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Abstract
Parkinson’s disease (PD) genes identification plays an important role in improving the diagnosis and treatment of the

disease. A number of machine learning methods have been proposed to identify disease-related genes, but only few of these

methods are adopted for PD. This work puts forth a novel neural network-based ensemble (n-semble) method to identify

Parkinson’s disease genes. The artificial neural network is trained in a unique way to ensemble the multiple model

predictions. The proposed n-semble method is composed of four parts: (1) protein sequences are used to construct feature

vectors using physicochemical properties of amino acid; (2) dimensionality reduction is achieved using the t-Distributed

Stochastic Neighbor Embedding (t-SNE) method, (3) the Jaccard method is applied to find likely negative samples from

unknown (candidate) genes, and (4) gene prediction is performed with n-semble method. The proposed n-semble method

has been compared with Smalter’s, ProDiGe, PUDI and EPU methods using various evaluation metrics. It has been

concluded that the proposed n-semble method outperforms the existing gene identification methods over the other methods

and achieves significantly higher precision, recall and F Score of 88.9%, 90.9% and 89.8%, respectively. The obtained

results confirm the effectiveness and validity of the proposed framework.

Keywords Parkinson’s disease � Machine learning methods � Healthcare � Physicochemical properties of amino acid �
Neural networks

1 Introduction

Parkinson’s disease (PD) was first described by Dr. James

Parkinson as a ‘‘shaking palsy’’ in 1817 [1]. It is the second

most common disease after Alzheimer’s, most prevalent

among the elderly. PD is a chronic, progressive neurode-

generative disease associated with the central nervous

system. PD is affected by continuous degeneration of

dopamine-producing neurons in the pars compacta of the

substantia nigra. Dopamine is a chemical messenger acting

as a connector that sends messages from the body to the

brain. PD mainly affects neurons, thereby reducing the

level of dopamine; as a result, the abnormal brain move-

ments that promote the onset of Parkinson’s enable

movement control [2]. Healthy people have higher dopa-

mine levels than people with PD. Figure 1 illustrates the

dopamine level of normal and Parkinson-affected neurons.

The PD genes identification method helps to detect

underlying molecular mechanisms and diagnose the dis-

ease efficiently. It is a time-consuming and expensive task

to identify PD-related genes from a large number of

unknown genes with experimental methods. Therefore,

there is a need to identify genes with computational

methods which have been used to discover similar features

between disease genes and unknown genes.

We have introduced a novel n-semble method to identify

Parkinson’s disease genes. Geary autocorrelation (GA),

Moran autocorrelation (MA) and normalized Moreau–

Broto autocorrelation (NA) representation methods on the

basis of physicochemical properties of amino acids are
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applied to translate corresponding protein sequences into a

feature vector. The t-Distributed Stochastic Neighbor

Embedding (t-SNE) feature extraction technique is adopted

to reduce high-dimensional features. In the absence of

information about negative data, Jaccard similarity mea-

sure is employed to extract a reliable negative gene set

from an unknown gene set. Finally, various ML methods

such as Support Vector Machine (SVM), Random Forest

(F), Adaboost, Decision Tree (DT), Xgboost, Neural net-

work and Gradient Descent are used to identify genes

responsible for PD.

1.1 Contribution

Several machine learning models have been used for

identification of PD genes. However, these models were

not able to obtain the results of a best classifier. Therefore,

this paper proposes an n-semble model to build an efficient

classifier with significant enhancement over existing

methods. The major contributions of this paper are as

follows:

1. Collection and statistical analysis of Parkinson’s and

non-Parkinson protein sequences (genes) from NCBI,

Ensembl and Uniprot databases were performed.

2. Twelve physicochemical properties of amino acids

were applied to generate features with Geary autocor-

relation, normalized Moreau–Broto autocorrelation and

Moran autocorrelation representation methods.

3. The t-Distributed Stochastic Neighbor Embedding (t-

SNE) feature reduction method was used to extract

relevant features from high-dimensional feature

vectors.

4. Six machine learning methods were evaluated for gene

identification to find the best model based on

performance measures and a neural network-based

ensemble model was put forth.

5. The performance of the proposed n-semble method

was analysed using parameters like precision, recall

and F Score, and the comparative study was conducted

to show the effectiveness of the proposed model.

1.2 Organization

The paper is organized as follows. Section 2 gives a brief

overview of related work in the field of gene identification.

The methodology adopted in this work along with proposed

n-semble method is described in Sect. 3. Section 4 dis-

cusses about results and the comparison of proposed

method with existing works to demonstrate its effective-

ness for PD gene identification, and finally Sect. 5 con-

cludes the paper.

2 Related work

In recent years, several Machine Learning (ML) methods

have been proposed to identify the similarity between

disease and candidate genes.

Xu and Li [14] applied K-nearest neighbor (KNN) with

PPI topological features to identify disease- related genes.

Smalter et al. [9] employed PPI-topological properties to

generate features and the Support Vector Machine (SVM)

classifier to identify Parkinson’s disease genes. Radivojac

et al. [10] used three types of feature vectors such as PPI

properties, protein sequences, and protein-functional

information to propose a method by building three indi-

vidual Support Vector Machine (SVM) classifiers to pre-

dict disease genes. All the above methods consider a two-

class classification problem with disease data as a positive

set and unknown genes data as a negative set. As the

negative set may consist of several disease genes, the

negative set may be noisy and leads to reduction in

accuracy.

Mordelet et al. [12] developed an algorithm to prioritize

disease genes using positive and unlabelled samples named

ProDiGe. They had selected a random subset (RS) from

Unknown genes (U). Also, they integrated various sources

of information related to genes which can be divided into

features including protein sequences, protein functional

information, and PPI data. Then, they used SVM to train

various classifiers to distinguish positive genes from the

subset RS. The final result was obtained by combining all

of the prediction results. Its performance is superior to

traditional binary classification methods that used unknown

genes as a negative set but still suffer from noise as the

negative set is separated randomly from the unknown set,

Fig. 1 Dopamine level in healthy and PD-affected neurons
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thereby deteriorating performance. Yang et al. [15] devel-

oped a method named PUDI that used the PPI network,

gene ontology and protein domains biological networks.

According to the similarity between both positive and

negative genes, the unlabelled set (U) was separated into

numerous subsets, which are called reliable negative, likely

negative, likely positive and weak negative respectively.

Finally, they applied multi-layer weighted SVM for disease

gene prioritization. Yang et al. [16] expanded their prior

work and proposed an overall positive unlabelled learning

method (EPU) for disease gene identification. They inte-

grated other data sources such as phenotype similarity

networks and gene expression data along with previous

data sources. However, they used PPI topological proper-

ties, the protein domain and gene ontology data to generate

feature vectors which contain more than 4,000 features. For

neurological diseases, EPU method achieved F Score of

78.6%. Experimental results have confirmed that the clas-

sifier built with high-dimensional features may not be an

efficient in terms of detection of PD. Hwang [17] proposed

a SRF (Stepwise Random Forests) approach for disease

gene identification on biological data sources used by

Yang. He had enhanced his method by considering only

important features with filter-based feature selection

method for classification. Further, it was analysed that he

may not be able to achieve better classification results by

using all the 4004 features. However, his method consid-

ered only 23 features and performed significantly better

than the existing methods.

Yousef et al. [11] introduced a sequence-based one-class

classification method to identify disease genes. The Sup-

port Vector Data Description (SVDD) method is used by

them to train the model and selected the significant features

with PCA. These methods select a few numbers of

unknown genes as the negative set since the unknown

genes set usually contains certain disease genes, which

reduces the confusion in the classification process. How-

ever, these methods are not reliable or robust because the

negative results obtained from unlabelled genes are pla-

gued by noisy data.

Miao et al. [18] proposed an Alzheimer’s disease gene

identification method based on multiple classifier integra-

tion with microarray data. They had adopted the ReliefF

feature selection method to extract relevant features and

then produced a two-stage cascading classifier to identify

genes. Results from SVM, RF and Extreme Learning

Machine (ELM) were merged through majority voting for

classification. Peng et al. [19] developed a N2A-SVM

method for PD gene prediction. They had used the

node2vec method for feature extraction and reduced the

features using the deep neural network (auto encoder) and

finally SVM to predict the genes. Malhi et al. [20] put forth

an ensemble method with five best machine learning

methods out of 25 regression models on publically avail-

able datasets of voice measures of PD patients. Guruler

et al. [21] introduced a hybrid method with k-means

clustering-based feature weighting and a complex valued

Artificial Neural Network (KMCFW) method on speech

and sound signals to diagnose PD. The dataset consisted of

only 31 people with 8 healthy and 23 PD patients. Senturk

[22] used CART, SVM and ANN classifiers to classify

Parkinson’s patients. They developed a feature selection-

based system using voice signals features.

Some of the methods aim to prioritize disease genes

using protein–protein interaction (PPI) [3] data, gene

expression profiles [4] and gene ontology [5]. Unfortu-

nately, all the above-mentioned methods depend on the

knowledge of proteins attained from PPI data, protein

domains and gene ontology. Therefore, these methods

cannot be able to implement properly because the infor-

mation is expensive, time consuming and suffers from a

multitude of missing values. Protein sequences are the only

data that can be used for proteins and contribute signifi-

cantly to resolving issues such as protein–protein interac-

tions [6, 7], predicting subcellular locations [8], and

functional classes. The key difference between the com-

putational methods is in the type of data used to generate

feature vectors and the type of algorithm used to train the

model. Some other methods considered the unknown pro-

teins (genes) as a negative set and known disease proteins

(genes) as a positive set [9, 10], while other considered this

as one class classification method by training only positive

data [11]. Since the unknown proteins usually contain

certain disease proteins, some of the methods aim to reduce

this problem in classification process by extracting the

most reliable proteins as a negative protein set [12, 13].

From the above-mentioned methods, we concluded that

the research conducted in the field of gene prediction is

mainly restricted to the SVM classifier. Also, the existing

methods are trained for multiple disease genes data, but not

limited to Parkinson’s disease only. However, some of the

methods used only six physicochemical properties of

amino acids and recommended adding more to achieve

better classification performance. Therefore, we have

employed twelve physicochemical properties of amino

acids to represent the features. Hence, using more physic-

ochemical properties will allow us to provide more infor-

mation about the interactions. Since there is no information

about negative data, we have also selected reliably negative

genes from unknown genes using the Jaccard distance

metric. Then we have applied various classification meth-

ods to yield the final prediction results.
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3 Proposed method

To identify Parkinson’s disease genes, sequence represen-

tation methods with physicochemical properties of amino

acids are chosen to improve the efficiency of existing

machine learning classifiers. In this paper, we have

employed twelve physicochemical properties of amino

acids to represent the amino acid features. Therefore,

relying on more physicochemical properties will allow us

to discover more information about the interactions.

However, the increased characteristics lead to generate

more features for each protein, which is why we have

normalized the output feature vector, instead of concate-

nating the feature vector of two proteins. A novel n-semble

method is proposed to develop an efficient disease gene

identification method.

Mathematically, a problem statement is defined as fol-

lows: to classify G = {PD, nPD} for a protein sequence

S where S = {a1, a2, a3…, an}and ai represents the amino

acid in a sequence. Our task is to evaluate the best machine

learning classifier with efficient features to calculate high

efficiency in our proposed method.

The proposed n-semble method for identifying PD genes

has been described in this section. The proposed approach

consists of four steps: (1) adopting twelve physicochemical

properties to transform corresponding protein sequences

into feature vectors; (2) t-Distributed Stochastic Neighbor

embedding (t-SNE) applied to reduce dimensionality (3)

differentiating negative samples from unknown genes; (4)

modelling features using n-semble method. The proposed

method architecture is depicted in Fig. 2.

3.1 Extracting features from protein sequences

Extracting features for both disease and unknown genes

constitutes one of the most significant tasks in identifying

disease genes. This paper applies protein sequences to

characterize genes and used three representation methods

to extract information encoded in proteins, such as nor-

malized Moreau–Broto autocorrelation (NA) [23], Moran

autocorrelation (MA) [24] and Geary autocorrelation (GA)

[25]. These methods represent adjacent influences between

amino acids that have a specific ratio of amino acids apart

in the sequence using their particular physicochemical

property. Similarly, it is possible to find patterns through-

out the sequence. We used these representation methods to

avoid missing significant information regarding the protein

sequences. Moreover, the selected methods are being used

in several other works [11] also and have an advantage

over other methods.

We used twelve physicochemical properties of amino

acid to attain more information regarding the amino acid

sequence. The physicochemical properties include polarity

[26], residue-accessible surface area (RAS) in tripeptide

[27], hydrophilicity [28], polarizability [29], solvation-free

energy [30], entropy of formation [31], partition coefficient

[32], amino acid composition (AAC) [33], hydrophobicity

[34], transfer-free energy [35], correlation coefficient (CC)

in regression analysis [36], and graph shape index [37].

Further, the min–max normalization method is considered

to normalize the original values of the physicochemical

properties. These normalized values are shown in Table 1.

Fig. 2 Architecture of proposed

method
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3.2 t-Distributed stochastic neighbor embedding
(t-SNE)

We applied the t-SNE dimensionality reduction method to

find the most important and useful features from high-di-

mensional data. t-SNE is a nonlinear dimensionality

reduction approach that can identify observed clusters

created on similarity of data points with multiple features,

thereby detecting patterns in data. It is better suited for

converting high-dimensional data into a space of low-di-

mensional data in such a way that similar instances are

modelled by closed instances and dissimilar instances are

modelled by distant instances. It helps to calculate the

probability similarity of points in both high and low-di-

mensional space. Therefore, it is used to find similar fea-

tures that retain most of the information and remove

redundant information. T-SNE minimizes the KL (Kull-

backLiebler) divergence between the two distributions with

respect to location of instances in a map.

The existing features in the dataset may have some

irrelevant features from the high dimensional data (360

features), which may decrease the performance of classi-

fiers and results in poor accuracy. Thus a proper feature

extraction technique for pre-processing of input data is

required. The t-SNE extracted features have less correla-

tion and less redundancy among the features, which con-

sequently increases the internal representation of a dataset.

These modified data representations improve the perfor-

mance of classifiers. Table 2 shows the number of t-SNE

extracted features with sequence-represented methods.

3.3 Extracting negative samples

After extracting relevant features with the above feature

reduction method, it becomes a requirement to develop a

classifier for PD genes identification. For this, reliable

negative genes need to be extracted from unknown genes to

construct a method together with positive and reliable

negative genes. We propose an algorithm (Algorithm1) for

selecting negative genes from unknown samples (US). The

algorithm comprises of six steps. First, initialize the neg-

ative set as an empty set. Second, compute the positive set

(PS) of all positive proteins for each of MA, GA and NA

representation methods, respectively. Third, compute the

unknown set and assign any one value of the representation

method. Fourth, compute the similarity between an

unknown sample (US) and positive mean (Pm). The Jac-

card similarity metric has been evaluated to calculate

Table 1 Normalized values of physicochemical properties

POL RAS HY-PHIL POL-ZAB HY-PHOB SFE AAC CC GSI TFE PC EOF

A 0.4939 06492 0.6009 0.3118 0.5491 0.3236 0.5640 0.4697 0.5990 0.4121 0.4009 0.2933

C 0.4498 0.5717 0.4832 0.4401 0.5024 0.3218 0.5284 0.3475 0.5620 0.3236 0.5087 0.2901

D 0.3728 0.6047 0.4179 0.2146 0.4728 0.1580 0.5186 0.3965 0.5159 0.3995 0.3693 0.2514

E 0.4425 0.6350 0.2676 0.3707 0.5331 0.3168 0.5892 0.4205 0.5260 0.4682 0.4376 0.3083

F 0.3960 0.6876 0.4544 0.4539 0.4181 0.3880 0.4401 0.3815 0.5786 0.2829 0.3541 0.2655

G 0.5671 0.7023 0.5120 0.4337 0.7802 0.2965 0.7777 0.4015 0.4695 0.5605 0.5172 0.3611

H 0.3364 0.5164 0.5201 0.4416 0.4001 0.3185 0.4208 0.3528 0.6075 0.2744 0.2200 0.3118

I 0.4286 0.6246 0.6031 0.4445 0.4597 0.2866 0.4661 0.3501 0.5470 0.2916 0.4461 0.2579

K 0.3155 0.4872 0.5784 0.4930 0.3641 0.3038 0.3742 0.3285 0.4999 0.3519 0.4141 0.2694

L 0.2813 0.5541 0.5030 0.5562 0.3162 0.3696 0.3180 0.2812 0.4504 0.2919 0.4126 0.2711

M 0.4521 0.6842 0.5479 0.5200 0.4633 0.5097 0.4918 0.2708 0.5198 0.4121 0.2806 0.2739

N 0.3942 0.6144 0.7510 0.3679 0.4453 0.2707 0.4713 0.3482 0.4971 0.3672 0.3911 0.2732

P 0.3528 0.4531 0.5024 0.4300 0.4077 0.2605 0.4627 0.3244 0.3955 0.3330 0.3647 0.2675

Q 0.3470 0.6151 0.5335 0.3759 0.3929 0.2866 0.4136 0.3226 0.5062 0.3617 0.2535 0.2487

R 0.3506 0.5536 0.4662 0.4221 0.4088 0.2647 0.4368 0.3318 0.5104 0.3212 0.3458 0.2634

S 0.4163 0.5525 0.5010 0.2969 0.4258 0.2452 0.4561 0.3731 0.3117 0.2534 0.3248 0.2981

T 0.3936 0.5981 0.4245 0.1972 0.4304 0.2273 0.4353 0.3199 0.5150 0.4013 0.4832 0.2881

V 0.4470 0.6924 0.4565 0.2857 0.4619 0.2755 0.4881 0.3350 0.5401 0.3413 0.3952 0.2977

W 0.2983 0.6543 0.4330 0.3315 0.4322 0.3181 0.4399 0.3640 0.5650 0.4133 0.3421 0.2873

Y 0.4578 0.7251 0.4432 0.2991 0.4728 0.3355 0.5119 0.3448 0.4580 0.3203 0.2834 0.2526
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distance between each protein and positive mean. Fifth,

find the reliable (r) negative genes from US by selecting the

sample farthest from the positive mean vector for each

feature vector. Finally, the resulted genes acquired by

means of intersection of selected negative genes are con-

sidered a reliable negative set.

Table 3 shows the comparison of three different distance

measures to compute the negative samples. Yang et al. [16]

applied Euclidean distance to find the negative set from

unknown samples. Euclidean distance gives better results

only if positive data show identity covariance. Therefore,

the distance measure directly affects the cogency of the

extracted negative set. According to the results shown in

Table 3, the Jaccard matric yields better results when

compared with the other two methods.

3.4 n-semble

The proposed n-semble model helps to improve the clas-

sifiers performance. The motivation behind the proposed

method is to analyse the interdependence between base

learners. Two levels are proposed to perform the experi-

ment as discussed below.

Level 1 Three machine learning models are selected

based on accuracy to train the neural network.

Level 2 A neural network is trained using the prediction

results of the top three selected models and actual values of

these predictions.

The architecture of the proposed n-semble model is

depicted in Fig. 3. It is comprised of 3 parts: (1) data

partition, (2) data classification, training and testing of

selected models, and (3) training and testing of a neural

network. Three feature representation methods (GA, MA

Table 2 Number of t-SNE

extracted features for different

representation methods

Method Number of features t-SNE features

Geary autocorrelation (GA) 360 65

Moran autocorrelation (MA) 360 60

Normalized Moreau–Broto autocorrelation (NA) 360 71
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and NA) are used to represent features from collected

protein sequences. The features retrieved from the feature

extraction phase are fed to various classification algo-

rithms. The data obtained are split 75% into training and

25% into testing phase. In the second phase, various clas-

sification algorithms are applied such as Random Forest

(RF), Support Vector Machine (SVM), Adaboost, Decision

Tree (DT), Xgboost and Gradient Descent to identify

genes. The models are selected based on their prediction

accuracy. The top three models on the basis of accuracy are

then integrated to form an ensemble method to achieve

high efficiency.

In the last phase, the predictions of the selected model

are used as training data, and the actual predicted values

are taken as target values. The predicted actual data set is

applied to train the neural network, the size of which is

20% of the data set. Adaboost, Random Forest and Xgboost

are selected as top three models based on highest F Score

among other methods. The training data create the rela-

tionship between the actual model and the predicted values

of the top three models by calculating the weights required

for the predictions assigned to each model. Each network

has a hidden layer containing ten hidden units. The size of

the input layer is the same as the number of attributes in

training data and sigmoid activation function is adopted for

the output layer.

4 Results and discussion

The performance of the proposed n-semble method on the

imbalanced data set is evaluated in this section. First, we

investigated the impact of three sequence representation

methods such as GA, MA and NA on the performance of

n-semble method. Additionally, an optimal number of

features retrieved through the t-SNE method has been

reviewed and optimized. Then, the effect of several

machine learning methods has been evaluated, and on the

predictions of top three models, a neural network is trained

to develop an ensemble method. Finally, our method and

another disease gene identification method were compared

to confirm the method effectiveness. The ML methods

applied in this work are Support Vector Machine (SVM),

Random Forest (F), Adaboost, Decision Tree (DT),

Xgboost, Neural network and Gradient Descent. Table 3

shows the values of various performance measures, i.e.

Precision, Recall, and F Score for comparative analysis of

the ML models experimented with. The top three models,

random forest, adaboost and xgboost were selected on the

basis of the highest F Score used to generate an ensemble

method. The prediction values evaluated by means of each

selected model are used as training data for the neural

network, and the actual prediction values are used as target

data. As shown in Table 3, the proposed ensemble method

outperforms other methods with Precision (88.9%), Recall

(90.9%) and F-Sore (89.8%). It was observed that the

proposed method outperforms the Adaboost by 2.8%,

Xgboost by 4.5% and Random Forest by 5.4%. To evaluate

the predictive performance of all methods, the ROC (Re-

ceiver Operating Characteristic) curve is plotted. The per-

formance of True Positive Rate (TPR) versus False Positive

Table 3 Comparison between distance metrics

Distance methods Precision Recall F measure

Jaccard 88.9 90.9 89.8

Cosine 84.5 86.6 85.5

Euclidean 80.6 83.8 82.1

Fig. 3 Architecture of the

n-semble method

Fig. 4 True positive rate versus false positive rate of selected methods
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Fig. 5 Fivefold cross-validation

for precision, recall and F Score
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Rate (FPR) at various thresholds for the selected methods

is shown in Fig. 4. Random Forest outperforms other

methods with the area of 83.6% under ROC.

4.1 Validation of proposed method

We have performed k-fold cross-validation due to its

simplicity and randomness property to validate the

robustness of the proposed ensemble model. The process

cross-validated different samples of equal size, k times

[38]. We have considered the k value as 5, i.e. the model is

trained and tested 5 times. Use random data samples of the

same size to train and test the model each time, and then

compare the results. Figure 5 shows the k-fold values of

the top three, selected models. Figure 5a shows the results

of precision on selected and n-semble methods. From the

graph, we can infer that the n-semble method curve lies on

top of other models. It indicates that the proposed model is

robust as the plot shows a straight line. This means that the

accuracy of the model has nothing to do with the given data

sample and remain unchanged for a fixed data set. Fig-

ure 5b shows the results of recall values on other selected

and n-semble methods. Figure 5c demonstrates the results

of F Score values on other selected and n-semble methods.

The curve of the n-semble method is above the selected

methods, which proves that the gain in F Score is robust,

that is, independent of the samples obtained from the

dataset.

4.2 Comparison with state-of-the-art techniques

In this section, the n-semble method is compared with five

state-of-the-art methods, such as SFM, [13], Smalter’s [9],

ProDiGe [12], PUDI [15] and EPU [16]. The comparison

between the proposed method and other existing methods

is shown in Table 5. The F Score of proposed approach

averages 5.4%, 6.4%, 10.1%, 16.9%, 22.8% and 23.4%

higher than with Yousef’s method, SFM, PUDI, ProDiGe,

and Smalter’s method, respectively, for imbalanced

datasets. The key difference between these other methods

and the proposed one is the previous information used to

generate features. The protein sequences were realized as

the important information to generate features in this paper,

and in previous methods, prior information was affected by

noise. The second issue centres on the extraction of neg-

ative samples from unknown genes. Smalter’s method

considered unknown or candidate genes as negative sam-

ples, while ProDiGe randomly used multiple negative

samples of unknown genes. The PUDI method applied the

Euclidean metric to find distance between each gene fea-

tures and a positive vector. However, the feature vector

generated by PUDI consists of noisy data. Yousef’s method

applied only positive data to train a model, which is an

ineffective approach. In this paper, we find the Jaccard

distance metric the most reliable method for selective

negative genes from unknown samples.

5 Conclusion

The main objective of this paper is to identify genes

associated with Parkinson’s disease with the best known

classification methods. To specify the conditions under

which a classification method outperforms other classifiers

is a key question in machine learning. This paper, intro-

duced various methods, including Support Vector Machine

(SVM), Random Forest (RF), Adaboost, Decision Tree

(DT), Xgboost and Gradient Descent for genes identifica-

tion. After evaluating and analysing the classification

methods, more emphasis is placed on exploiting the

strengths of a model to complement the weaknesses of

another. Therefore, an n-semble method was proposed

which trained a neural network in a special way and inte-

grated three classification methods based on their F Score

to ensemble the predictions and to achieve more accurate

predictive analysis. On the basis of various performance

measures, results from the proposed n-semble method

show enhanced performance compared to state-of-the-art

Table 4 Comparative analysis of machine learning methods

Model Precision Recall F Score

SVM 80.1 81.2 80.6

Random forest 83.1 85.9 84.4

Gradient descent 82.6 85.6 84

Xgboost 84.2 86.5 85.3

Adaboost 85.8 88.4 87.0

Decision tree 80.2 80.7 80.4

N semble 88.9 90.9 89.8

Table 5 Comparison between the proposed method and state-of-the-

art methods

Method Precision (%) Recall (%) F Score (%)

Smalter’s method [9] 66.2 58.7 62.2

ProDiGe [12] 63.1 74.0 68.1

PUDI [15] 70.3 80.1 74.9

EPU [16] 78.2 80.4 78.6

SFM [13] 77.9 81.4 79.6

Proposed method 84.5 88.2 85.0
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works. We have adopted protein sequences based on pre-

vious knowledge to extract features. GA, MA AND NA

representation methods with twelve physicochemical

properties of the amino acids are adopted to convert protein

sequences into numerical feature vectors. Consequently,

t-SNE is applied to extract relevant features. We found that

physicochemical properties of amino acids would be highly

beneficial in extracting features. Compared with the pre-

vious methods on unbalanced datasets, the proposed

n-semble method improves the F Score.

In this paper, we have shown that the GA representation

method is characterized by a higher success rate than other

representation methods. Therefore, in the future, we will

consider using a single GA feature vector to combine

multiple different classifiers to improve classification. We

will also use this method in the prediction of other related

diseases.
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