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Abstract
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential

alternative to reverse transcription-polymerase chain reaction due to the limited scale of testing. The chest X-ray (CXR) is

one of the alternatives to achieve fast diagnosis, but the unavailability of large-scale annotated data makes the clinical

implementation of machine learning-based COVID detection difficult. Another issue is the usage of ImageNet pre-trained

networks which does not extract reliable feature representations from medical images. In this paper, we propose the use of

hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features. The

HCN uses the first convolution layer from COVIDNet followed by the convolutional layers from well-known pre-trained

networks to extract the features. The use of the convolution layer from COVIDNet ensures the extraction of representations

relevant to the CXR modality. We also propose the use of ECOC for encoding multiclass problems to binary classification

for improving the recognition performance. Experimental results show that HCN architecture is capable of achieving better

results in comparison with the existing studies. The proposed method can accurately triage potential COVID-19 patients

through CXR images for sharing the testing load and increasing the testing capacity.
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1 Introduction

Coronavirus is a family of enveloped, positive-sense sin-

gle-stranded RNA viruses that are important viral patho-

gens and classified within the Nidovirales order.

Considering the history of coronavirus, it has been

described for over seven decades, with murine coronavirus

JHM being the first to be reported in 1949. In 2003, the

variation of the same virus reported 770 deaths from severe

acute respiratory syndrome (SARS) [1]. Later in 2004 and

2005, severe bronchiolitis and upper respiratory tract

infections were reported to be caused by the family of the

same virus. The zoonotic virus MERS, transmitted from

animals to humans, another in the list from the same family

caused over 850 deaths [2]. Finally, in December 2019,

pneumonia-like cases were reported in the Wuhan and later

identified as COVID-19. The disease has been declared a

pandemic by WHO [3] and is marked as the most severe as

any other coronavirus because of its high transmissibility

and no pre-existing immunity about the virus. The world is

undergoing an intimidating situation because of the pan-

demic novel coronavirus. Currently, over 61.8 million

confirmed cases and 1.45 million deaths have been reported

as of 28th November 2020 worldwide. The illness comes in

the episodes of acute severe respiratory discomfort initi-

ating from throat pain, dry cough followed with a high

fever, fatigue, loss of smell or taste, and shortness of

breath. The continued progression can lead to the risk of

serious medical disorders, such as hypoxia, dyspnea,
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multiorgan failure, shock, a respiratory failure which

requires manual ventilation, and the worst case (death)

[4, 5]. As per the center for disease control and prevention

(CDC) report, there are many similarities between COVID-

19 and flu (influenza), however, they differ in terms of

incubation period, symptom onset, shortness of breath, and

loss of taste of smell. Furthermore, the severity of the

COVID-19 is much higher than the influenza, whereas the

COVID-19 is more deadly than the later one [6]. The

similarity between common flu (influenza) and COVID-19

is another reason to make the testing process faster for its

early detection.

The rapid increase in COVID-19 infections is creating a

strain on the healthcare facilities around the globe [7, 8].

There are multiple ways for COVID-19 diagnosis, but the

reverse transcription-polymerase chain reaction (RT-PCR)

remains the gold standard that detects the viral nucleic acid

from the throat and nasopharyngeal swabs. However, the

diagnosis using RT-PCR takes more than 4–6 h and has a

low viral load [9] which refers to the amount of virus found

in the sputum. Moreover, due to the limited number of test

kits, machines, and human experts, the scale of testing is

marginally low for developing countries. South Korea is

the first one to opt for massive testing but a lot of devel-

oped as well as developing countries cannot follow the

same strategy due to the above limitations [10–13].

Therefore, a fast way for COVID-19 diagnosis is in need

for the timely trace, test, and treat (3T) strategy. Antigen

testing is considered to be a fast way of COVID-19 diag-

nosis but yields poor sensitivity, therefore is not recom-

mended [14].

An alternative to conventional testing is the analysis of

chest computed tomography (CT) scans for COVID-19

diagnosis as it belongs to the family of pneumonia. As per

the 10th revision of the International Statistical Classifi-

cation of Diseases and Related Health Problems (ICD-10)

COVID-19, SARS, and MERS fall under the category of

viral pneumonia, whereas the Streptococcus, ARDS, and

pneumocystis belong to the bacterial and fungal pneumo-

nia, respectively [15]. The radiological examination

through CT scans has shown better sensitivity in compar-

ison with RT-PCR [9, 16] and can detect COVID-19 from

weakly positive or negative cases declared by RT-PCR.

However, despite the better diagnostics, CT-scan has some

of the problems similar to that of RT-PCR testing as they

are limited in numbers and are too expensive for general

masses. Moreover, the CT suites can get contaminated with

the regular visits from COVID-19 patients and unlike nasal

swabs used in RT-PCR the CT-suites are not disposable,

thus, they require extensive cleansing, which put the radi-

ologists and the patients at greater risk [14]. As an alternate

modality to CT-scans the chest X-rays (CXRs) have been

given a lot of attention for a fast COVID-19 diagnosis. It

should be noted that the RT-PCR takes about 4–6 h on

average, whereas the CXR takes less than half an hour.

Furthermore, in case of contaminated input sample, the

time gets accumulated which makes the RT-PCR testing

highly time consuming.

The ground glass opacities, peripheral, and bilateral

consolidation described by CT-scans can also be reflected

by CXR findings [16, 17]. Wong et al. [18] showed that the

COVID-19 can be diagnosed using CXRs but yield low

sensitivity in comparison with RT-PCR testing. However,

there have been some cases (i.e., 9%) where CXRs were

able to detect the abnormalities, while the RT-PCR tests for

those patients were declared negative. It has been estab-

lished that the CXRs cannot replace the RT-PCR diagnosis

at this instance but both of the diagnosing mechanisms can

be used to reduce the strain on healthcare systems world-

wide. CXR can potentially be used for patient triage as the

indication of pneumonia can be detected with higher

accuracy. Furthermore, the triage can be extended by dis-

tinguishing between bacterial and viral pneumonia so that

the RT-PCR resources can be spared, substantially.

The use of bio-inspired artificial intelligence algorithms

and deep learning approaches have shown promising

results in many fields [19–22] and have been used exten-

sively for the applications such as automatic skin temper-

ature detection, mask detection, social distancing measures,

RNA strain analysis, and so forth, during this pandemic.

Researchers are actively working on improving the CXR

diagnostics for COVID-19 classification. Wang et al. [23]

recently proposed COVIDNet from CXR images and have

been shown to achieve 91% sensitivity. However, there are

a few problems associated with the existing methods. First,

the volume of the dataset which is quite limited due to the

current public health emergency. Second, the features are

either extracted from hand-crafted methods or a single end-

to-end deep learning architecture pre-trained on ImageNet

which limits the actual representation. Third, due to the

high data imbalance, achieving good sensitivity, precision,

and accuracy for COVID-19 diagnosis using multiclass

classification are quite hard. Fourth, the system is limited in

a sense such that it only deals with a few labels; however,

the current recognition systems are unable to elevate

COVID-19 patients from the patients having flu only. The

methods are not capable of determining the severity of the

case. Therefore, considering a standalone solution for

COVID-19 detection is not possible at this instance.

To overcome the above limitations, we proposed a

hierarchical convolutional network (HCN). We solve the

data distribution problem by extracting feature maps from

multiple pre-trained networks which is a natural way of

augmenting images suggesting that the volume of the data

increases in accordance with the number of pre-trained

networks used while keeping the number of input images
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same. We explore both the feature-level and decision-level

fusion strategies for the augmentation tasks. The feature

representation problem is addressed by using the first

convolutional layer of COVIDNet-CXR3C [23] cascading

with the initial layers of some of the well-known pre-

trained networks to extract the features. We propose the

use of ECOC conjunct with HCN to transforms the mul-

ticlass into a binary classification problem for improving

the classification accuracy and sensitivity. The advantage

of using HCN is that it works well with a relatively small

dataset and the data augmentation compels the network to

avoid overfitting. We present a way to triage potential

COVID-19 patients through CXR images with other ways

of testing to speed- and scale-up the testing process. We

further extend our analysis to compare the performance of

HCN variants with the existing works. The class activation

maps are also used to show the interpretation of the clas-

sification results. The contributions of this study are stated

as follows:

1. We propose HCN to classify COVID-19 from CXR

images.

2. We propose the use of a unique method, i.e., using the

first layer of COVID-19 cascaded with the initial layers

of pre-trained networks, to augment the data.

3. We propose the ECOC encoding scheme to transform

the multiclass into the binary classification problem.

4. We present a potential triage strategy for speeding and

scaling up the testing process.

The rest of the paper is structured as follows. Section 2

provides a literature review of existing works. Section 3

describes the proposed methodology. Section 4 presents

the experimental results and comparison with the existing

works. This section also proposes a strategy to triage

COVID-19 patients. Section 5 concludes the paper.

2 Related work

There has been a lot of research involved for practicing

computer assisted systems in the domain of healthcare.

Those researches include almost all the areas of medicine

and obtain efficacious results, especially when dealing with

the images that are produced in the domain of medicine.

For this purpose, a number of deep learning architectures

were analyzed before employing certain known neural nets.

Many studies have explored CXR images as a surveillance

tool for diagnosing and screening COVID-19 using deep

learning techniques. With relevance to the proposed work,

we divide the related works section into three divisions.

The first subsection will highlight the studies using deep

learning techniques specifically on the CXR modality. The

second subsection consolidate the works using CXR

images for COVID-19 diagnosis and the third present the

works focusing on feature and decision-level fusion

strategies for COVID-19 diagnosis using CXR images.

CXR images using deep learning: Rajpurkar et al. [24]

developed an algorithm for multiclass classification on CT

scan (CXR dataset,) i.e., chest X-ray 14 dataset. They built

a 121 layers CNN architecture to classify the features of the

given input X-ray images to one of the 14 different classes.

The algorithm was named as CheXNet reporting an accu-

racy ranging from 0.73 to 0.93 for all 14 classes. The deep

radiology team [25] described an approach to pneumonia

detection in chest radiographs. Their method used an open-

source deep learning object detection based on CoupleNet

(a fully connected CNN).

The local and global features were extracted with the

intent to classify pneumonia. The model’s accuracy was

improved further using ensemble algorithm. Jakhar et al.

[26] focused on diagnosing the presence of pneumothorax

using the frontal view of CXR images. The segmentation

techniques have been used to extract the features and

predict an output mask correspondingly. U-net and Pre-

trained ResNet weights were used to achieve detection at a

very fast and accurate way with promising results. Ranjan

el at. [27] used interpolation techniques by downsampling

the high dimensional medical images and further feeding

them into the deep learning architecture. An autoencoder is

created which includes an encoder, decoder, and a CNN

classifier to reconstruct the input images. A combination of

MSE and BCE loss were used at last to predict the thoracic

disease in the compressed domain obtained after autoen-

coders. Wang et al. [28] studied ChestX-ray8 dataset with 8

different classes of disease as atelectasis, cardiomegaly,

effusion, infiltration, mass, nodule, pneumonia, and pneu-

mothorax using deep CNN based on unified weakly

supervised multi-label image classification and disease

localization formulation. This dataset was trained and tes-

ted on different pre-trained networks like AlexNet,

VGG16, GoogleNet, and ResNet-50. COVID-19 diagnosis

with CXR images: Basu and Mitra [29] demonstrated a

novel technique using transfer learning for diagnosing

COVID cases with chest X-rays. Their algorithm was

named as domain extension transfer learning (DETL) that

used the gradient class activation map for finding the

characteristic features from the large dataset from different

sources of radiology. The model with visual pattern was

efficient for distinguishing between classes of COVID.

Ozturk et al. [30] discussed the method using DarkNet

model and used YOLO object detection system. The codes

were created for assisting the radiologist for initial testing

and screening for COVID cases. A deep model using CXR

images was proposed with accuracy reported for two

findings as (binary) 98.08% and for multiclass cases as

87.02%. Farooq and Hafeez [31] studied the differentiation
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of the COVID-19 cases from that of the pneumonia cases

using the CXR images. A pre-trained ResNet-50 architec-

ture was evaluated on the two publicly available datasets

by using a three step technique. Their work includes the

preprocessing steps on images as progressive resizing,

cyclical learning rate findings, and descriptive learning rate

findings. Kumar et al. [32] presented the use of ResNet152

and machine learning classifiers distinguishing between

cases of COVID-19 and non-COVID-19 on CXR images.

Different classifiers were used for evaluating the perfor-

mance with an accuracy of 0.973 with Random Forest and

0.977 with XGBoost is reported in the paper. Zhang et al.

[33] developed a deep learning model which was com-

posed of a backbone network, a classification head, and an

anomaly detection head. High-level features were gener-

ated from images using the backbone network and further

these features were passed onto the heads to extract the

classification score and anomaly score. Binary cross-en-

tropy loss was used for classification score and deviation

loss for anomaly score. Abbas et al. [34] proposed a

DeTraC CNN architecture for the classification of the CXR

images as COVID-19. DeTraC is an acronym for decom-

pose, transfer, and compose which deals with any irregu-

larities with the help of class boundary obtained by class

decomposition method. The extra decomposition layer for

adding more flexibility to their decision boundaries was

added with the motive to decompose each class into sub-

classes and assigning labels to the new set of class for

getting final results. The shallow tuning mode for feature

extraction was employed. The model gave high accuracy of

95.12% with comprehensive dataset of images. Misra et al.

[35] presented a multi-channel transfer learning model

based on ResNet architecture on different sets of dataset

composition. Three classes as normal, pneumonia, and

COVID were used as the target values. So, they used 3

subnetwork model of binary classification for them similar

as one vs all classification. Further, a fine-tuning with

another model to do to achieve the classification output.

Wang et al. [23] investigated COVIDNet to makes pre-

dictions using an explain ability method based on deep

neural network-based architecture for detection of the

COVID disease. The customized lightweight design pattern

was an added advantage with reduced computational

complexity. Adam optimizer was used using a learning rate

policy on different set of datasets, namely publicly avail-

able dataset and COVIDx dataset. This dataset was gen-

erated which contains 358 COVID-19 affected X-ray

images, 8066 normal X-rays and 5538 pneumonia affected

X-rays. Both quantitative and qualitative analysis was

conducted on the above dataset with good score of about

93.3% test accuracy.

Rodolfo et al. [36] discussed features and decision level

fusion method by proposing resampling algorithms for

detecting COVID on CXR images. Texture descriptions

were used for extracting multiple features with CNN, and

several fusion techniques were used for strengthening the

texture descriptions for final classification. The results of

the research tested in RYDLS-20 gave an average results of

0.65 with macro-average F-score metric using a multiclass

labelled data samples and 0.89, as F-1 score for classifying

COVID-19 in the hierarchical classification case. Dhurgam

et al. [37] proposed and demonstrated novel approach of

extracting features from the LBP-transformed CXR images

of different types of chest infections, with the aim of

developing an automatic CAD system to be used for dis-

tinguishing between COVID-19 and non-COVID-19. The

findings resulted an accuracy of 94.43%. Rahimzadeh and

Attar [38] proposed the concatenated neural network by

capturing the features extracted from Xception and

ResNet50V2 and then fusing it to a convolutional layer that

is connected to the classifier. The dataset included 180

CXR of COVID patients, 6054 pneumonia affected X-rays,

and 8851 normal X-ray images. The fine-tuned

ResNet50V2 and Xception network predicts the result with

the average accuracy as 99.56%. The uniqueness of the

proposed work can be highlighted from both fronts, i.e.,

learning representations and network design. We propose a

way to naturally augment the data by using first convolu-

tional layer from COVID-19 followed by the well-known

pre-trained networks. We show that the resultant repre-

sentations are more diverse than the ones used in existing

studies. Moreover, the proposed way of extracting features

uses the ImageNet pre-trained networks effectively in

compliance with the transfer learning dynamics. We also

propose the use of ECOC for label encoding in order to

transform the multiclass into binary classification problem

which to the best of our knowledge has not been explored

yet. Furthermore, this study explores various fusion

strategies using the proposed learning representations and

the network architecture so that the strategy attaining best

results can be selected for comparative analysis.

3 Proposed method

The proposed architecture for HCN is shown in Fig. 1. The

hierarchical networks are opted due to their topological

flexibility for handling iterative algorithms and cascaded

networks. As mentioned earlier, we use the first convolu-

tional layer of pre-trained COVIDNet followed by the

initial layers of well-known pre-trained networks to extract

the feature maps. The COVIDNet is an open-source deep

neural network design for detecting COVID-19 from CXR

images. The pooling layers are designed such that they

downsample and upsample the feature maps depending on

the stage they are employed and selects a single response
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Fig. 1 The proposed HCN-FM architecture
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by performing convolution sum fusion. The maps are then

encoded for their labels using the ECOC technique. The

ECOC techniques are categorized as meta-learning method

which transforms the feature space in hot encoded values

and solves the multiclass classification problem through

employing multiple binary classifiers. The feature maps

along with their encoded labels are then trained using

DarkNet19 network architecture. The DarkNet19 archi-

tecture serves as a backbone convolutional neural network

for YOLOv2, a famous object detection framework. The

details for each of the blocks in Fig. 1 are provided in the

subsequent sections.

3.1 Datasets

We employ the COVIDx dataset proposed in [23] to

evaluate the COVID detection performance using HCN.

The dataset comprises of 13,975 CXR images obtained

from 13,870 patients. The reason for the discrepancy in the

number of patients and CXR images is due to the fact that

at times multiple images are obtained from the same

patient. The COVIDx dataset is the combination of five

publicly available dataset repositories such as COVID-19

radiography database [39], RSNA pneumonia detection

challenge dataset [40], ActualMed COVID-19 CXR dataset

initiative [41], COVID-19 CXR dataset initiative [42], and

COVID-19 image data collection [43]. All the abovemen-

tioned datasets are open to the public and are continuously

updated constantly. One of the motivations of this work

was to deal with the low volume of CXR images repre-

senting COVID patients. The COVIDx dataset has around

5,5328 and 8,066 CXR images for normal and bacterial

pneumonia, respectively, whereas only 358 CXR images

are available for COVID-19 patients (viral pneumonia).

The high data imbalance justifies our motivation for using

activation maps from multiple pre-trained networks to

increase the volume of COVID positive CXR images. We

adopt the dataset generation method from [23]. We used

the same number of training, validation, and testing images

as of COVID-19 so that a fair comparative analysis could

be carried out. We follow all the ethical policies and

guidelines suggested by the authors of different datasets,

accordingly.

3.2 Convolutional layer from COVIDNet

We made our basis earlier that using the networks pre-

trained on ImageNet might not provide us better feature

representations that are supported by the research com-

munity. Veronika cheplygina [44] conducted a study to

provide a stance on whether the use of ImageNet pre-

training is useful in medical imaging studies or not. The

conclusion of the said study was ‘‘it depends’’ suggesting

that if the volume of the data is small then it’s better to use

a pre-trained network rather than initializing the weights

randomly, however, if the volume of data is enough then

the network should be trained on medical images from

scratch. Raghu et al. [45] also conducted a similar study

and suggested that although the ImageNet pre-training is

not beneficial in terms of accuracy and precision it does

provide faster convergence. In compliance with the exist-

ing studies, we use the first convolutional layer from

COVIDNet [23] to process the feature maps. The first layer

has a convolutional filter size of 7 9 7 with a stride of

1 9 1. The feature dimensions are set to be 48 but the

subsequent pooling layer will select a single response (as

discussed in the next subsection).

As the COVIDNet model was designed by GenSynth,

the authors do not provide the architecture code directly.

Therefore, we used the checkpoint utilities from Ten-

sorFlow Python training package along with the index and

the pre-trained model (.data) file provided by the authors of

COVIDNet [23] to obtain the weights of the first convo-

lutional layer (conv1_conv/kernel). Intuitively, we assume

that using the first convolutional layer from COVIDNet

provides a better justification of transfer learning than by

using stand-alone network architectures pre-trained on

ImageNet (natural and colorful images). As the COVIDNet

leverages the principles of residual network architecture,

we compare the feature maps extracted from the first

convolutional layer of well-known networks designed with

residual connections such as ResNet50, DenseNet201,

GoogleNet, and SqueezeNet pre-trained on ImageNet and

the one extracted from the first convolutional layer of

COVIDNet as shown in Fig. 2. To get a single response we

use the max pooling layer for the aforementioned convo-

lutional layers, accordingly. The visual difference in the

feature maps is quite apparent. The feature map from the

pre-trained networks extract some low-level information

based on intensity levels which is beneficial for natural and

colorful images but does not contribute much to the med-

ical images, whereas the feature map from the COVID-

Net’s convolution layer focuses on the lung areas which is

the cornerstone to detect COVID-19.

3.3 Pooling layer

In the proposed HCN-FM architecture, the first pooling

layer is responsible for two operations. The first is the max

pooling from the convolutional layer of COVIDNet and the

second is the reversible downsampling of the feature maps

into three sub-images. Subsequently, the tensor l of size

W � H
3
� C is formed and provided as an input to the initial

layers of well-known convolutional networks pre-trained

on ImageNet where l refers to the feature map, and W, H,
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and C represent the width, height, and channel, respec-

tively. Zero-padding is performed to keep the size of the

feature map compliant with the input size of pre-trained

convolutional networks. Similarly, the second pooling

layer also comprises of two operations. The first is the

fusion of feature maps to provide a single feature response.

Studies working on image analysis have extensively

applied multiple fusion strategies to improve the recogni-

tion performance [46, 47] which include sum, convolution,

convolution sum, and so forth. As suggested in [46, 47], the

convolution sum strategy performs better than both the sum

and convolution fusion strategies; therefore, in this study,

we use the convolution sum strategy in our second pooling

layer. Let ld 2 RH�W�D represents the dth feature map

where d ¼ 1; . . .;D. The convolution sum fusion function f

performs four steps: (1) concatenation, (2) convolution, (3)

dimension reduction, and (4) summation. The feature maps

ld and ld�1 will be concatenated at spatial locations. The

convolutional operation is performed through the filter

banks which are defined in Eq. (1).

lconv�sum ¼ f sumðf conv ld; ld�1ð Þ; ldÞ

where

ð1Þ

The summation function is just the summation of feature

maps with respect to their spatial locations as is denoted by

‘‘?’’. The concatenation operation is represented by ‘‘ ’’

which concatenates the features maps horizontally. The

convolution operation represented as ‘‘�’’ is applied

through the filter banks and biases such that filt 2
R1�1�2w�h and bias 2 Rh, respectively. A weighted com-

bination of feature maps is generated through the convo-

lution operation at spatial location w� h followed by the

reduction in dimension; therefore, the resultant feature

representation will retain the actual size of the map. The

second operation executed at this pooling layer is upscaling

of feature map performed by the reverse operator from the

first pooling layer to produce the map with the same W, H,

and C, as the input.

3.4 Initial convolutional layers from pre-trained
networks

We use initial convolution layers from multiple network

architectures pre-trained on ImageNet. Naturally, the

question arises as to why we do not use COVIDNet layers

as feature extraction? This work aims to extract diverse

features to augment the data and in turn increasing the data

volume. The problem with using COVIDNet layers as

feature extraction is that we lose the diversification of

feature maps. Furthermore, the characteristics of COVID-

Net in the feature maps are retained from each pre-trained

network architecture as the forward pass of the CXR image

is propagated through the first convolution layer of the said

network. The size of the extracted feature map from each

pre-trained network is kept constant by branching off the

networks at a specific layer. For instance, ResNet50,

DenseNet201, GoogleNet, and SqueezeNet [48–51] are

branched off at 38th, 54th, 28th, and 29th layer, respec-

tively, to get a 28 9 28 9 128 feature responses with

added zero-padding to maintain the consistency in image

size. The diversified feature maps from the first convolu-

tional layer of the aforementioned pre-trained networks

preceding the first convolution layer of COVIDNet are

shown in Fig. 3.

3.5 Label encoder

The extracted feature maps will be assigned an encoded

label using error-correcting output code (ECOC) in the

form of {- 1, 0, ? 1} where 0 represents the non-

Fig. 2 Feature maps extracted from the first convolutional layer of

COVIDNet and well-known pre-trained networks such as ResNet50,

GoogleNet, DenseNet201, SqueezeNet, pre-trained on ImageNet
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participating class, - 1 and ? 1 refer to the negative and

positive class, respectively. An example of encoded labels

for CXR images is shown in Fig. 4. The encoded labels

will be assigned to each image for each hierarchy. For

instance, a feature map will first be assigned either - 1

or ? 1 for the first hierarchy and the DarkNet19 architec-

ture will be trained on the encoded labels, accordingly.

Similarly, the same feature map will undergo the second

hierarchy and assigned a label amongst 0, - 1, or ? 1

followed by the DarkNet19 training. This is how the

multiclass problem is transformed into a binary class. Let c

defines the number of classes and k be the length of the

coding matrix, then the encoding matrix z for the ECOC

will be of the size �1; 0;þ1f gc�k
. The underlying

assumption for using the coding matrix is that each column

of z will have k classifiers (binary) which implies that the

feature maps zck comprising of ? 1 or - 1, i.e., positive or

negative label, trains k classifiers based on cth label and the

zck having 0 encoded value will not participate in the

training of kth classifier. We are only interested in the

encoded labels assigned to the feature maps by the kth

classifier instead of directly classifying them, the idea is to

optimize the separation of feature maps based on their class

labels through encodings to represent a binary classifica-

tion problem. The hierarchical assignment of encoded

values will be continued until a leaf node occurs. The

weights and biases are characterized as W and B, respec-
tively. We adopt the joint binary classifier learning (JCL)

framework and the optimization method from the studies

[52, 53]. The principle optimization problem is shown in

Eq. (2)

min
W;B; #f g;fag

XN

n¼1

d
XNk

n¼1

#i
n

� �
ain þ

k
2

Xk

i¼1

nj#ij

Subject to:

#c 2 �1; 0;þ1f g; 8c 2 classes;

#n W0f n þ B
� �

� 1� an; 8n
an � 0; 8n

� s�
Xc

1

#� s;

Xk

i¼1

1f#i\0g� 1 and
Xk

i¼1

1f#i [ 0g� 1

ð2Þ

The variable d refers to the mismatch loss between the

actual encoded label and the predicted encoding. The

notation n refers to the number of training samples,

specifically the number of feature maps used for training.

The first constraint in Eq. (2) refers to the coding variable

# which can take the values �1; 0;þ1f g representing the

label c. The variables W;B; fag are the optimizable

parameters that define the decision boundary as presented

in the second constraint. The third constraint represents the

hinge loss. The term s in the fourth constraint refers to the

tolerance level which is introduced to maintain the balance.

The last constraint ensures that there is at least one positive

Fig. 3 Feature maps from the

first convolutional network of

the pre-trained networks

preceded by the COVIDNet

convolutional layer

Fig. 4 The ECOC method for label encodings for converting

multiclass to binary classification problem where ? 1 and - 1

represent the positive and negative class, and the 0 refers to the

confusing class ought to be ignored in the training and at the

inferential stage

23868 Neural Computing and Applications (2023) 35:23861–23876

123



and one negative class available. Equation 2 is optimized

for the label encodings such that the labels are separable

through a decision hyperplane. In the training phase, the

label encodings are provided based on the categorization in

Fig. 3, but the Eq. (2) is optimized for the testing phase so

that the images are assigned the label encodings so that the

specific trained model could be activated for classification.

For more details regarding the optimization problem, refer

to the study [53].

3.6 DarkNet19 architecture

The reason for choosing DarkNet19 architecture is that it is

as accurate as ResNet architectures but takes 4 9 less time

to train [54, 55]. It is apparent from the recent studies on

COVID-19 diagnosis that the volume of viral pneumonia

CXR images is less in number. Therefore, to balance the

distribution of data, we use the bootstrapping method with

sample replacement at the batch level. We fine-tune the

DarkNet19 network pre-trained on ImageNet with ADAM

optimizer [56] having an initial learning rate of 0.003,

batch size of 32, and an exponential decay rate of 0.00005

after every 3 epochs. We train the network for 40 epochs.

We used the rotation, translation, flipping, and zoom aug-

menting strategies for fine-tuning the network.

3.7 Fusion strategies

The image analysis studies use fusion strategies exten-

sively to improve recognition performance. We evaluate

four different kinds of strategies that vary based on com-

putational complexity and the number of parameters. We

evaluate decision-level fusion strategy with meta-learning,

decision-level fusion strategy with weighted averaging,

feature-level fusion, and without fusion. The strategies are

listed in their descending order suggesting that the deci-

sion-level fusion strategy with meta-learning comprises a

large number of parameters and high computational com-

plexity, whereas the training without fusion has the lowest

number of parameters and lower computational complexity

amongst all the strategies. The decision-level fusion needs

separate streams to be trained for encoded labels in a

hierarchical fashion suggesting that a separate DarkNet19

network will be trained on features extracted from

ResNet50 and so forth. The probabilities from each of the

streams will be combined either using a meta-learning

strategy [53] or weighted averaging [47]. The feature-level

fusion combines the feature maps using gradient-sum

pooling [47] and trains a single DarkNet19 architecture for

the encoded labels in the proposed hierarchy. We refer to

the decision-level fusion with meta-learning as HCN-

DML, decision-level fusion with weighted averaging as

HCN-DWA, feature-level fusion as HCN-FLF, and without

fusion as HCN-FM. The use of the aforementioned fusion

strategies with reference to the proposed architecture is

shown in Fig. 5. The HCN-FM represents a cross-modal

training architecture [47] where the diverse features are

trained using a single-stream. On the other hand, HCN-

DML and HCN-DWA take an opposite approach by

training an individual stream for a single modality. We

adopt the implementation of HCN-DML from [53], HCN-

DWA, and HCN-FLF from [47], respectively.

4 Experimental results

This section first provides the details for the dataset

employed in this study followed by the quantitative and

qualitative analysis for evaluating the effectiveness of the

proposed HCN-FM. We also perform ablation studies to

select the best fusion strategy, accordingly. Furthermore,

this section presents an implication of the proposed work in

the form of a strategy for the triage of COVID-19 patients

to support other testing approaches.

4.1 Ablation study

As the proposed hierarchical classification network

employs various fusion strategies, it is essential to evaluate

each of the strategies quantitatively. This will allow us to

investigate not only the test accuracy, but also the trade-off

between the accuracy and computational complexity. We

evaluate HCN-DML, HCN-DWA, HCN-FLF, and HCN-

FM using sensitivity, specificity, precision, and accuracy

metric on test set images from the COVIDx dataset. The

results are shown in Table 1. The results show that the

HCN-DML achieves the best result in terms of sensitivity,

specificity, precision, and accuracy, accordingly. It makes

sense as the HCN-DML has the highest computational

complexity in comparison with the other strategies. An

interesting finding here is that the HCN-FM performs better

than the HCN-DWA that performs a weighted averaging on

the probabilities obtained using four different network

streams. Additionally, the HCN-DWA has the second-

highest computational complexity, whereas the HCN-FM

has the lowest one and the least number of parameters.

We assume that the resultant classification probabilities

are quite close to each other for individual streams which

makes it difficult for a weighted averaging scheme to dif-

ferentiate them. On the other hand, the HCN-FM represents

a cross-modal learning strategy, but in this case, the cross-

modality is represented at the input level, i.e., the feature

maps. It has been shown in the literature that cross-modal

learning in some cases benefits from the diverse repre-

sentations and might achieve better results than the mul-

tistream networks [47]. The lowest recognition rate is
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obtained using HCN-FLF which is apparent as it uses a

single response for training the network stream. The HCN-

FLF does not leverage the natural way of data augmenta-

tion as proposed in this study. However, the results

obtained using HCN-FLF are on par with the COVIDNet,

respectively. It should also be noted that the HCN networks

also use a bootstrapping technique to balance the distri-

bution of the samples as well as the ECOC technique to

transform the multiclass to the binary class classification

problem.

We evaluate the two best networks, i.e., HCN-DML and

HCN-FM with and without bootstrapping and ECOC

technique to get a deeper understanding. The results are

reported in Table 2. The results show that the transfor-

mation to binary class problem plays a vital role in

improving the COVID recognition performance from CXR

Table 1 Quantitative results for

the fusion strategies using

hierarchical classification

network

Fusion strategy Normal (%) Bacterial pneumonia (%) Viral pneumonia (%)

Sensitivity

HCN-DML 96.08 95.10 98.96

HCN-DWA 93.20 94.00 94.85

HCN-FLF 91.26 90.38 96.77

HCN-FM 91.51 95.05 100.00

Precision

HCN-DML 98.00 97.00 95.00

HCN-DWA 96.00 94.00 92.00

HCN-FLF 94.00 94.00 90.00

HCN-FM 97.00 96.00 93.00

Specificity

HCN-DML 96.97 97.47 95.59

HCN-DWA 94.42 94.00 93.60

HCN-FLF 93.40 93.88 90.82

HCN-FM 97.42 95.48 93.24

Accuracy

HCN-DML 96.67

HCN-DWA 94.00

HCN-FLF 92.67

HCN-FM 95.33

Fig. 5 Application of fusion strategies with reference to the proposed

architecture. HCN-FM ? HCN without fusion, HCN-FLF ? HCN

with feature-level fusion, the feature maps are fused using gradient-

sum pooling [47], HCN-DML ? HCN with meta-learning-based

decision-level fusion, the probabilities of the classified labels are

trained using a shallow-learning classifier [53], and HCN-DWA ?
HCN with weighted averaging-based decision-level fusion, the

probabilities of the classified labels are combined through weighted

averaging, and the class with maximum probability is selected
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images. The bootstrapping does help in enhancing the

sensitivity and precision, but the improvement is not sig-

nificant. The important aspect of this ablation study is that

it shows even without using ECOC and bootstrapping the

HCN-DML achieves considerably better sensitivity which

highlights the intrinsic properties of the proposed HCN and

the usefulness of deriving diversified representation.

However, the HCN network has been designed to tackle the

challenge of detecting COVID-19 from CXR images when

using fine-grained labels, such as Streptococcus, Legio-

nella, Pneumocystis, Klebsiella under the category of

bacterial pneumonia, and SARS, MERS, ARDS, COVID-

19 within the viral pneumonia category. The ECOC has

proved to be beneficial in improving the performance with

a large number of labels [53], although, the increase in

performance is not significant using 3 labels with respect to

the HCN-DML, but still the encodings improve the per-

formance rather than degrading it. It is also to be noted that

the use of ECOC and bootstrapping is supported by the

results from HCN-FM where the absence of these tech-

niques results in reduced sensitivity, i.e., 83.00% for viral

pneumonia. The results highlight that the ECOC and

bootstrapping technique compliment each other for

improving the recognition performance. It should also be

noted that the sensitivity for almost all the HCN variants is

above 90% which is quite acceptable considering that the

clinical experts achieved 69% for the same when diag-

nosing COVID-19 from CXR images. Moreover, the

sensitivity of RT-PCR which is currently the gold standard

has been recorded to be 91% [18].

4.2 Qualitative analysis

We illustrate the visualization of saliency maps using the

Grad-CAM method [57] in Figs. 6 and 7, respectively. The

Figs. 6 and 7 show the broad main lesion learned by the

network to classify COVID-19 patients, correctly. It was

noticed that the particular map is only activated in COVID-

19 CXR images, whereas no saliency map was observed

with bacterial or normal CXR images as shown in Fig. 8.

The images support our previous analysis where HCN

achieves better sensitivity analysis than the gold standard.

Table 2 Ablation study for highlighting the importance of ECOC and bootstrapping in HCN framework

Fusion strategy Normal (%) Bacterial pneumonia (%) Viral pneumonia (%)

Sensitivity

HCN-DML w/o ECOC 95.05 93.20 96.88

HCN-DML w/o Bootstrapping 95.10 96.04 97.94

HCN-DML w/o ECOC ? Bootstrapping 94.06 92.23 95.83

HCN-DML 96.08 95.10 98.96

HCN-FM w/o ECOC 92.08 87.74 97.85

HCN-FM w/o Boot strapping 94.06 90.38 97.89

HCN-FM w/o ECOC ? Bootstrapping 97.00 92.00 83.00

HCN-FM 91.51 95.05 100.00

Precision

HCN-DML w/o ECOC 96.00 96.00 93.00

HCN-DML w/o Bootstrapping 97.00 97.00 95.00

HCN-DML w/o ECOC ? Bootstrapping 95.00 95.00 92.00

HCN-DML 98.00 97.00 95.00

HCN-FM w/o ECOC 93.00 93.00 91.00

HCN-FM w/o Boot strapping 95.00 94.00 93.00

HCN-FM w/o ECOC ? Bootstrapping 88.20 86.80 98.80

HCN-FM 97.00 96.00 93.00

Fig. 6 Example of an activation map for viral pneumonia patient

using Grad-CAM. The left image represents the original CXR,

whereas the right image represents the saliency map along with

classification probabilities
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Moreover, the Grad-CAM maps can also be used for the

interpretability of the CXR images while providing insights

to the radiologists through main lesions which might be

helpful for clinical diagnosis.

4.3 Comparison with the existing works

All of the experiments reported in this study have been

conducted on a GPU NVIDIA GeForce GTX 1080Ti with

32 GB RAM and Intel Core i7 clocked at 3.4 GHz. The

COVID pandemic is recent, therefore, the studies centered

toward diagnosing COVID-19 from a limited amount of

annotated images are quite less. We compare the proposed

HCN architecture with three of the studies that are con-

sidered to be state-of-the-art approaches. The first one is

the COVIDNet, whereas the second and third are proposed

in [14] and [58]. The comparison between the HCN

architecture and the state-of-the-art approaches is shown in

Table 3. It should be noted that we used the same

dataset along with the same training and testing protocols

to perform a fair comparison. The overall accuracy

achieved by HCN-FM and HCN-DLM is 96.67% and

95.33% which outperforms the results reported in [14, 58]

and COVIDNet, i.e., 91.9%, 94.72%, and 93.33%,

respectively. Furthermore, the proposed method shows

significant improvement in terms of both, the sensitivity

and the precision, accordingly. The training time for HCN-

FM and HCN-DLM was noted to be 1055 and 2926 s,

whereas the testing time for both the networks was noted to

be 3 and 8 s, respectively. We do agree that the proposed

HCN architecture is more computationally complex than

that of [14, 58] and COVIDNet but considering the infer-

ence time, reliability of clinical diagnosis, and the ongoing

pandemic situation, we believe that the accuracy weighs

more than the computational complexity. Some studies

proposed the COVID-19 detection from CXR images using

the COVIDx dataset, but their evaluation is either based on

the same protocol as of [23] or they perform the binary

classification, i.e., COVID-19 and non-COVID-19 patients.

We compare the performance of HCN with the other recent

studies in terms of accuracy in Table 4. It is evident that the

proposed HCN architecture outperforms the recent studies

for detecting COVID-19 from CXR images.

4.4 Triage of HCN for COVID-19

As discussed earlier in this study, the limitation of the gold

standard testing, i.e., RT-PCR is due to the shortage of

testing kits and expert resources, especially in the devel-

oping countries. Keeping in view, the current spread of the

COVID pandemic, the developed countries also face the

shortage of testing kits and medical capacity. It is therefore

a need to explore all possible resources and distribute them

based on ‘triage’. The patients with cough or mild fever

rush to the testing facility to get themselves diagnosed. It

has been explored by existing studies that people with such

symptoms mostly suffer from bacterial pneumonia [61].

The study [61] also suggests that viral pneumonia stands at

the third common cause of pneumonia preceded by the S.

pneumonia and H. influenza, respectively. For some geo-

logical regions, tuberculosis is also considered to be a

common cause of pneumonia [61]. The takeaway from the

study [61] is that the major portion of patients suffering

from the flu, cough, or mild fever might have bacterial

pneumonia or tuberculosis rather than COVID-19. Con-

ducting their tests through the gold standard RT-PCR will

be a waste of time as well as resources that can be effec-

tively managed through the CXR image diagnosis.

Based on the HCN architecture, we present a triage

workflow that could help distribute and manage the limited

resources during this pandemic in Fig. 9. The diagnosis

through CXR images is much faster than that of RT-PCR

which could be leveraged using HCN architecture.

Specifically, the proposed method can distinguish between

patients having normal, bacterial, and viral pneumonia.

Fig. 7 Example of an activation map for viral pneumonia patient

using Grad-CAM. The left image represents the original CXR,

whereas the right image represents the saliency map along with

classification probabilities

Fig. 8 Example of an activation map for bacterial pneumonia patient

using Grad-CAM. The left image represents the original CXR,

whereas the right image represents the saliency map along with

classification probabilities
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The ones diagnosed with viral pneumonia can be consid-

ered for further testing through RT-PCR or CT scans to

double-check or validate the diagnosis. This will not only

save the medical resources, but will also help in speeding

up the diagnosis and early isolation of the suspected cases,

hence slowing down the spread of COVID-19.

5 Discussion and conclusion

With the current spread of COVID-19 pandemic, the effi-

cient utilization of medical resources is an important issue.

The gold standard RT-PCR testing at a large scale is not

possible for developing or developed countries. The patient

management based on triage is the only option to test the

patients and early isolation of the suspects. The CXR and

CT scans are potential alternatives to RT-PCR testing.

Unfortunately, CT scans suffer from the same problem as

of RT-PCR which leaves us with CXR images. To make

the diagnosis faster, the use of artificial intelligence can be

leveraged by analyzing the CXR images in an automated

way. However, the use of artificial intelligence requires a

high volume of annotated data which is currently the main

problem related to CXR image diagnosis.

In this regard, we proposed the HCN architecture which

uses the first convolution layer from COVIDNet followed

by the well-known pre-trained architectures to extract the

feature representations. This is a natural way to augment

the annotated data. Furthermore, we proposed the use of

ECOC to transform the multiclass into a binary classifi-

cation problem for improving the recognition performance.

We also performed an in-depth analysis based on the fusion

strategies to select the HCN variant with the best recog-

nition performance. The results from the proposed HCN

architecture were also verified through qualitative analysis

(Grad-CAM) which showed that the activations in the

saliency maps are triggered only in the COVID-19

patients’ CXR. It should be noted that the proposed work is

not designed to elevate COVID-19 from flu, rather the

HCN differentiates between viral pneumonia, bacterial

pneumonia, and normal CXR images. As per CDC guide-

lines [6], only 15% of the patients with COVID-19 develop

severe symptoms which leads to pneumonia and charac-

terizes COVID-19 in the family of viral pneumonia.

However, it can observed from the HCN’s Grad-CAM that

it only triggers the activation in the saliency map when the

COVID (viral pneumonia) is detected rather than the bac-

terial or fungal infection. The categorization of the bacte-

rial and viral pneumonia in our study is in line with ICD10,

thus, we consider the categorization justified. Furthermore,

we compared the proposed work with existing state-of-the-

art works and showed that the HCN yields better recog-

nition performance. Finally, a triage workflow has also

Table 3 Comparison of

proposed HCN architecture with

state-of-the-art methods

Method Normal (%) Bacterial pneumonia (%) Viral pneumonia (%)

Sensitivity

COVIDNet [23] 90.48 91.26 98.91

Oh et al. [14] 90.00 93.00 100.00

MobileNetv2 [58] 94.26 93.65 98.66

HCN-FM 91.51 95.05 100.00

HCN-DLM 96.08 95.10 98.96

Precision

COVIDNet [23] 95.00 94.00 91.00

Oh et al. [14] 95.70 90.30 76.90

MobileNetv2 [58] 97.96 96.13 83.71

HCN-FM 97.00 96.00 93.00

HCN-DLM 98.00 97.00 95.00

Bold values represent best accuracy (%)

Table 4 Comparison with the recent studies in terms of accuracy

Method Accuracy (%)

COVIDNet [23] 93.33

EfficientNet [33] 69.95

ConfiNet [33] 68.08

AnoDet [33] 73.24

CAAD [33] 72.77

DeTraC-ResNet18 [34] 95.12

VGG19 [59] 90.00

DenseNet201 [59] 90.00

MobileNetv2 [58] 94.72

Hall [60] 89.20

HCN-FM 95.33

HCN-DML 96.67

Bold values represent best accuracy (%)
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been laid out for showing the real-world applicability of the

proposed work.

Even though we report the state-of-the-art results, the

proposed work has some limitations for its applicability to

the real-world setting. The first limitation is regarding the

availability of the limited labeled dataset. Although, this

work proposes a natural way of augmenting the data, still

the dataset is too small to be applied to real-world settings.

The second limitation is the label constraints with respect

to the dataset. The images are labeled as normal, bacterial,

and viral pneumonia, however, there are many classifica-

tions within these three labels. For instance, bacterial

pneumonia includes Streptococcus, Legionella, Pneumo-

cystis, Klebsiella, and more, whereas viral pneumonia

includes SARS, MERS, and COVID-19.

One of the benefits of using HCN is the ability to deal

with multiple labels by leveraging the concepts of ECOC.

As per the medical community, the diseases such as pleural

effusion, pulmonary edema, pulmonary fibrosis, and

chronic obstructive pulmonary disease (COPD) yield the

same characteristics of lung shrinking in terms of CXR

visualization, which can be added to the bacterial variant of

pneumonia. However, the point is, there is a need for large-

scale annotation with extended labels. As the proposed

HCN uses ECOC, it can be helpful to build a recognition

system with a large set of labels for differentiating among

several diseases. As our future work, we want to coordinate

with experts to build a database of such diseases to not only

detect the disease, but also to rate the severity of each

disease through CXR images.
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