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Abstract
Today’s factories are considered as smart ecosystems with humans, machines and devices interacting with each other for

efficient manufacturing of products. Industry 4.0 is a suite of enabler technologies for such smart ecosystems that allow

transformation of industrial processes. When implemented, Industry 4.0 technologies have a huge impact on efficiency,

productivity and profitability of businesses. The adoption and implementation of Industry 4.0, however, require to over-

come a number of practical challenges, in most cases, due to the lack of modernisation and automation in place with

traditional manufacturers. This paper presents a first of its kind case study for moving a traditional food manufacturer, still

using the machinery more than one hundred years old, a common occurrence for small- and medium-sized businesses, to

adopt the Industry 4.0 technologies. The paper reports the challenges we have encountered during the transformation

process and in the development stage. The paper also presents a smart production control system that we have developed

by utilising AI, machine learning, Internet of things, big data analytics, cyber-physical systems and cloud computing

technologies. The system provides novel data collection, information extraction and intelligent monitoring services,

enabling improved efficiency and consistency as well as reduced operational cost. The platform has been developed in real-

world settings offered by an Innovate UK-funded project and has been integrated into the company’s existing production

facilities. In this way, the company has not been required to replace old machinery outright, but rather adapted the existing

machinery to an entirely new way of operating. The proposed approach and the lessons outlined can benefit similar food

manufacturing industries and other SME industries.

Keywords Industry 4.0 � Smart manufacturing � Food manufacturing � Internet of things � Artificial intelligence �
Machine learning � Big data

1 Introduction

1.1 Background and motivation

Industry 4.0 [18, 33] is described as ‘‘the digital transfor-

mation of the manufacturing industry, accelerated by

exponentially growing technologies, such as intelligent

robots, autonomous drones, sensors and 3D-printing’’ [6].

This concept, offering a new avenue for smart and sus-

tainable manufacturing [3, 29], brings together digital

manufacturing and information technologies [32]. The core

concept of Industry 4.0 is the interconnection of employ-

ees, machines, orders, suppliers, customers and electronic

devices with IoT to build smart ecosystems in factory

environments. This manufacturing revolution allows very

efficient data collection and analysis across different
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machines and equipment, enabling much faster and much

more efficient production and business processes.

Industry 4.0 improves productivity, flexibility, resource

efficiency, waste and energy consumption by transforming

manual and disconnected manufacturing processes into

digitalised, interconnected, interoperable systems within a

smart environment that can allow making decisions

through large-scale real-time data, real-time communica-

tion and cooperation with machines, sensors and operators,

hence improving decision-making processes and acceler-

ating collaboration at all levels.

The productivity gains from Industry 4.0 implementa-

tion are achieved by gathering and analysing data in real

time from machines that lead to better and flexible pro-

cesses, and reductions in error rates and costs. Such inte-

gration of technologies also offers unprecedented

flexibility to respond more rapidly to problems and

opportunities that lead to optimisation [14]. Industry 4.0

also facilitates resource optimisation by in unproductive

set-up times on production lines. Notwithstanding all these

promising prospects, the existing applications of modern

digital technologies are usually underutilised or simply

ignored by traditional small- and medium-sized enterprises

(SMEs) [15, 38]. This is a very common issue, especially in

food industry.

1.2 State of the art and research gap

Most of the existing approaches enabling Industry 4.0

transformation rely on switching to new technologies,

machines or automation equipment [9, 13]. Although this is

easier to achieve in large corporations, it is not always a

viable solution for SMEs due to the huge financial barrier

as a result of the size of investment required [31, 36]. For

traditional SME manufacturers, a more critical challenge is

that new machinery cannot guarantee producing the same

quality products that their customers have been used to for

generations. A slight variation in the product texture might

lead to huge losses and impact their market position.

The consistency in food production has been the topic of

various studies [39]. Brosnan and Sun [8] propose an

approach to improve food consistency using image pro-

cessing algorithms. However, in real-world settings, factors

such as camera lens, filming angle and/or environmental

luminance can affect the image processing accuracy. In

certain settings, camera and other devices are not allowed

due to variety of reasons including data protection.

Recently, [12, 44, 45] have studied various technologies

and devices, including IoT devices and wireless sensors, in

food industry. Most relevant technology is based on data

analysis, which means data collection and analysis are at

the centre of improving efficiency and consistency. In this

respect, [19] presents a case study focusing on

understanding the use of big data in new food product

development; [20] presents some big data models to make

more informed production decisions in the food supply

chain; [40] develops a new model for production man-

agement to minimise the reconfiguration of the production

lines for different products; and [4] utilises big data to

improve sustainability management in food supply chain

design.

However, most of these approaches are piecemeal

solutions with specific aspects without a systematic

implementation of Industry 4.0, and none of them is within

the context of traditional manufacturing, which imposes

significant constraints to implement such solutions. An

alternative approach is to utilise Industry 4.0 technologies

for the century-old machines, but this is a huge challenge

as there is no off-the-shelf solution readily available to be

deployed and integrated directly to achieve the desired

expectations and outcomes. Since there is no infrastructure

for detecting, collecting, formatting, transferring, storing,

analysing and/or archiving real-time data from production

lines, the required pipelines for data capture, data mining

and data visualisation become challenging during trans-

forming and modernising traditional factories.

1.3 Aims and contributions

This paper presents a case study where we report the

challenges of implementing Industry 4.0 technologies in a

typical food manufacturing company and discuss how this

transforms the company and its industrial processes.

Recent survey papers have highlighted the need for the

identification and exploration of more use cases for the

application of Industry 4.0 models within production sys-

tems [34]. To our best knowledge and exhaustive literature

review, our work is the first of its kind to outline lessons

learned from applying Industry 4.0 technologies in a typ-

ical SME manufacturer.

The company, an SME located in the Yorkshire region

of the UK with 50? employees, is a very traditional

business with a long and cherished heritage for producing

water crackers (including Matzos) and biscuits, based on

flame-baked traditional recipes, since 1900. However, in

recent years, the financial performance had dropped as the

poor capacity utilisation, resulting from major inconsis-

tencies in product quality, taste and texture varying in

production lines that are technically identical. The factory

was not able to identify the underlying causes as they did

not entirely understand the processes. This was mainly

because production for generations relied on age-old

equipment that offered limited manufacturing control being

highly dependent upon experienced staff. When attempting

to switch products between lines, it was impossible to have

a flexible planning, preventing the company to reach its
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‘real’ capacity. This resulted in under-utilisation of some

production lines (stood idle), whilst running late shifts on

other lines to keep up with demand. This significantly

reduced the company’s efficiency and profits. Also, a lack

of innovation and implementation of new technologies led

to a bottleneck on maintaining and increasing its market

position.

It was therefore business critical for the company to

improve product consistency and increase its production

capacity; hence, the design and implementation of a digi-

talised manufacturing platform as an initial step towards

Industry 4.0 were required to make sure that factory’s

strategic objectives would be met in a short, medium and

long term.

To overcome these challenges, we have developed a

state-of-the-art smart production control system utilising

Industry 4.0 technologies, including big data analytics

[15, 16, 26], Internet of things [5, 7, 17, 42, 45], machine

learning [11], cyber-physical systems [24, 25] and cloud

computing [27, 46]. This new smart manufacturing

approach has allowed transforming production processes to

produce good quality products based on real-time data-

driven decision-making models.

By replacing the centralised manual decision-making

with an intelligent decentralised modular system, the

platform provides a smart control facility fulfilling the

factory’s strategic targets on production consistency and

capacity. The system is fully integrated into the company’s

existing production facilities for the first time since the

production started over a century ago. The platform not

only permits understanding of the processes, but also pro-

vides an automated control facility that achieves consis-

tency across different production lines by predicting

perfect conditions to bake different products without

requiring any experienced staff. This is a significant step

change for the company as machine intelligence replaces

chance and skill and tacit knowledge is made explicit by

moving into intelligent decision-making. This reduces the

risk associated with the manual decision-making and

operation, which traditionally could only be done by

experienced people.

The theory, knowledge and practice obtained in this

work enable transformation from a traditional workshop to

a modernised assembly factory. The results of this case

study will be of great benefits to other manufacturing

industries as they experience similar issues [21]. Also, the

system developed in this work provides a reference archi-

tecture in order to implement Industry 4.0 technologies in

similar industries.

1.4 Paper organisation

The paper is organised as follows: Section 2 describes the

design principles of Industry 4.0 and presents how they are

implemented in this factory. Section 3 discusses the out-

comes of this work. Section 4 concludes the paper and lists

our future work.

2 Design and implementation of Industry
4.0 solutions in traditional factory settings

2.1 Problem formulation

The production in this company has three main stages: i)

pre-baking stage: supply chain (supplying and storing

ingredients and raw materials) and mixing (mixing ingre-

dients using specific formulas and cutting dough according

to product-specific height); (ii) baking stage (cooking

products in ovens for a specific period of time); and (iii)

post-baking stage: quality control (inspecting baked prod-

ucts according to colour and texture), picking (collecting

‘perfectly baked’ products) and packing (see Fig. 1).

The company experiences a large variation in product

quality, taste and texture, resulting from the limitations of

the existing processes. Currently, the quality control com-

pletely relies on skilled operators and trained workers. All

products are made under the observation of experienced

staff. Supply chain resources and networks are not trace-

able and raw materials are not being monitored. The tem-

perature profiles of ovens are not known at all. No real-

time data are collected, and no production parameters and/

or properties are gathered during or before/after produc-

tion. Also, there is no decision support system available for

senior staff and managers as a manual decision-making

procedure is in place across all processes. A limited

number of outdated controllers have been installed in the

factory; however, most of them are not interoperable with

the existing age-old equipment. There is no computerised

automation in any of the factory’s industrial processes. The

company lacks the capability of developing a digitalised

analytics platform to tackle these issues.

Recent studies [28] on the requirements for smart fac-

tory systems highlight and back this version of factories as

a typical example of traditional manufacturing facilities.

In this study, we aim to transform the company’s

existing production processes by developing a state-of-the-

art smart production control system that utilises Industry

4.0 technologies. The methodology underpinning our work

is described in the sequel.
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2.2 Data collection

Data collection is the at the centre of our methodology. As

the products are baked mainly in ovens, we first need to

understand the temperature regime inside the ovens. Since

the factory never measured the temperatures, the maximum

temperatures reached were completely unknown. We have

therefore designed and used a heat-resistant data logger

with a thermal barrier for profiling the temperature inside

the ovens during actual baking process [23].

The data logger used is protected by a thermal barrier,

which can resist temperatures up to 1372 �C. The sampling

time frequency of the logger is 8 samples per second, and

the accuracy is þ=� 1 �C. The data logger records the

temperature measurements when it runs through the oven

tunnel. The highest recorded temperature is around 600 �C.

One particular challenge at this stage is the varying

intervals of the gas burners located in different production

lines (ovens). We have discovered that the gas burner

intervals are significantly different in Lines 1 and 2 (see

Fig. 2). Another challenge we have encountered is that the

data logger cannot be run through Line 2 as the oven

entrance is too narrow, and no data profiler can fit in. We

could neither develop nor supply externally such a thin

thermal barrier that can be fit into Line 2. This has pre-

vented us obtaining an exact temperature map inside Line

2. To overcome this issue, we have calculated the

approximate temperatures for Line 2 by observing the

temperature values and the location of gas burners in Line

1. Our method is described as follows:

Assume each gas burner, GBi, provides the same heat

radiation with the temperature measurement Tempi (see

Fig. 3). The temperature increment when data logger pas-

ses through one gas burner is calculated as

Temp ¼
P

ðTempt � Temp0Þ=N
k

ð1Þ

where Temp0 and Tempt denote the temperature mea-

surements at the entrance and the exit points of an oven,

respectively; N is the total number of gas burners; k denotes

the number of times the data logger is run with the same

travelling time between any two points, i.e.

T1
j � T1

i ¼ Tk
j � Tk

i . Here, Ti ¼ D=V , where D is the dis-

tance between GB0 and GBi and V is the conveyor belt

speed.

We have validated this method using the actual tem-

perature readings from Line 1. In Fig. 4, the orange plot

shows the mean value of Line 1’s actual temperature pro-

file, and the blue plot illustrates the approximate temper-

ature profile of Line 1 calculated using Eq. 1. The

similarity between actual and calculated plots shows that

Eq. 1 can be used for approximating a temperature profile

for Line 2. In Fig. 4, the green plot shows the approximate

temperature profile for Line 2, which can now be used in

the following stages.

2.3 Real-time big data

Running the data logger through the ovens is important to

understand the temperature regimes inside the ovens, but

unlike Industry 4.0 IoT devices, this cannot produce a real-

time big data collection process. The data can only be

collected at real time by installing fixed probes, which

requires drilling various points of an oven and placing the

probes permanently. Since drilling is very risky for hun-

dred year-old ovens, it is imperative to identify the optimal

number of probes to be installed. Optimising the number of

probes will prevent giving too much damage to the ovens,

reduce the installation costs and reduce the complexity of

machine learning process (another required stage of our

methodology). On the other hand, installing too few probes

will result in inaccurate temperature mappings. In order to

achieve this, we have divided the ovens into a set of virtual

zones. Each zone defines the location of a pair of probes to

be installed. A related research on zones can be found in

[30].

In order to identify the zones, we have applied the k-

means clustering method. We have found the best k (zone

Supply Chain Mixing Cooking Picking Packing

Pre-baking Baking Post-bakingFig. 1 Production stages

Fig. 2 Two identical (same

length, width and height) ovens

with gas burners at different

locations (the gas burner map

for Line 1 is on the top, for Line

2 is on the bottom)
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numbers) by applying the sum of squared errors (SSE)

method, using Eq. 2

SSE ¼
Xk

i¼1

X

x2Ci

ðx� liÞ2 ð2Þ

where x is a data instance, i.e. a (scaled) temperature

reading, in cluster Ci and li is the centroid of Ci. Namely,

we calculate the sum of the squared differences between

the exact temperatures in a cluster, i.e. a zone, and their

(nearest) mean (scaled) temperatures (predicted by

k-means). Thus, a lower SSE value means less discrepancy

between the actual data and the mean values, hence pro-

viding a better approximation for temperature profiles.

As Fig. 5 shows, the best value is obtained when k ¼ 16

(the smaller the coefficient value, the more precise the zone

definition). However, after k ¼ 8, the gain obtained is very

minimal. Considering too many zones with more probes

may damage the oven, we choose k ¼ 8. Therefore, based

on these results, we have defined eight virtual zones for

each production line, from the oven entrance to the oven

exit. Each zone in the oven allows us to install two per-

manent IoT temperature detecting probes, controlled by a

device gateway. The gateways are IoT-enabled devices,

which means all temperature readings can be retrieved by

accessing the gateway over Wi-Fi. Each of the probes

provides temperature readings eight times per second. This

results in a large amount of data to be collected and pro-

cessed, key ingredient of big data analytics.

2.4 Internet of things and cyber-physical
systems

One of the important components of Industry 4.0 is the

fusion of devices and technologies of Internet of things and

cyber-physical systems. By utilising computer and net-

work-based devices, physical processes can be controlled

using the feedback generated from physical systems, or

vice versa (see Fig. 6). To achieve this, a number of

environmental data monitoring sensors have been deployed

in various locations within the premises. A centralised

device gateway collects all environmental data including

air temperature, air pressure and humidity. The gateway

also uploads these measurements to a database. The stored

Fig. 3 An oven profile,

assuming each gas burner

provides the same heat radiation

with equal temperature

increments, which results in a

steady temperature increase as

we go along the oven

Fig. 4 Mean value of Line 1’s actual temperature profile (the orange

plot), the approximate temperature profile of Line 1 calculated using

Eq. 1 (the blue plot), and the approximate temperature profile of Line

2 calculated using Eq. 1 (the green plot). x-axis represents the gas

burner index (i.e. GBi) and y-axis represents the scaled temperature

values

Fig. 5 Sum of squared errors (SSE) candlestick chart after running k-

Means Clustering (k 2 ½2; 16�) 100 times
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data are monitored and displayed on the dashboard of the

software platform, which is then used to control production

processes.

Although each device gateway is a centralised node for

several environmental sensors, the whole network is

decentralised and distributed. So, one or few component

failures in the network will not result in entire system

deadlock. Also, physical systems will trigger alerts on the

dashboard with detailed error(s) and location(s).

In an Industry 4.0-enabled manufacturing system, data

should be processed at real time with a flexible way for

continuous data flow [2], because production resources

need to be allocated (or re-allocated) as soon as possible to

wherever they are needed. Therefore, both the speed of the

cutters (cutting the crackers and biscuits in certain shapes

before travelling through ovens) and the conveyor belts

should be adjustable at run time so that the products can

travel at right speeds (e.g. slower cutter and conveyor belt

speeds result in more flame-burn on crackers and biscuits),

and they does not cause too much or too less traffic in

packaging area.

We have therefore installed two programmable logic

controller (PLC) computing devices to control the speed of

cutter and conveyor belt at real time. PLCs are able to

adjust the speed by monitoring the production line. The

speed information is displayed on the dashboard, and it is

saved in the database.

2.5 Machine learning

One major issue in this factory is that two similar pro-

duction lines are not able to produce the same quality

products; even an individual production line using a unique

recipe and the same ingredients does not produce the same

quality product at times.

Machine learning can be used to discover patterns from

datasets [10], which allows learning knowledge from

human experts. It can even go beyond the human expertise

by learning the ‘perfect conditions’ that lead to good

quality products and fine-tuning product quality, hence

achieving the consistency.

The challenge, however, is that there are many param-

eters, e.g. oven temperatures, environmental conditions

such as air temperature, air pressure and humidity that can

affect the quality of the products. In our initial trials, we

used all data collected from the entire factory premises (see

Sects. 2.3 and 2.4); however this made machine learning

very cumbersome and slow; we therefore reduced the

multi-dimensionality of the data by analysing the effect of

each parameter in the product quality and consistency. Our

analysis showed that although the environmental variables

outside the baking area were important to monitor for pre-

baking and post-baking processes, they had negligible

effect on the baking process (as compared to oven tem-

peratures); hence, in the machine learning process we only

Fig. 6 System architecture

based on Industry 4.0, where the

‘physical devices’ layer

contains gateway, smart meter

(a digitalised meter that can host

web server for data accessing),

PLC (programmable logic

controller) and all (Industrial)

IoT sensors; the ‘ETL’ layer is

the data tunnels developed and

supported by different computer

devices; the ‘cyber-physical

system’ layer contains the data

collector, database and the

machine learning module; the

‘Dashboard’ hosts the data

visualisation and decision

support system as well as

reporting and data archive
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considered the environmental variables around the baking

area.

We note that supply chain parameters and ‘dough con-

sistency’ are other factors to consider, but this is a future

work and not within the scope of this work.

As discussed above, we collect the data at real time on a

large scale from the probes installed in each zone. We have

actually gathered more than 250K data instances within a

period of six months. For each baking episode whilst col-

lecting the temperature map of the ovens, we have also

recorded the quality of the baked crackers and biscuits.

Namely, the factory’s quality engineers with expert

knowledge with years of experience have manually given a

baking score of 1.0 for ‘good’ quality crackers produced in

a baking episode and -1.0 for products whose properties

such as colour and texture did not meet the factory’s

quality standards (see Fig. 8). In order to create our training

data set, we have also monitored and collected all envi-

ronmental data, such as air temperatures, surface temper-

atures, humidity and air pressure as well as the speeds of

the cutters and conveyor belts. These data have been used

as input for machine learning algorithms.

It is important to mention another challenge we had to

overcome. Although Lines 1 and 2 are very similar

(identical length, width and height), they have different gas

burner maps (see Fig. 2), which means that the products are

not exposed to the same temperature regime. A significant

difference between the temperature profiles of Lines 1 and

2 can be observed in Fig. 7. As the figure shows, the

products are exposed to very different temperatures, which

is the main cause of the inconsistency issues across these

lines.

Since Line 1 provides a better product quality, we have

taken it as the reference line, and when applying machine

learning in Line 2, we have used the training data obtained

from Line 1 in order to force the predictors to apply the

temperature profile of Line 1 to Line 2. To reduce the

variability even further, the cutters’ speeds on both pro-

duction lines are precisely adjusted to the same value. Both

conveyor belts have been set at the same speed so that

crackers and biscuits’ traveling time in both oven tunnels

are equal (from oven entrance to oven exit).

In the training phase, as specified in Eq. 3, a model fm is

trained by the machine learning algorithm using the

training set. Our training data contain the temperature

readings of each zone and a ‘baking’ score of ‘1.0’ or ‘–

1.0’ (i.e. product is ‘good’ or ‘bad’). Figure 8 illustrates a

subset of our training data for a baking period of one day.

Then, as specified in Eq. 4, the model is validated/tested by

validating/testing the datasets for Line 2 prediction. In

other words, we use the data collected from Line 1 to train

machine learning models and then validate/test the trained

models with the data collected from Line 2.

fm : fX : Training setsg ! fY : Training Scoresg ð3Þ

fm : fT : Validating/Testing setsg ! fP : Predictiong
ð4Þ

To validate our results, we have divided the original

dataset from production Line 1 into two groups, 70% of the

data as the model training set and the rest as the model

testing set. As summarised in Table 1, KNN classifier has

the highest training score and prediction accuracy. Thus,

we can be confident this model is a good predictor.

Machine learning transforms the existing processes,

where the quality of products depends on chance and skill

such that operators try to find the best baking conditions by

controlling the equipment manually, e.g. adjusting gas

valves of ovens by trial and error. This leads to significant

waste and suboptimal products, which are not always

Fig. 7 In both figures, x-axis represents an episode of one day

operation of the ovens, and y-axis represents the scaled temperature

readings of eight zones. a Temperature profile of Line 1. b Temper-

ature profile of Line 2. This line usually operates less than Line 1;

hence, one day episode is shorter
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‘perfectly’ baked. Machine learning reduces the chances of

baking crackers in wrong conditions by predicting the best

baking conditions inside the ovens, hence enabling to

achieve better quality products with the required standards

for product properties that are being met.

2.6 Cloud-based dashboard

We initially used a local server to store the data collected

from the IoT devices. But, we experienced a number of

issues. The system needed to be upgraded once the stored

data started scaling up. The server failed a few times (due

to environmental conditions of the factory), which caused

interruptions in the vital data collection process and sig-

nificantly delayed the machine learning process. Also, the

response time for troubleshooting was very slow, as the

factory did not have any in-house IT specialist. The

maintenance and emergency services were very expensive.

To address these issues, we have switched to a cloud-

based solution. Cloud and edge-cloud environments are

increasingly utilised in various services involving huge

data migrations across the underlying network infras-

tructure [1]. We have designed and developed a cloud-

based dashboard, which allows access to all IoT devices

and interfaces at real time from anywhere (see Fig. 9).

The system can (i) collect multi-scale data (including

temperature maps inside the ovens, environmental data

within the premises and operating parameters such as

cutter and belt speeds from the production lines), multi-

source data (including raw sensor data from the IoT

devices and PLC-generated data), multi-variant data (in-

cluding training sets, testing sets and validating sets) in

cloud servers; (ii) present data visualisation for manu-

facturing information and knowledge; (iii) run machine

learning algorithms and predict the product quality; (iv)

support decision-making process; (v) provide application

programming interface (API) access for external users on

selected data resources; (vi) monitor consumption, pro-

duction and stock levels; and (vii) report information for

all stakeholders and external partners (e.g. supply chain

resource report). In terms of costing, the cost of cloud

services offsets the equipment and maintenance costs of

using local servers; hence, this does not have a negative

effect on the production cost.

One important feature of the cloud-based dashboard is

that it provides a dynamic (optimal) temperature regime at

Fig. 8 A subset of the training data. a Temperature readings of eight

zones (obtained from Line 1, i.e. the reference production line).

b Baking scores, Good (1.0) or Bad (-1.0), given for the quality of a

product

Table 1 Performance

comparison of model checking

algorithms. In our experiments,

we have used the software

library, scikit-learn (http://

scikit-learn.org). Five chosen

algorithms (plus four different

SVM kernels) are implemented

using the same training datasets;

all parameters are set as the

library’s default for comparison

purposes

Algorithm Training score Prediction accuracy score

KNN classifier 0.9876543209876543 0.9465020576131687

Logistic regression 0.8130511463844797 0.8477366255144033

Naive bayes 0.9400352733686067 0.9670781893004116

Neural network MLP 0.8959435626102292 0.9135802469135802

SVM linear kernel 0.8148148148148148 0.8518518518518519

SVM poly kernel 0.7883597883597884 0.7901234567901234

SVM RBF kernel 0.8130511463844797 0.8436213991769548

SVM sigmoid kernel 0.7760141093474426 0.7901234567901234
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a particular cooking episode based on the varying condi-

tions and parameters (see Fig. 10). This allows the pro-

duction team to have in-depth understanding of the process,

which is invaluable for troubleshooting if any recurring

issues arise. The dashboard also provides insight into the

temperature map inside the virtual zones by utilising a

colour-assisted visualisation tool (Fig. 11). The tool sends

alert messages to the personnel in charge if the tempera-

tures go below or above a certain defined threshold.

2.7 Virtualisation and smart factory

The term ‘virtualisation’ in Industry 4.0 means that all

physical processes can be monitored either in a cyber-

physical system or in an independent virtualisation layer.

All sensor data and PLC data are linked to a serialised and

simulated models. Thus, a virtualised factory in digital

copies is created based on real-time data for monitoring

and simulation; all models and their relationships in these

copies form a virtualised smart factory. All production

schedules, production guidances, productiveness and

effectiveness are supported and provided. Therefore, pro-

duction operators and factory managers are able to simulate

changes on a virtualised monitor prior to inserting jobs into

the real schedule. Meanwhile, a combination of several

monitors can be used as a decision support system; for

example, a production virtual monitor and a stock virtual

monitor can help to make a production plan and schedule.

Three virtualised monitors (see Fig. 6) have been

developed and setup for the entire factory: Consumption

Monitor monitors how much flour, water and other ingre-

dients are used for each product based on a particular

production line, including statistical data for supply chain

management; Production Monitor monitors what the cur-

rently production efficiency is for one particular product,

including production guidance; Stock-Level Monitor mon-

itors the factory warehouse stock level for all products,

including historical datasets and seasonal predictions for

marketing and sale plans.

2.8 Security and continuity

Each production line has one independent IoT device

gateway installed for bridging all sensors and/or PLC

consoles, as some sensors do not support energy-intensive

protocols, such as Wi-Fi or BLE (Bluetooth Low Energy),

and some others require a public network connection

without a secured communication tunnel. All these device

gateways are able to upload raw data onto the cloud data

repository and send real-time notifications to the dashboard

to report the production status.

Meanwhile, the gateway provides a trusted communi-

cation, which acts as an intranet proxy between data

sources and archive repositories. Since there are potential

security risks for the internet access through wireless

interfaces for IoT devices [35], the gateways encrypt the

communication tunnels and the data payloads; therefore,

only verified data interfaces can be accessed from the

internet by a secured application programming interface

(API).

When one of nodes or an entire region has a failure, the

rest of the nodes will continue to work together and trigger

an alert to relevant stakeholders. There is only one

exception: the system will stop when two nodes (or

regions) try to execute conflicting goals. One solution for

this issue is to delegate each task or goal to an executive

Fig. 9 Dataflow

Fig. 10 Dashboard

chart visualisation
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priority level as a higher-level task has more priority to be

executed.

Increased decentralisation and interoperability of

Industry 4.0 systems lead to increased (cyber-)security

risks [22, 37, 41, 43]. Based on our risk assessment, the

potential security issues can be classified into two main

categories: (i) direct attacks externally and (ii) indirect

attacks from internal vulnerable devices. The objectives of

these potential attacks are to access business critical data

such as product recipes (resulting in a high business risk)

and/or manipulate the production data (resulting in damage

in production capability).

The security controls for these threats on the system

level are: (i) to isolate the partition of business data and to

secure the access to authorised staff only and (ii) to enforce

production data access ‘read-only’ and to lock the ‘write’

function on the production control unit.

We have considered several security-related scenarios

during the deployment and delivery of our system:

In the first scenario, one of the databases is hacked by

intruders. To address this scenario, we have developed a

secure API with VPN access to the target database, instead

of only relying on database access credentials.

In the second scenario, one of the PLC devices con-

nected to the internet is hacked by attackers. To address

this scenario, we have revoked the ‘execute’ privilege from

all user accounts except one secured ‘Editor’ profile, which

does not participate in daily productions and/or operations,

except for deploying fully tested PLC codes.

In the third scenario, one of the mobile devices used by

production operators is hacked by intruders. To address

this, we have set up a user-level access, where each system

user has a unique access right for a particular activity. Also,

we have introduced more ‘read-only’ operator user rights

rather than ‘read-and-write’ rights.

We have also defined a business continuity plan to

prevent events that result in the inability of the factory

operation and/or production. The plan includes forming a

continuity management monitor, a software-based database

performance identifier. One of the most common perfor-

mance bottlenecks in a software is the database I/O. There

are various reasons for data storage performance issues and

problems, but measuring the database I/O traffic and per-

formance can also be used as a data measurement for

monitoring the health of software systems. If latency

becomes too large, or if the throughput of the database

connection pool turns out to be too high, the system will

notify the factory recovery team to confirm whether the

system is running well. Meanwhile, this software conti-

nuity management has been deployed in the database ser-

ver where the intranet and internet are not accessible.

2.9 Decentralisation and interoperability

The increasing requirements for efficiency, capability,

consistency and productivity of production processes create

new challenges for conventional centralised systems.

Industry 4.0 provides new avenues for decentralisation and

interoperability. Decentralisation allows each node (or a

region) to make decisions for a particular purpose. Mean-

while, this approach tolerates failures on an individual unit

or a group of nodes in the distributed device network. The

core of interoperability is to integrate various systems, e.g.

IoT and CPS devices. The interoperability consists of

communications, protocols, standards and real-time data

processing. It has been shown that interoperability between

different operation and production devices is crucial for

efficient food production.

Figure 6 shows our approach for interoperability and

decentralisation of various modules and components.

3 Discussion

The work presented in this paper has led to significant

achievements for the business. In the following, we outline

some generic lessons useful for other similar SMEs and

cases:

3.1 Efficiency, productivity and consistency

The implementation of Industry 4.0 proposed in this paper

has allowed the factory to better understand the production

processes, and the parameters (e.g. oven temperatures,

environmental conditions, belt/cutter speeds, etc.), hence to

achieve product consistency across different production

lines. This has significantly increased the production effi-

ciency. The company can now reduce the current risks

involved with expanding the business, with an advanced

operation, in order to deliver the consistency and low

Fig. 11 Dashboard zone

visualisation
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manufactured costs to maintain a competitive edge in

markets where the company believes opportunity exists.

This smart manufacturing approach made tacit knowl-

edge explicit, i.e. reducing the risk associated with the

manual decision-making and operation, traditionally done

by specific people, by moving into intelligent decision-

making, operating on a large-scale real-time big data

systems.

3.2 Lower operating costs

Whilst Industry 4.0 has improved the productivity and

efficiency, it has also increased the capacity and reduced

the waste. For example, using the dashboard features,

operators are now able to monitor the optimum temperature

proactively, resulting in savings in energy consumption.

These savings have also a positive impact on environment

as a result of reducing the usage of limited resources and

lowering emissions. The system is also able to prevent

downtime as maintenance becomes predictable; thereby,

human labour and cost can be reduced as a result of

increased efficiency and capacity.

3.3 Innovation

This original work has allowed a highly traditional food

manufacturing company that still produces on machinery

more than hundred years old to move over to Industry 4.0

without making huge investments in changing the existing

machinery. This has therefore extended the life of the

current production facilities and enabled the business to

now consider capital investment based on performance

data analysis and new production insights.

3.4 Transformation

This work not only has helped the business become a

technology-driven enterprise and achieve its strategic

objectives, but also led to a culture change within the

company. Thanks to an open agenda through working with

the academic institutions, from the technicians to the top

management, all stakeholders in the company have wel-

comed this step change and been actively involved in

transferring and integrating the knowledge/technology

generated in the project into the business.

4 Conclusions

The application of Industry 4.0 in modern manufacturing

industries is increasingly competitive, imperative but

underutilised or ignored by traditionalist SMEs. This paper

presents the design, development and implementation of

Industry 4.0 in a traditional food manufacturer as a case

study, where we have successfully utilised some emerging

technologies, including Internet of things, big data analyt-

ics, machine learning and cyber-physical systems.

The smart production control system developed in this

work provides a novel data collection mechanism and an

intelligent decision support. The system has been suc-

cessfully integrated into the company’s existing equipment

and machinery.

Our results show that we can accurately predict the

baking conditions to achieve product consistency. These

results are important for the food industry, as operators and

data scientists gain a new understanding of the data; the

analysed results improve productivity and consistency,

hence increasing performance and profitability.

Legacy infrastructure is a common occurrence in many

of the industries. The movement towards smart factories

and Industry 4.0 requires adequate and realistic use cases.

The use case presented in this work, and the developed

knowledge/technology will benefit other manufacturers

with legacy infrastructure experiencing similar issues by

providing a reference architectural system for implement-

ing Industry 4.0 technologies in food manufacturing

industries. This approach will also open new avenues for

not only food companies but also other industries that are

heavily reliant on manual control. The system architecture

(Fig. 6) and the data flow architecture (Fig. 9) are generic

enough to be adaptable and implemented in many manu-

facturing ecosystems.

The developed knowledge/technology will benefit other

manufacturers with legacy infrastructure, experiencing

similar issues, by providing a reference architectural sys-

tem for implementing Industry 4.0 technologies in food

manufacturing industries. This approach will also open

new avenues for not only food companies but also other

industries that are heavily reliant on manual control. The

architecture presented in Fig. 6 is a generic approach that

can be implemented in many manufacturing ecosystems.

Our future research will focus on integrating more food

science aspect, in particular ingredients, and food pro-

cessing, e.g. dough consistency, as well as supply chain

aspects, e.g. the effect of storage in ingredient properties.

We will also focus more on cyber security and system

optimisation.
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