

alise it to new and unseen data [13].This module is

explained as intelligence-driven RDoS discovery in

Sect. 6.

– Decision making In this module, the extracted or the

provided results from the previous model are pondered

to select a cluster of actions to address the RDoS-CoAP

attack (i.e. security recommendations). This can include

defining which security approaches are the best to

handle this attack. Section 5 explains and discusses the

extracted intelligence and how it can be used to take the

appropriate security decision.

– Taking action This module is used to perform the

appropriate response or action to prevent and mitigate

the RDoS-CoAP attack. This can include several steps

such as updating the firewall to block the traffic, re-

routing traffic through a router to different devices, and

among others of possible containment solutions. This

module is also used in two ways. First, it used to

provide action and prevent the attacks before it happens

as discussed in Sect. 5. The second way is to describe

the action in case of post-discovering, as explained in

Sect. 6.

The output of making a decision and taking action modules

can reflect on the provided threat observations and used to

add-on create, update, or delete any information or intel-

ligence related to the attack. Our proposed can be deployed

in the cloud segment of SmartSat-IIoHT systems to utilise

high resources in storing and analysing collected data and

Fig. 3 Proposed TI framework
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sharing extracted intelligence among different systems

components and segments. The extracted intelligence

related to CoAP-RDoS in a local H2M scenario can be

distributed and shared with other network segments. For

example, this extracted CoAP-RDoS intelligence can be

used to protect the CoAP protocol in satellite

communications.

3.2 Proposed SmartSat-IIoHT testbed

We examine RDoS-CoAP using a case study of a Smart-

Sat-IIoHT implementation where IIoHT protocols are used

to connect between physical assets (e.g. sensors) and

mobile application as H2M communication or among

machines as M2M [4, 36]. The key issue with such

implementation (i.e. SmartSat-IIoHT) is their deployed

medical devices that were designed as stand-alone without

communications, networking and any considerations for

security requirements [37], along with other devices that

have been deployed with poor and default passwords or

their security is vendor task-specific. The integration of

these devices with satellite, mobile applications, wireless

and IT systems and using new emerged technologies and

connectivity protocols without any risk assessment and

management plan [38] make these systems unprepared for

IIoHT protocols-specific attacks such RDoS-CoAP.

Our testbed architecture, as illustrated in Fig. 4, focuses

on providing a simple prototype for the system, with a

particular focus on CoAP implementation. This architec-

ture considers the employment of edge server mediating

the communications between physical devices (i.e. sensors

and actuators), cloud and connected caregiver mobile

applications, the usage of MQTT for sending data to the

cloud broker over wired Ethernet, and the usage of CoAP

over IEEE 802.11 wireless network (i.e Wi-Fi) for reading

sensors and controlling actuators via operators mobile

application. We use the MPL3115A2 sensor for sensing

pressure and temperature measurements and light emitting

diode (LED) device for actuating. These devices create a

medical closed cyber-physical control loop.

We utilize ‘‘CoAPClient’’ application from App Store as

mobile CoAP clients to access the resources of the

txThings CoAP server [39], which is a Python implemen-

tation of CoAP based on Twisted-asynchronous I/O

framework, that runs at Raspberry pi 3 B? (i.e. edge ser-

ver). We choose txThings as it is one of the most common

open-source software, supports most of RFC standards, and

it proved that it is one of the most robust servers against

failures and error according to [40] study. We also use

Fig. 4 Testbed architecture
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txThings Python script as clients run at laptop devices to

generate more CoAP traffic at the Wi-Fi network.

Here, caregiver ( i.e. doctors or nurses) read the sensor

values (i.e. temperature and pressure) by sending ‘‘GET’’

request to the available resource ‘‘/act’’, and they change/

update the status of the actuator (i.e. infusion pump) by

sending ‘‘PUT’’ request to the same resource. Note that, we

use different CoAP platforms such as txThing clients and

CoAPClient App to reflect the heterogeneous nature of

SmartSat-IIoHT systems. The edge server polls data from

the sensor acts on it and then sends it in a JSON format to

CoAP clients, and vice versa for controlling the actuator.

The edge server also provides a local caregiver interface

and acts as an access point, and a publisher for telemetry

data to the cloud broker (i.e. mosquito broker). Besides, we

utilize multiple virtual machines running Kali Linux for

performing our attack. In this current implementation of

the testbed, we developed our Python codes for our CoAP

resource, edge server tasks, MQTT messaging and RDoS

attack.

3.3 RDoS attack modeling and scenarios

To describe and perform the RDoS-CoAP attack, we utilize

the MITRE ATT&CK framework [41]. The ATT&CK

framework describes in a structured way the actions (tac-

tics, techniques and procedures) that may be taken by

attackers when operating with an enterprise network. Based

on this framework, we can present the RDoS-CoAP

attackers’ key impact tactic as extorting victims and

obtaining profit by affecting system safety, availability,

reliability and resiliency. The key RDoS attackers’ tech-

nique can be here represented as a volumetric CoAP

application-layer DDoS attack embedded with a ransom

note, and the detailed implementation of this attack tech-

nique to achieve the impact tactic is represented as a pro-

cedure. The stages of such attacks can be described in

Fig. 5.

As an initial step, attackers need to know what resources

are available and supported by CoAP servers. They,

therefore, may conduct several tactics, including initial

access, credential access and execution, to fulfill this step.

These tactics can include various techniques and proce-

dures. For example, attackers can utilize the SHODAN

engine to explore information about the online edge CoAP

server. They can be in the range of Wi-Fi networks and

perform critical reinstallation attacks. They then start

dumping the resources list by sending a ‘‘GET’’ request

with ‘‘/.well- known/core’’ as URI-path. Another technique

can include utilizing the spoofed requests described in the

study of [8], where attackers get access to legitimate user

devices and communications. Mobile applications on the

caregiver’s devices can also be used to harvest information

and launch the attack. While to achieve the final objective

and impact, we propose several techniques and procedures

to perform the RDoS-CoAP attack. The main focus is only

on sending malicious ‘‘GET’’ requests to the available

resource ‘‘/act’’.

3.3.1 Constant low rate RDoS technique

Consider a technique of an RDoS attack that may be

derived from a constant low rate DoS attack. An attacker

sends malicious traffic at a constant low rate for a short

time. This type of attack in the long term can flood the

server and prevent the service from additional requests

from legitimate traffic. However, for the RDoS attacker’s

purpose, it is only for sending ransom notes and providing

evidence that the attack is real. As shown in Fig. 6, the

RDoS-CoAP attack is only constant low byte rate traffic

with an embedded ransom note.

The attacker procedure is sending many confirmable

‘‘GET’’ requests with resource name ‘‘/act’’ (using only one

device) for one minute and half a time (we assume 90

seconds, the same time that is used by the recent CoAP

DDoS incident). Each CoAP request has an embedded

ransom note as a payload asking for 1500 XMR or Monero

(roughly $76048.88) and threatens to follow this attack

with a volumetric DDoS attack in case of ransom is not

paid by the deadline. Attackers send the ransom note in a

message payload as they are aware that security analysts

can see this note when they inspect the packets to defend

their organizations.

Fig. 5 RDoS attack stages
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3.3.2 Burst or hit-and-run RDoS technique

Consider a technique of an attack that may be derived from

burst or hit-and-run DoS attacks that utilize repeated short

bursts of high volume traffic at random or deterministic

intervals. This attack is common with TCP protocol as it

exploits the TCP slow-timescale dynamic of the retrans-

mission timer, the attackers send fast and high rate bursts

having round trip time (RTT) burst length (L) and repeating

periodically at retransmission time out (RTO) timescales

(T) for bringing the server down. A successful burst TCP

attack will have a large enough traffic rate for prompting

packets loss, duration of RTT (L=RTT), and period of RTO

(T=RTO) [42]. The CoAP protocol operates over UDP, and

it does not implement this TCP feature, but it supports

retransmission mechanisms with exponential back-off for

CON messages.

The CON request message requires ACK from the ser-

ver and retransmits it many times before considering the

request timeout state. Here, we adopt the same procedure

of burst TCP for performing burst RDOS-CoAP attack. As

the attacker only attempts to threaten and force the victim

to pay a ransom rather than causing real service damage,

we assume that the attacker sends burst high byte rate

traffic as described in Fig. 7 only for few seconds (L[RTT)

and repeating each deterministic period (T=RTO). The

attacker sends periodic confirmable ‘‘GET’’ requests

combined with a ransom note for approximately L=4 sec-

onds. It repeats sending malicious requests each T=93

seconds (the default value for txThings request timeout) for

roughly 3.5 min. This volumetric application layer DoS

attack can disrupt the service if it is performed for a longer

time.

3.3.3 RDDoS technique

Consider a technique of attack inspired by Memcached

DDoS attacks [43] where attackers send out huge traffic

directly from distributed devices to obtain a quick profit.

We call this attack RDDoS as it represents Ransom Dis-

tributed Denial of Service (RDDoS). Here, the attacker

procedure is sending the bulk of confirmable ‘‘GET’’

requests embedded with a ransom note to the available

resource ‘‘/act’’ from multiple devices. This volumetric

application layer attack can be harmful but for a short

period to inflict pain to the victims and force them to pay

the ransom to stop or avoid any potential longer and more

harmful attack. The bytes rate of RDDoS attack for 90

seconds is depicted in Fig. 8.

4 Proposed intelligence-driven threat
discovery model

Our proposed model is shown in Fig. 9 mainly consists of a

real-time discovery engine represented by an online LSTM

algorithm and the network-threat intelligence (i.e. IoC) that

security analysts provide. Based on our observations in

previous Sections, examples of such IoC are an unexpected

increase in the number of network packets, the number of

bytes, multiple network flows with small-time duration and

others. This intelligence can be applied mathematically on

the incoming network flows to generate the final network

traffic information fitted to the discovery engine. The final

Fig. 6 Constant low rate RDoS attack byte rate

Fig. 7 Burst RDoS attack byte rate Fig. 8 RDDoS attack byte rate
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network information could be data points related to net-

work statistics where the combination of them can create

RDoS attack patterns. Later, the discovery engine based on

online deep learning can play a critical role in identifying

the hidden patterns of RDoS attacks automatically.

The pre-processing engine is also used with the dis-

covery engine to scale the provided information to have a

zero mean and unit variance, which prevents the discovery

engine bias in the learning process. The validation mech-

anism is used to evaluate the discovery performance if it is

correctly or incorrectly identified the provided IIoT net-

work traffic information. In this proposed model, the

received observation (i.e. feature vectors) is categorized as

normal or RDoS attack, allowing the security analyst in

case of the identified attack and generated alarm to analyze

RDoS attack, take the appropriate action or mitigation

mechanism (e.g. redirecting the RDoS traffic to null route)

and update the provided intelligence (if needed). At the

update phase, the discovery engine-based deep learning is

updated to learn from new input.

4.1 LSTM-based online discovery engine

Online discovery engine is a deep learning-based engine

that searches potential threats against physical assets of

SmartSat-IIoHT systems through analyzing the relevant

collected data and intelligence. The process of data anal-

ysis is performed automatically using DL techniques to

discover many elements of IoC for RDoS threat. The deep

learning technique is used due to its high capability to

identify complex network traffic patterns and deal with

heterogeneous, unstructured and large volumes of data. It

can extract the most relevant features in input data and

without human intervention. DL-based models also have

high scalability, and their performance is improved with

increasing the training data size, as has been proved in

many pre-existing studies [1, 13].

A long short term memory network (LSTM) is utilized

in our work as the automatic and online RDoS-CoAP

discovery engine. It was introduced by Hochreiter and

Schmidhuber [44], and it is a type of recurrent neural

network (RNN) that is specialized in reflecting the past

learning into the current learning through penalizing

weights through a chain of networks. Unlike other types of

RNN, LSTM has a cell state and three gates. The cell state

acts as conveyor belts that transfer relative information

straight down the entire sequence chain. The information is

got added or removed using three gates that are composed

of a sigmoid neural net layer and point-wise multiplication

operation. In this way, the gates decide to keep the most

Fig. 9 Proposed real-time intelligence-driven RDoS attack detection model
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relevant information and forget the reminded one during

the learning process. Given that, an LSTM-based discovery

engine can keep the most relevant network data points

related to RDoS-CoAP attacks.

Mathematically, LSTM takes a sequence of network

data points (i.e. intelligence) as inputs, ðX ¼
ðX1;X2; . . .::XtÞÞ is carried over the timesteps ðt ¼
ð1; 2; 3; . . .mÞ where (m) is the number of network data-

points, and it gives output as a number defines the type

traffic normal or RDoS-CoAP attack. As a first step, each

LSTM block decides what information should be discarded

and removed from cell state using ‘‘forget gate layer’’. It

takes a network data-point ðXtÞ, and the previous hidden

state information ðht�1Þ as inputs, pass them through sig-

moid function ðrÞ to get output between 0 and 1. A ‘‘0’’

represents completely forget this information, while a ‘‘1’’

represents completely keep this information. The forget

gate layer function is described in equation.1, where ðwf Þ ,
and ðbf Þ are the parameters (i.e. weight and bias) of forget

gate layer (f).

Gateforget ¼ ðftÞ ¼ rðwf :½ht�1;Xt� þ bf Þ ð1Þ

In the next step, the LSTM block decides which informa-

tion should be stored in the cell state and this process goes

through two parts. First, the input gate layer (i) decides

which values will be updated using its parameters. i.e. ðwiÞ
, and ðbiÞ and both inputs, i.e. (Xt) and (ht�1). It also uses

the sigmoid function ðrÞ to transform the values to be

between ‘‘1’’ and ‘‘0’’ (important and not important con-

sequently). Next, it passes the current input to the function

(a) to create new candidates values between ‘‘-1’’ and ‘‘1’’

that could be added to the cell state ðCtÞ and help in reg-

ulating the network. Then, the output of input gate layer

ðitÞ is multiplied with the function output ðC0
tÞ, and then, it

is combined with forget gate layer output ðftÞ and the old

cell value ðCt�1Þ to update the old cell state with new one.

The full process is described in Equations 3 and 4.

Gateinput ¼ðitÞ ¼ rðwi:½ht�1;Xt� þ biÞ ð2Þ

Cellcandidate ¼ðC0

tÞ ¼ aðwc:½ht�1;Xt� þ bcÞ ð3Þ

Cellcurrent ¼ðCtÞ ¼ ðft � Ct�1 þ it � C
0

tÞ ð4Þ

To decide the next hidden state which contains information

on previous inputs, the sigmoid function ðrÞ is used to

decide which parts of the cell state will be the output of the

LSTM block. Then, the output of this step, as defined in

Eq. 5, is passed to the tanh function ðaÞ. The output ðOtÞ is
multiplied with the output of the function for cell state

aðC tÞ. Thus, the next hidden state will carry the desired

information. This new cell state and the new hidden state

are then passed to the next LSTM block (i.e. the next

timestep). The same process from Eqs. 1–6 will be repeated

for each timestep.

Gateoutput ¼ðOtÞ ¼ rðwo:½ht�1;Xt� þ boÞÞ ð5Þ

New Hiddenstate ¼ðOt � aðCtÞÞ ð6Þ

LSTM repeats the same mathematical processes in the

training phase in multiple timesteps based on the number of

inputs. In addition, the output from the LSTM layers is

passed to the output layer (with a sigmoid function) to

determine the appropriate decision ðŷÞ regarding the

sequence of input (X). This is achieved by reducing the loss

function value between the actual output (y) and predicted

output ðŷÞ for n observations using the following Equation.

Lðy; ŷÞ ¼ 1

n

Xn

i

ðŷi � yiÞ2 ð7Þ

5 Experiments results and discussion

5.1 CoAP server resources and logs

We examine RDoS-CoAP behaviour in terms of edge

server’s CPU usage since application-layer DoS attacks

usually affect the victim’s CPU resources. We collect the

total CPU time usage (i.e. CPU load) during a normal

situation (no attack), burst RDoS, constant low rate

RDoS and RDDoS attacks. Figure 10 shows that the total

CPU usage during constant low rate RDoS, burst and

RDDoS attacks is higher than the normal one. During

constant low rate RDoS attack (at approximately 06:30-

08:30), CPU usage goes significantly above 75%. While

during the burst RDoS attack, the results show an

increase in CPU usage over three times (06:30, 08:00

and 09:30), and the same behaviour can be observed

during RDDoS attacks.

Another indicator of abnormal activity can be extracted

from CoAP application logs. A sample of CoAP applica-

tion log records is provided in Fig. 11. We found many

records showing the CoAP server waiting for the next

block-wise request timed out. CoAP performs a block-wise

technique where a large payload is divided and sent in

separate messages. After receiving the first block and based

on the header, the client must send a new request for

obtaining the second block.

5.2 Analysis of network traffic

Figure 12 shows the packet rate (number of packets/sec-

ond) for RDoS, burst RDoS, RDDoS attack traffic (where

their traffic is mixed with normal in real world), and the
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pure normal traffic. Through a comparative analysis of

Fig. 12, it can be noticed that the constant low rate RDoS

attack traffic is almost hidden in the normal traffic, and the

differences among them in terms of packet rate are quite

small. While the burst attack appears in the shape of high

peaks with roughly the same (L) length and interval (T), it

can be seen that the burst RDoS attack has approximately

deterministic characteristics even if it is mixed with normal

traffic. This can be noticed in terms of packet rate and the

timing relationship among multiple peaks. The RDDoS

shows in the shape of high and relatively continuous waves

for a while, and it can be seen that the packet rate is higher

for a longer time. There is an unexpected increase in the

network traffic in packets, which can be an indicator of

RDoS attacks.

Figure 13 illustrates the distribution of received byte

flows of the constant low rate RDoS, burst RDoS, and

RDDoS attacks. It directly compares them with the

received byte flows distribution during the normal situa-

tion. If the data points, in this a quantile-quantile (Q-Q)

plot, are close to the diagonal line, it means that both data

samples have the same distribution. This can be observed

at the beginning of the line in three boxes where the dis-

tribution of attacks bytes is solely identical to the normal

bytes because the attack traffic is mixed with normal.

These bytes thus may not belong to attack bytes. The

constant low rate RDoS distribution, as shown in the left-

hand side of the figure, is approximately identical to the

normal except for few outlier points at the middle, which

represent the actual constant low rate RDoS bytes. In

contrast, the distribution of burst and RDDoS attack bytes

is spread out. These outlier points may represent the actual

bytes of burst RDoS and RDDoS attacks. CoAP attack

requests hold a ransom note; therefore, their number of

bytes in each flow is higher than the normal ones.

We also inspect ‘‘GET’’ request packets based on the

CoAP message for mat (see Sect. 2.3). The legitimate

request packet of txThings Python script and CoapClient

App is represented in Figs. 14 and 15, respectively, while

the attacker’s request packet is illustrated in Fig. 16. Here,

we focus on the token length and option parts of the

‘‘GET’’ CoAP packet as they are the most distinguishable

features. A randomized token number is used to match the

request and the response by the server, and it is generated

when the transport layer does not protect the CoAP mes-

sage. Each client uses a randomized token number to

connect to the Internet, but it is not mandatory. This can be

noticed from CoapClient App (Fig. 15), which has zero

bytes token length, while the txThings Python client

(Fig. 14) has 4 bytes token with value 000021db. The

attacker CoAP request (see Fig. 16) also has zero bytes to

ken length. Arguably, there is no difference between

Fig. 10 Total CPU usage (load)

for normal state and attacks

Fig. 11 Application logs
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malicious and legitimate CoAP ‘‘GET’’ requests regarding

token numbers.

CoAP also defines many options that can be combined

in messages in which each has an options number, name,

length, and value. For example, the Observe option is

defined by RFC 7641 [45] and is issued as a GET message

to register the client to the list of observers of act resources.

TxThings Python client only uses this option here. The Uri-

Path option is used to specify the path to the resources (i.e.,

/act). It can be observed from Figs. 14, 15, 16 that Uri-Path

is included in all CoAP requests, while the payload option

is only included in the attacks request as it holds the ran-

som note (see Fig. 16). The most interesting in this analysis

that we found the CoAP server (txThings) accepted and

decoded the GET message and responded without any

error. Although CoAP standards define GET as a safe

method and only for resource retrieval (here for reading

sensor measurements), the attacker may exploit this

optional part of the CoAP request for malicious action. It is

worth noting that we obtained the same result with Aiocoap

(one of the most recent and common servers) [46].

As CoAP performs a block-wise technique (see Fig. 17),

we found that while analyzing network traffic, the attackers

only receive the first block and do not send a request for the

second block. This explains why the large number of next

block-wise waiting time out records in the application log.

This can be considered as a unique RDoS indicator, as it

depends on the CoAP implementation. If the size of

resource representation is less than the predefined block

size (txThings default value is 64 bytes), the message will

send as one block.

5.3 Physical asset behaviour and attack’s impact

As the CoAP server polls data from the connected sensor,

we consider this collected data to extract intelligence and

study how the physical asset, i.e., connected sensor,

behaves under RDoS attacks. Flooding the server with

GET requests can affect the connected sensor response

Fig. 12 Normal and mixed

RDoS Packet rates

Fig. 13 Q–Q plots of RDoS attack compared with normal traffic
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process. Fig. 18 shows the time difference (i.e., response

time) between the read command by the edge server and

the sensor response messages for the burst RDoS, constant

low RDoS, and RDDoS attacks. As it can be observed, in

the case of a normal situation (before and after the attack

occurrence), the time difference or response time is roughly

within the range of 0.001 and 0.00145 seconds. When the

burst RDoS attack is in progress (13:27–13:29), the edge

server received the measurements with a delay where the

response time goes over 0.00145 seconds. The same results

can be observed for constant low rate RDoS (10:15–10:17)

and RDDoS (9:56–9:59). When the sensor is operating in a

non-standard way (delay in response is greater than the

predefined tolerance threshold), this indicates an attack in

progress.

To provide a holistic attack analysis, we consider the

response time to evaluate the systems availability, relia-

bility, and resiliency under RDoS-CoAP. We define the

availability as the degree of ability of the sensor to function

at attack time, reliability as the degree of ability of the

sensor to work regarding its specifications during attack

time, and resiliency as the degree of ability of the sensor to

complete its work during an attack and recover its perfor-

mance after the attack. As shown in Fig. 18, there is no

interruption on the sensors response (i.e., sensor avail-

ability) during three attacks, and it continuously responds

Fig. 14 Legitimate CoAP-

txThings Python client

Fig. 15 Legitimate CoAPClient

App
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to the edge server. As there is a noticeable delay in the

sensor response during attacks, RDDoS indicates that the

sensor is not working accurately within the expected

time (normal situation time). This violates the sensors

specification, which poses an effect on the systems

reliability. However, it can be noticed that the system is

resilient against three attacks as the sensor continues in

its work during attacks and the response time after attack

periods (13:30, 10:18, and 10:00) recovers to the normal

situation. Nevertheless, a simple delay at any element of

the closed cyber-physical control loop may impact the

overall safety of SmartSat-IIoHT systems, particularly if

this delay exceeds the fault-tolerance threshold (safety

system). The larger the attack, the larger damage that

can happen, and the high likelihood of the ransom being

paid.

Fig. 16 Malicious CoAP request packet

Fig. 17 Second block request
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6 Decisions and incident response

Once the attacker tactics, techniques and procedures are

identified, those can be proactively used to secure Smart-

Sat-IIoHT systems. Our proposed RDoS-CoAP tactics,

techniques and procedures can help the SmartSat-IIoHT

security team (i.e. IT and OT individuals) improve their

contextual awareness about their systems. This can help

them understand how their systems are likely targeted by

RDoS-CoAP, what appropriate prevention and detection

techniques are needed to implement. For example, when

we consider a spoofed request (legitimate operator mobile

device) as the primary vector for RDoS-CoAP attacks

against the edge server, the security team can use this

intelligence to prioritize this threat in their threat-centric

Fig. 18 Second block request

packet

Fig. 19 Example of attack feature vector

Fig. 20 Average accuracy over

timestep
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security approach. In its turn can help in performing an

accurate risk assessment.

Given the provided intelligence related to techniques

and procedures of implementing RDoS-CoAP attacks

based on sending confirmable ‘‘GET’’ requests containing

payload (ransom note) to the available resource, the secu-

rity team can also prioritize specific defence mechanisms.

For instance, abusing the optional payload of the ‘‘GET’’

CoAP request (tested against two common CoAP servers,

see Sect. 4) indicates the lack of these optional parts’

security. We can, therefore, state that Object Security for

Constrained RESTful Environment (OSCORE) [47] has

the highest priority in security implementation as it pro-

vides an end-to-end security protocol. It has been recently

standardized by Internet Engineering Task Force (IETF) to

protect message content format, payload, the request

method and resources’ identifier. OSCORE can prevent

RDoS attacks by verifying the existence of an optional

payload (legitimate ‘‘GET’’ request should not have a

payload ) and discarding the request that has it (i.e. RDoS-

CoAP). It can easily be applied in SmartSat-IIoHT systems

between edge servers and CoAP clients, and it may be

complemented with DTLS and IPsec to strengthen the

security approach.

We can also use the extracted intelligence as feeds to

enrich security mechanisms to provide rapid detection and

response against RDoS-CoAP attacks. The security team

can use the Security Information and Event Management

(SIEM) security tool to generate an alert if there is any

match with any RDoS-CoAP indicators. For examples, a

significant variation is seen from application logs analysis,

i.e. an existing large number of waiting for the next block-

wise request time out records, a sudden increase in CPU

usage from host resource monitoring, the unexpected

increase in the total network traffic (packets or bytes),

‘‘GET’’ request with payload (ransom note), and frequency

Fig. 21 Average precision over

timestep

Fig. 22 Average recall over

timestep
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of CoAP requests in a short time from network traffic

analysis or an increase in the sensor response time from

data historian tags. Another ideal intelligence feed for

SIEM can be achieved by looking at the set of all of the

indicators mentioned above and correlating them to pro-

vide a larger RDoS-CoAP pattern. For instance, we can

combine IT and OT events, such as a large number of

CoAP ‘‘GET’’ requests with content containing payload

within a short time and an increase in sensor response time.

We also noticed critical challenges with obtaining

intelligence and information about RDoS-CoAP behaviour

in SmartSat-IIoHT systems through our analysis. Chasing

attack and threat indicators take a long time and need a

deep knowledge of protocol specifications. Furthermore,

the lack of standardization and consistency among IIoHT

connectivity protocols’ contents (i.e. multi-platform pro-

tocol) creates also a challenge in extracting meaningful

indicators. For example, as provided in Sect. 4, legitimate

caregivers can connect via various application platforms,

which offer different CoAP request’s content, particularly

for optional parts (e.g. token length). Each system also has

its CoAP protocol and server software configuration and

requirements. For instance, a block-wise mechanism is an

optional CoAP implementation, and it depends on the

message size value configuration. Therefore, the significant

number of records waiting for the next block-wise request

time out records in application logs may be used as RDoS

indicator for specific implementation and cannot be used as

general intelligence. Furthermore, the SmartSat-IIoHT

systems are fragmented, and their network traffic is a large

dynamic volume and heterogonous. These challenges raise

the importance of coming up with new solutions to get the

benefits of TI efficiently and protect SmartSat-IIoHT

systems.

New security solutions should consider SmartSat-IIoHT

systems requirements such as scalability and interoper-

ability [6, 33, 48]. In this regard, we propose a new security

approach, that is, an intelligence-driven RDoS discovery

model. This model can utilize network indicators irre-

spective of the CoAP protocol configuration and platform

used (e.g. txThings, Aiocoap and CoAPApp mobile

application), deal with the continuous evolution of attack-

ers tactics, techniques and procedures and enable an

automatic analysis for the provided intelligence and

learning its significance. It can be integrated with any IIoT

network irrespective of CoAP protocol configuration and

platforms. It can also continuously learn the new provided

intelligence and use it in detecting attacks, and it can thus

scale and handle the growing size of TI. Moreover, the

proposed model can rapidly detect and respond to attack

Fig. 23 Average f1-score over

timestep

Table 1 Final performance

metrics values
Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%)

HT 93.99 96.18 96.17 96.17

LR 94.27 95.37 97.43 96.39

ALMA 93.75 96.91 95.08 95.99

KNN 92.87 93.63 97.55 95.55

NB 93.19 94.52 96.95 95.72

LSTM 96.90 97.43 97.18 97.31

Bold indicates the highest values
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early to prevent their spreading for the complete SmartSat-

IIoHT system.

6.1 Discovery engine-based LSTM experiment
results

In our model, LSTM has three hidden layers where each of

which has 256, 128 and 24 neurons, respectively. RMSprop

was used as an optimizer function to provide fast learning,

and the mean square error was used as a loss function as

LSTM predicts the label of new input data. The activation

function is ‘‘Tanh’’, and the recurrent activation is ‘‘Sig-

moid’’, while the batch size and epoch are equal to ‘‘1’’ as

we used LSTM in the incremental mode. The final dataset

has 10,314, 876, 4246 and 32,703 observations for normal,

constant low rate RDoS, burst RDoS and RDDoS attacks,

respectively. Each observation shown in Fig. 19 consists of

a transport protocol name, the total number of transferred

packets, the total number of received packets and the total

number of received bytes. In addition to the total number of

transferred bytes, total flow duration, type of service,

received byte rate, transferred byte rate, and ‘‘Label’’ to

identify the label of each observation. As it can be seen, all

these features can be extracted from any SmartSat-IIoHT

system. Furthermore, the SmartSat-IIoHT network and

attack traffic have an unbalanced distribution/or number of

observations, representing the realistic case of real-world

data. We use the following metrics, i.e. accuracy, precision,

recall (i.e. detection rate), and F-score, to evaluate the

model’s performance [49].

The results as shown in Figs. 20, 21, 22 and 23 describe

our proposed model based on online LSTM performance

and compared with the most common online machine

learning algorithms such as logistic regression(LR) ,

Hoeffding Tree (HT) [50], Naive Base (NB), K-nearest

neighbour(KNN) [51] and Approximate Large Margin

Algorithm (ALMA) [52]. It can be seen that our proposed

model can obtain a significant improvement in its perfor-

mance over timesteps, where each timestep represents 1000

observations. Figure 20 shows that the average accuracy of

algorithms increases with increasing the numbers of

training observations. It can be observed that all algorithms

at the first timestep predicted the label for the first 1000

observations with an average accuracy of more than 75%.

However, our model’s accuracy increases as long as it is

trained using more data and reaches more than 95%. As

shown in Figs. 21, 22and 23, our proposed model obtains

the best performance in terms of precision and F1-score. Its

performance continuously increases over timesteps to more

than 95%. However, in terms of recall or detection/dis-

covery rate, LSTM achieved approximately a similar per-

formance to KNN and LR.

The same result can also be noted from Table 1, where

the final performance metrics are calculated for the entire

dataset. All algorithms achieved a significant performance

in distinguishing between normal and RDoS attacks, while

our model achieved the best performance in terms of final

accuracy, precision and F1-Score. The LSTM obtained

96.90 %, 97.43% and 97.31%, respectively. However, in

terms of final recall, the KNN achieved a better perfor-

mance than LSTM, which obtained 97.55%. Overall,

LSTM achieved considerable performance as it continu-

ously updates the discovery engine with new incoming

observations and improves its learning capabilities with the

increasing size of training data. This proves the scalability

of our model’s deployments. It dynamically adjusts itself to

the new incoming observation, trains the network using

only incoming observation without storing data in the

memory and improves its performance over time with the

increasing number of training observations. These capa-

bilities make our model is better than other online machine

learning algorithms and an appropriate solution to Smart-

Sat-IIoHT networks as such networks have a large volume

of data that continuously increases over time.

Our model has many advantages that allow it to effec-

tively detect and identify the new tactics and techniques of

attackers, particularly RDoS attackers, and take the

appropriate response. Firstly, our model learns the real-

time dynamic behaviour of the SmartSat-IIoHT network

traffic and continuously learns the new provided intelli-

gence (i.e. IoC) and attacks’ hidden patterns. Secondly, it

can discover the knowledge and utilise the provided

intelligence without fitting them in memory. The summary

of this information can only be stored, which reduces

resource utilisation. This makes our model highly scalable

and memory-efficient and an appropriate solution for

SmartSat-IIoHT systems due to their devices’ resource-

constrained nature and large traffic volume. Our model

refines its performance over time in contrast to the static or

off-line learning that progressively decreases its

performance.

Our model mainly relies on deep learning techniques in

developing a discovery engine. This technique provides our

model with high capabilities to handle the large volume of

SmarSat-IIoHT network traffic and the evolving attackers’

tactics and techniques. Our model was built using LSTM,

which can model long-term patterns from input data and

the dependency among features. This makes it better than

other deep learning techniques. Also, it has high robustness

and generalisation capabilities as it can adapt and adjust

itself to the dynamic and changeable traffic over time.

Typically, LSTM requires high memory due to the pres-

ence of many memory cells. However, this problem has

somehow been resolved with online learning as it updates

its network based on one observation each time. Another
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challenge with our discovery engine-based LSTM is

choosing the appropriate network depth before starting the

online training process. Selecting a simple or complex

model may lead to a restricted learning process or slow

convergence. In our experiments, we chose a network with

three hidden layers based on many trial-error experiments

and the performance metrics during training. Our model

started learning and converging after many observations

and took longer than other online algorithms in the learning

process. Still, it quickly converged and achieved a better

performance than different algorithms during the first 1000

observations. However, a common way to resolve this

limitation is by designing an adaptive LSTM that auto-

matically changes its depth from shallow to deep. We will

address this limitation in our future work.

7 Conclusion and future work

This paper has proposed and designed a threat intelligence

modelling framework that can be implemented in Smart-

Sat-IIoHT networks. It consists of multiple modules where

these modules describe how the attackers can exploit CoAP

protocol to perform RDoS attacks. Several attacker tactics,

techniques and procedures for conducting volumetric

RDOS attacks against the CoAP edge server are proposed.

RDoS-CoAP behaviour, indicators and impact on server

resources, network traffic and physical asset are also

investigated. Moreover, how the proposed and extracted

threat intelligence can prioritize and enrich defence

mechanisms is discussed. We found that the lack of stan-

dardization in the SmartSat-IIoHT connectivity platforms

can lead to provide specific intelligence through our

experiments. This means indicators and intelligence are

appropriate only for a particular platform and configura-

tion. Thus, this raises the need for a generic security

solution to protect the SmartSat-IIoHT system. In this

regard, we proposed an intelligence-driven discovery

model that depends on online LSTM. Our proposed model

used network-based intelligence to discover RDoS attacks.

The experiment results proved its efficiency in discovering

RDoS attacks compared with other online machine learn-

ing algorithms.

In future work, we plan to investigate more complex

RDoS techniques and procedures and their impact on the

entire closed control loop (i.e. sensor, controller and

actuator). We also plan to extend the threat intelligence

modelling for other lightweight protocols such as MQTT

and AMQT in healthcare systems. In addition, we plan to

design an adaptive discovery engine-based LSTM model

that chooses the appropriate LSTM network depth during

the learning process. Another future direction is to

investigate security events and produce threat intelligence

for satellite communications.
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